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Oxidative stress and inflammation are the most important pathogenic events in the
development and progression of liver diseases. Nuclear erythroid 2-related factor 2
(Nrf2) is the master regulator of the cellular protection via induction of anti-inflammatory,
antioxidant, and cyto-protective genes expression. Multiple studies have shown that
activation or suppression of this transcriptional factor significantly affect progression of
liver diseases. Comprehensive understanding the roles of Nrf2 activation/expression and
the outcomes of its activators/inhibitors are indispensable for defining the mechanisms
and therapeutic strategies against liver diseases. In this current review, we discussed
recent advances in the function and principal mechanisms by regulating Nrf2 in
liver diseases, including acute liver failure, hepatic ischemia–reperfusion injury (IRI),
alcoholic liver disease (ALD), viral hepatitis, non-alcoholic fatty liver disease (NAFLD),
non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC).

Keywords: Nrf2, oxidative stress, cytoprotective genes, acute liver injury, viral hepatitis, non-alcoholic fatty liver
disease, non-alcoholic steatohepatitis, hepatocellular carcinoma

INTRODUCTION

Oxidative stress and inflammation are the most important pathogenic events in liver diseases.
During liver injuries, the unregulated production of free radicals and/or ROS leads to damage
of important biomolecules and cells and generation of proinflammatory genes. Antioxidant and
anti-inflammatory therapy has been considered to be beneficial in liver diseases. Nrf2 is the master
regulator of the primary means of cellular defense through mediation of antioxidant response, anti-
inflammatory and cytoprotective properties, and dysregulation of Nrf2 activity has been revealed
to correlated with the development of chronic inflammatory diseases (Alam et al., 1999; Vomund
et al., 2017; Bellezza et al., 2018; Hennig et al., 2018). The protective effects of Nrf2 signaling
pathway has been identified in a number of disease models, including acute kidney, lung or neurons

Abbreviations: ALD, alcoholic liver disease; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; CDDO-Im, CDDO-imidazolide; CYP2E1, cytochrome P450 2E1; D3T, 3H-1,2 dithiole-3-thione; D-GalN,
D-galactosamine; DAMP, damage-associated molecular pattern; DILI, drug-induced liver injury; FGF19, fibroblast growth
factor 19; GST, glutathione S-transferase; HBV, hepatitis B virus; HBx, HBV stimulates by its X protein; HCC, hepatocellular
carcinoma; HCV, hepatitis C virus; IRI, ischemia–reperfusion injury; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH-
associated protein; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; NAFLD, non-alcoholic fatty liver disease; NASH,
non-alcoholic steatohepatitis; NQO1, NAD(P)H quinone dehydrogenase one; Nrf2, nuclear erythroid 2-related factor 2; NS,
non-structural; PBC, primary biliary cholangitis; PPARγ, peroxisome proliferator-activated receptor-γ; ROS, reactive oxygen
species; VLDLR, very-low density lipoprotein receptor.
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injury, emphysema, and sepsis (Thimmulappa et al., 2007;
Reddy et al., 2009; Sussan et al., 2009; Zhang et al., 2012; Liu
et al., 2014). Accumulating evidence also has implicated this
transcription factor in various liver diseases, including acute
hepatoxicity, NAFLD, NASH, ALD, DILI, viral hepatitis, liver
fibrosis, hepatic IRI, and primary hepatic malignancies (Klaassen
and Reisman, 2010; Tang et al., 2014). Under acute and chronic
oxidative stress and inflammatory conditions, Nrf2 is activated
and prevents oxidative and inflammatory diseases by modulating
genes expression of cytoprotective proteins and enzymes, which
decreases ROS levels, inflammation, and cell death (Bataille and
Manautou, 2012). However, the function of Nrf2 is not always
protective in diseases, recent studies have identified that the
gene expression of Nrf2 was associated with the pathogenesis,
progression, and metastasis of cancer, resistance to cancer
therapy, and the regulation of cancer cells metabolism, thereby
suggesting that Nrf2 is a pleiotropic transcriptional factor (Karin
and Dhar, 2016; Rojo de la Vega et al., 2018). In this review,
we summarized up-to-date studies in the understanding of the
roles and mechanisms of Nrf2 and the therapeutic approaches by
targeting Nrf2 in liver diseases.

ACTIVATION OF Nrf2 ATTENUATES
ACUTE LIVER INJURY

Study has shown that activation of Nrf2 attenuates acute
liver injury. Wu et al. (2012) compared serum ALT, LDH,
hepatic hemorrhage, and necrosis levels between Nrf2-null
and Nrf2-enhanced mice in cadmium-induced acute liver
injury mice model; they found that Nrf2-enhanced mice were
associated with lower ALT and LDH levels and with fewer
morphological alterations. The mRNA levels of cytoprotective
genes, including sulfiredoxin-1, glutamate-cysteine ligase, and
glutathione peroxidase-2 were expressed only in Nrf2-enhanced
mice, suggesting that Nrf2 activation prevents oxidative stress
and acute liver injury through modulation of antioxidant
defense-associated genes (Figure 1). Subsequently, the protective
effects of Nrf2 was tested in LPS and D-GalN-induced liver
injury mouse models by treatment with mangiferin, which could
upregulate the gene expression of Nrf2 in a dose-dependent
manner (Pan et al., 2016). Mangiferin treatment suppressed
serum levels of ALT, AST, IL-1β, TNF-α, and ROS levels, adding
evidences that activation of Nrf2 pathway protects against acute
liver injury. Biochanin A, morin, curcumin, andrographolide,
oxymatrine, and madecassoside were also found to play a
protective role via activation of Nrf2 in LPS and D-GalN-
induced acute liver injury in mice (Liu et al., 2016; Pan et al.,
2017; Tian et al., 2017; Xie et al., 2017; Wang et al., 2018). In
addition, the antioxidant pathway of Nrf2 was further tested
and found to be effective in carbon tetrachloride-induced and
acetaminophen-induced mouse acute liver injury models (Huang
et al., 2016; Cao et al., 2017; Peng et al., 2018; Shen Z. et al.,
2018). The role of Nrf2 in hepatic IRI was also identified by
several studies (Ke et al., 2013; Kudoh et al., 2014; Rao et al.,
2015; Ge et al., 2017; Xu et al., 2017). Ke et al. (2013) showed
that the Keap1–Nrf2 complex could alleviate oxidative injury in

FIGURE 1 | Role of Nrf2 in acute liver injury. The protective effects of Nrf2 in
acute liver injury, one is through regulating antioxidant defense-related genes,
including sulfiredoxin-1, glutamate-cysteine ligase, and glutathione
peroxidase-2, and the other pathway is by promoting its target gene HO-1
and then enhanced autophagy. While its negative regulator-keap1, which by
binding to it inhibits Nrf2 activation and Trx1-PI3K/AKT-HIF1-HO-1/CyclinD1
signal pathway and promotes liver injury.

mouse orthotopic liver transplantation through Keap1 signaling
(Figure 1). The protective effects were identified by limiting
hepatic inflammatory responses and hepatocellular necrosis.
Recently, our research identified cytoprotective effects of CDDO-
Im, a potent activator of the Nrf2 pathway, in hepatic IRI,
through inducing Nrf2 target gene HO-1 expression leads to
enhanced autophagy in hepatocytes, which results in increased
clearance of damaged mitochondria, reduced mtDNA release and
ROS production leading to reductions in DAMP release-induced
inflammatory responses and subsequent secondary hepatocyte
injury (Xu et al., 2017). Despite accumulating evidences, Nrf2-
based treatment is yet to enter clinical trials in the USA1 for
patients with acute liver failure.

ACTIVATION OF Nrf2 AMELIORATES
ALCOHOLIC LIVER DISEASE

Alcohol consumption has been revealed to be significantly
associated with the development and progression of liver diseases
over decades (Shepard et al., 2010). Alcohol metabolism in the
liver includes ethanol oxidation by alcohol dehydrogenase in
hepatocytes and microsomal oxidation promoted by CYP2E1
(Bae et al., 2011; Wang et al., 2014a). Alcohol dehydrogenase-
associated ethanol metabolism results in acetaldehyde, which
gives rise to some downstream effects, such as depletion
of glutathione, lipid peroxidation, and generation of ROS
(Dey and Cederbaum, 2006). In addition, the dysregulation
of antioxidant glutathione by Nrf2-dependent regulation was
found to contribute to the development of ALD by providing
pathological conditions, whereas the Nrf2-mediated antioxidant
response provided protection against alcohol-induced oxidative
stress by regulating glutathione metabolism (Harvey et al.,
2009; Lu, 2013; Rejitha et al., 2015). Furthermore, the oxidative
stress-induced upregulation of Nrf2 is considered to positively
modulate expression of VLDLR, which contributes to ALD
(Wang et al., 2014b).

In ethanol-exposed mice, the role of Nrf2-induced antioxidant
factors was first tested by the Nrf2 inducer D3T (Dong et al.,
2008). Upregulation of Nrf2 by D3T treatment has significantly
decreased generation of ethanol-induced ROS and apoptosis,
which indicated that the activation of Nrf2 could diminish
ethanol-induced apoptosis and ameliorate the disease status.

1clinicaltrials.gov
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FIGURE 2 | Role of Nrf2 in alcoholic liver disease. Studies shown that
oxidative stress promotes Nrf2 activation-induced hepatic VLDLR
overexpression and ameliorates ALD. Nrf2 activator-Sulforaphane protects
alcoholic fatty liver disease by activating Nrf2 signaling pathway and GSH
levels. D3T through upregulate Nrf2 protein levels and decreased ROS levels
and liver injuries.

Moreover, Zhou et al. (2014) verified that Nrf2-mediated
cytoprotective enzymes could ameliorate alcohol-induced liver
steatosis both in in vivo and in vitro models. They further
administered sulforaphane, which is an activator of Nrf2
and present in considerable quantities in brassica vegetables
including broccoli, cabbage, and kale, and found it to be
effective in improving alcohol-induced liver steatosis (Figure 2).
Furthermore, recent advances indicated that activation of the
Nrf2 pathway was protective in alcohol-induced liver fibrosis
and hepatotoxicity, whereas knockdown of Nrf2 was associated
with enhanced alcohol-induced hepatocyte necroptosis (Song
et al., 2015; Lu et al., 2016; Ni et al., 2017). By contrast, a more
recent study demonstrated that ethyl pyruvate, which has multi-
effects including antibacterial, anti-inflammatory, antiviral,
vasodilatory, antioxidant, and antiapoptotic effects, decreases
ALT, AST, hepatic morphological changes, triglycerides, free
fatty acids, and the expression of proinflammatory factors
and increases the expression of anti-inflammatory factors
and peroxisome proliferator-activated receptor-α mRNA which
through downregulation of the ROS–Nrf2 signaling pathway,
thereby alleviating ALD in mice (Fawcett et al., 1999; Harding
et al., 2000; Shen F. et al., 2018). Taken together, these evidences
showed that Nrf2 activation plays essential protective role in
the development of ALD and that simultaneous downregulation
of Nrf2 with ROS and VLDLR may also be effective in the
amelioration of ALD (Figure 2). Further studies are required to
demonstrate the extent of amelioration between upregulation and
downregulation of Nrf2 when ROS and VLDLR expression levels
are downregulated in ALD.

PROTECTIVE EFFECTS OF Nrf2 ON
VIRAL HEPATITIS-INFECTED CELLS
AGAINST OXIDATIVE DAMAGE

Oxidative stress has been shown to be implicated in viral
hepatitis-associated liver diseases, including HBV and HCV
infections (Bolukbas et al., 2005; Ivanov et al., 2013). A previous
study indicated that HCV could mediate the phosphorylation and
activation of Nrf2, which was regulated by the mitogen-activated
protein kinases. The authors further suggested that the activation
of Nrf2-derived survival of HCV-infected cells may provide
favorable circumstances for carcinogenesis (Burdette et al.,

2010). Another study showed that the inhibition of Nrf2 and
antioxidant response elements is regulated by the core proteins
of HCV-replicating cell-triggered delocalization of small Maf
proteins, which were bound to NS proteins NS3, thus reducing
the expression of cytoprotective genes (Carvajal-Yepes et al.,
2011). From the authors’ point of view, inhibition of Nrf2 and
antioxidant response element-regulated genes may contribute
to HCV-associated pathogenesis due to impaired induction of
reactive oxygen intermediates caused by cytoprotective genes,
which giving rise to host cell DNA damage and promoting the
genetic variability of the viral genome. Moreover, Ivanov et al.
(2011) found that the antioxidant-protective Nrf2/antioxidant
response element pathway is activated by HCV proteins,
including core, E1, E2, NS5A, and NS4B, in an ROS-dependent
and -independent manners (Figure 3). In addition, a strong
upregulation of the antioxidant-protective system was modulated
in the earliest stage, indicating that Nrf2 is activated to protect
against HCV-induced oxidative stress in the acute stage of HCV
infection. In addition, replication of HCV has been reported
to be suppressed by Nrf2-mediated heme oxygenase-1 (HO-
1) inducible factor, which is a phytocompound isolated from
Lindera erythrocarpa Makino fruits (lucidone), and a quinone
methide triterpene isolated from Tripterygium wilfordii root
extract (celastrol) (Chen et al., 2013; Tseng et al., 2017).
Furthermore, an in vitro cell line study from Japan found that
knockdown of Nrf2 significantly reduced HCV infection and
steatosis (Sugiyama et al., 2014). Most recently, the authors
further confirmed that an Nrf2 inhibitor (brusatol) had anti-HCV
effects in vitro (Murakami et al., 2018) (Figure 3).

Hepatitis B virus infection, which causes acute or chronic
liver inflammation and contributes to the development of HCC,
has been shown to induce activation of Nrf2 and antioxidative
response elements in vivo and in vitro by HBV-regulatory
proteins, including HBx and large surface proteins, via c-Raf and
mitogen-activated protein kinase (Hildt et al., 2002; Schaedler
et al., 2010). In addition, the HBx protein-mediated activation
of Nrf2 has been introduced to trigger the upregulation of
glucose-6-phosphate dehydrogenase, thereby reprogramming
metabolism of glucose, and may participate in the development
of HCC (Liu et al., 2015). Therefore, Nrf2 is not only a crucial
factor that is activated to defend against viral hepatitis-induced

FIGURE 3 | Role of Nrf2 in viral hepatitis-associated liver diseases. Hepatitis
C virus was reported that impaired the protection of Nrf2 by promoting sMaf
bound to NS3 and brusatol suppressed HCV infection by promoting Nrf2
pathway. HBV-regulatory proteins, including its X protein (HBx) and large
surface proteins were reported to activate Nrf2 and antioxidative responses
via c-Raf and mitogen-activated protein kinase.
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oxidative stress but also a protective factor that is involved in
the survival of viral hepatitis-infected cells and may contribute
to hepatocarcinogenesis.

PROTECTIVE IMPACT OF Nrf2 IN
NON-ALCOHOLIC FATTY LIVER
DISEASE

Non-alcoholic fatty liver disease is a progressive disease arising
from the accumulation of lipids in hepatocytes and has an
increasing incidence worldwide (Satapathy and Sanyal, 2015).
Approximately one-third of patients with NAFLD progress
to severe NASH, which is linked with inflammation and
cirrhosis (Tarantino and Finelli, 2013; Dietrich and Hellerbrand,
2014). Recent studies indicated that ROS and electrophiles are
associated with the pathogenesis of NASH; thus, induction of
Nrf2 seemed to be promising in the prevention and treatment
of NAFLD (Chambel et al., 2015). Du et al. (2016), explored the
therapeutic impact of Nrf2 activation by using osteocalcin, and
found that it could improve NAFLD by ameliorating oxidative
stress and inhibiting the JNK pathway, which is an important
pathway involved in the pathogenesis of NAFLD. A recent study
demonstrated that scutellarin, a flavonoid glycoside that has an
antioxidative stress effect, significantly reduced blood lipid levels
and enhanced the antioxidative capacity by activating PPARγ and
its coactivator-1α, Nrf2, HO-1, GST, and NQO1, and suppressing
nuclear factor κB and Keap1 at the mRNA and protein levels, thus
ameliorating NAFLD (Zhang et al., 2018) (Figure 4). In addition,
a modulator of PPARγ, apigenin, was also revealed to attenuate
NAFLD by Nrf2-associated regulation of oxidative stress and
hepatocyte lipid metabolism (Feng et al., 2017). Moreover, for the
prevention of NAFLD, scutellarin, which is a natural drug with
active components of breviscapine, was shown to be effective by
enhancing the Nrf2-mediated antioxidant system in high-fat diet-
and chronic stress-subjected rats (Fan et al., 2017).

Nuclear erythroid 2-related factor 2 has been found to be a key
regulator in the protection against NASH (Gupte et al., 2013).
By contrast, loss of Nrf2 or deletion of Nrf2 has been found
to cause benign steatosis to develop into NASH and contribute
to exacerbation of disease status (Chowdhry et al., 2010; Wang
et al., 2013). Ramadori et al. (2017) indicated that overactivation
of Nrf2 suppressed the hepatocyte-specific c-met deletion (an
accelerative factor for NASH)-induced deleterious impact on
the progression of NASH and suggested that Nrf2 repaired
liver damage in hepatocyte-specific c-met-deficient mice via

FIGURE 4 | Role of Nrf2 in NAFLD. Multiple studies have shown that several
pathways could activate Nrf2 and inhibit NAFLD and NASH including
scutellarin-PPARγ/PGC1α-Nrf2-HO-1/NQO1/GST pathway; green tea extract
and ezetimibe activated Nrf2 pathway; osteocalcin activated Nrf2 and
subsequently inhibited JNK pathway.

maintaining balance in cellular redox homeostasis. To date, green
tea extract and ezetimibe (an inhibitor of Niemann-Pick-C1-Like
1) have been revealed to promote the protective impact of Nrf2
against lipid accumulation and the inflammatory response during
NASH (Lee et al., 2016; Li et al., 2016) (Figure 4). However,
Nrf2-associated therapeutic approaches for NASH remain to be
implemented in a real-world clinical manner in the near future.

Nrf2 IN PRIMARY LIVER CANCER

Hepatocellular carcinoma is the most common primary liver
cancer, accounting for more than 80% of all hepatic malignancies
(Forner et al., 2018), with molecular alterations in HCC arising
in the very early stage of carcinogenesis (Pitot, 2007). Among
the changes, activation of Nrf2 was found to be the prominent
pathway that contributes to the progression of preneoplastic
lesion to malignancy, which was confirmed by in vivo detection
of the inhibition of the Nrf2 pathway that accompanied the
regression of cytokeratin 19-positive nodules (Petrelli et al.,
2014). The persistent activation of this transcription factor
was found to be associated with the accumulation of p62,
thus participating in the development of HCC (Inami et al.,
2011). This finding was further supported by Saito et al. (2016)
who confirmed the promotive impact of p62 in HCV-positive
HCC through Nrf2-dependent metabolic reprogramming. In
addition, Nrf2 was also found to participate in protection of
HCC cells by facilitating the survival response of FGF19 to
endoplasmic reticulum stress (Teng et al., 2017; Tian et al.,
2018) (Figure 5). Thus, advances were made to regulate the Nrf2
pathway in HCC, including identification of miR-340, miR-144,
camptothecin, and valproic acid, which were revealed to be
effective in suppressing the Nrf2-dependent pathway, thereby
sensitizing HCC cells to anticancer treatments (Shi et al., 2014;
Zhou et al., 2016; Chen et al., 2017; Yu et al., 2017) (Figure 5).
Moreover, indazolo[3,2-b]quinazolinones were revealed to
attack HCC cells by suppressing Nrf2/antioxidative response
elements and inducing mitochondrial-dependent apoptosis
simultaneously (Zhang et al., 2016). In a clinical retrospective
study, patients with high expression levels of Nrf2 (n = 48)
had significantly reduced overall (median, 13.87 months)
and disease-free survival (median, 11.24 months) compared
with patients with low expression levels of Nrf2 (n = 17),
who exhibited median overall survival of 30.40 months and

FIGURE 5 | Role of Nrf2 in HCC. P62 and FGF19 were reported to activate
Nrf2 and promote HCC by competing with Keap1 or through FGFR4–GSK3β

signal pathway. MiR-340, miR-144, camptothecin, valproic acid, and
indazolo[3,2-b]quinazolinones, which were revealed in suppressing
Nrf2-dependent pathway and sensitizing HCC cells to anticancer treatments.
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disease-free survival of 24.43 months (P < 0.01) (Zhang et al.,
2015). The relative risk of high Nrf2 levels in overall survival
was 5.96 with 95% confidence interval of 2.46–14.69 (P < 0.01).
However, regarding the sample size and retrospective nature, a
large-sized prospective clinical study is required to confirm the
prognostic impact of Nrf2 in patients with HCC.

CONCLUSION

In this review, we briefly summarized the biology characteristics
of Nrf2 pathway and discussed the potential therapeutic
applications of targeting Nrf2 in liver diseases. To date, there
are currently few pharmacological options available to prevent
or treat liver diseases. Recently, in clinical trial, NGM282, an
engineered FGF19 analog, could significantly reduce liver fat
content in patients with NASH and remarkably improve ALP and
transaminase levels in patients with PBC (Harrison et al., 2018;
Mayo et al., 2018). The small molecule PRI-724 also identified
the anti-fibrotic effects in a phase 1 trial in patients with HCV
cirrhosis (Kudo et al., 2018).

A link between liver diseases and oxidative stress is
indispensable. The Nrf2 antioxidant pathway is activated to
protect the liver by modulating defensive genes, which even

protect viral hepatitis-infected cells and HCC cells. A number
of preclinical studies have detected regulatory factors for Nrf2;
however, further identification of Nrf2 activators for liver
injury/failure and Nrf2 inhibitors for viral hepatitis, and HCC
is promising for the establishment of extensive and effective
approaches to improve the prognosis of liver diseases. Regarding
the great potential of this transcription factor, there is an unmet
need for prospective clinical trials to explore the therapeutic
impact of Nrf2 regulation in patients with liver diseases.
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