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Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe.
Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their
negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow
a power function, and many theories have been put forth to explain what has become known as Zipf’s law (the instance where
the exponent of the power function equals unity). Most previous studies, however, only include the largest cities that comprise
the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on
census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the
majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating
processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that
nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of
human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic
factors.
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INTRODUCTION
Humans increasingly dominate the ecology and energy flows of

the entire earth, prompting grave concerns about human

population growth. However, the human population has not only

doubled in the past 40 years, but that population is increasingly

clustered in urban areas. In 1950, only 30% of the world’s

population lived in urban areas. By 2000 that proportion rose to

47%, and by 2030 that number will be 60%[1]. In fact, virtually

all of the global population growth in the next 25 years will be

urban, either through migration from rural areas, growth of

existing cities, or the emergence of new urban clusters. In less

developed countries, cities are burdened by the growth of

unregulated slums, illegal or unmanaged waste and sewage

disposal, and woefully inadequate water supplies, housing, and

transportation infrastructure [2–4]. In more developed regions,

rapid urban sprawl and the growth of the built-up urban fringe

have outpaced much of the environmental and urban planning

that attempt to manage them [3–6].

The increasingly global ramifications of human urbanization

necessitate a global perspective on the problem. If we hope to

successfully manage urban environmental impacts, we first need to

know how urban areas are distributed and how that distribution

varies around the world. Second, we need to understand what basic

ecological principles (if any) underlie that distribution and how those

principles embody themselves in human behavior. Finally, we need

to understand how the per capita environmental impact of humans

varies across settlements of different sizes and across regions that

differ economically, culturally, and biogeographically. This paper

addresses the first two points by quantifying the size distribution of

urban areas around the world and modeling their ecological bases in

the dynamics of human migration and reproduction.

Urbanization is occurring so quickly in many areas that it has

become difficult to distinguish city, suburb, and town. There are

many ways to define a city, e.g., as an incorporated area, an urban

agglomeration, or a settlement with population density larger than

some threshold value. All definitions have shortcomings: is Newark

part of the New York City metropolitan area? Is Santa Fe, New

Mexico, a city or a town? What about an urban area that straddles

a county, state, or even national border, such as Kansas City or El

Paso–Ciudad Juarez? For this paper we use the term city very loosely

to mean any human settlement that is functionally coherent and

denser than its surroundings, and we use it interchangeably with the

term settlement. We do not distinguish here between villages, towns,

cities, metropolitan areas, and megacities (though differences of kind

certainly exist). Generally, we are interested in understanding the

flow of energy and materials through human networks, and as

virtually all commerce requires some aggregation of population to

occur, we are interested in the entire set of human settlements.

Current theories of city size distributions
Consider a set of cities from a region, such as a country, ranked by

population (or by area) from largest to smallest. When population

is graphed against rank, the shape of the curve describes the

relative proportions of smaller and larger cities. In 1949, Zipf
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observed that the population of a city is proportional to the inverse

of its regional rank [7], resulting in a power law that has an

exponent of approximately 21. Equivalently, this observation,

which has become known as ‘‘Zipf’s law,’’ states that the

probability that the size of a city s is greater than some S is

proportional to 1/S: P(s.S) = cS x. with x = 21.

The mechanisms underlying Zipf’s law have been the subject of

much theoretical debate [8–12]. Because pattern and process are

intricately linked in natural phenomena [13–15], governing

processes are often inferred from the observed patterns [16];

power laws are often taken as evidence that these processes are

scale-invariant [17,18]. Several researchers have hypothesized that

Zipf’s law is a result of all cities growing at the same rate,

regardless of their size. This law of proportionate effect is also

known as Gibrat’s law [19]. Others suggest that a steady rate of

new cities joining an urban system (i.e., Yule’s theorem) produces

the power function [8]. In fact, there is a wide variety of theories

for Zipf’s law, ranging from the statistical-mechanical to the

sociological and political (discussed in Andersson 2002 [20], and

Ioannides&Gabaix [21]). A few regional studies have suggested

that a lognormal best describes the city size distribution [21],

particularly when the smallest cities are included [22,23]. Carroll

[24] reviews much of the early literature on Zipf’s law.

What almost all explanations have in common is the assumption

that Zipf’s law is a robust empirical pattern that requires explanation.

However, we argue that insufficient consideration has been given to

1) testing the applicability of Zipf’s law over the entire range of

human settlement sizes, and 2) developing useful ‘‘neutral models’’

for understanding the extent to which settlement distributions

represent stochastic vs. deterministic, goal-directed (e.g., optimiza-

tion) processes. These two points are critical to assessing the

generality and meaningfulness of Zipf’s law, i.e., whether it actually

teaches us anything about human ecology and the organization of

human populations. Even on a more practical level, we cannot apply

Zipf’s law as even an empirical descriptor of the distribution of

human settlements without more fully addressing its generality.

METHODS

Empirical settlement size distributions
Most studies of city size distributions have concentrated on only

the largest cities and have ignored smaller cities, towns, and

settlements, mainly because suitably accurate data for small cities

did not exist. Yet as much as 70% of the population may reside in

these smaller areas; omitting that mass of the population may lead

to biased characterizations of city size distributions.

For many regions around the globe, large cities do follow power

functions. Figure 1 shows the rank-size distributions and power-

law fits of population P to rank R for the largest cities from three

data sets: metropolises of the world [25] (P = 5.96107 R20.686,

standard error of exponent = 0.006, r2 = 0.847, p,0.00001),

metropolitan areas of the USA [26] (P = 5.76107 R21.129,

s.e. = 0.010, r2 = 0.891, p,0.00001), and Swiss municipalities [27]

(P = 2.36105 R20.666, s.e. = 0.005, r2 = 0.960, p,0.00001). All

three samples are fit well by power laws over two orders of

magnitude in population, though all three exponents are

significantly different from 21. (Population data used in this study

are provided in Figure S1.)

However, inspection of residuals for empirical data reveals

systematic deviations from the scaling fit (Figure 2). Residuals from

a good model should be randomly distributed around zero. All

three regions show systematic deviations from predicted values,

indicating that city size patterns are not entirely described by

power laws.

Thus, while it has become a given that city size follows Zipf’s

law, this assumption has rarely been tested using truly compre-

hensive data. Here we will test the generality of Zipf’s law across

the entire range of city sizes, using more accurate and

comprehensive population and nighttime light data. Population

data for the United States [28] cover all areas designated

‘populated places’ by the U.S. Geological Survey, accounting for

178.6 million people or 65.2% of the nation. Census data for

Switzerland [27] and the world [29] come from space-filling

polygons, accounting for 100% of each population.

Unfortunately, polygon data are rarely coincident with actual city

areas (e.g., a Swiss municipality could comprise part of a metropol-

itan area or several small towns), and census methods and reliability

vary widely across regions around the world. Consequently, we also

used the Nighttime Lights of the World data from the U.S. Defense

Meteorological Satellite Program, Operational Linescan System

(DMSP-OLS) [30]. By measuring faint, visible-near infrared

Figure 1. Rank-size distributions of large cities. Key indicates sample
sizes. All three samples are fit well by power laws over two orders of
magnitude in population, though all three exponents are significantly
different from 21.
doi:10.1371/journal.pone.0000934.g001

Figure 2. Logarithm of the residuals of cities from power law fits.
Data from Figure 1. Residuals from a good model should be randomly
distributed around zero. All three regions show systematic deviations
from predicted values, indicating that city size patterns are not entirely
described by power laws.
doi:10.1371/journal.pone.0000934.g002
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emissions at the Earth’s surface at night, the DMSP-OLS can detect

cities, towns, and villages. The National Geophysical Data Center

has produced georeferenced nighttime light maps with a 1-km2

resolution for major regions of the world using data recorded

between October 1994 and March 1995. Only lights that are stable

across several nights are classified as human settlements. This

removes shipping&fishing vessels, wildfires, and other ephemeral or

moving light sources from the dataset.

Nighttime light cluster area (in km2) correlates very well with

population: for the United States, the area of DMSP-OLS light

clusters predicts population with an r2 between 0.63 and 0.93

depending on how the data are transformed [31]. Although the

degree of correlation between population and night lights will vary

globally, this analysis provides a single, consistent metric of size for

the full range of human settlements around the world. Most

previous studies were either regional in extent or relied on

arbitrary definitions of cities that varied across regions. We also

examined cluster area distributions for 11 continental and

subcontinental regions of the world, which excludes only small

islands, Antarctica and the Arctic.

Model of urban dynamics
To generate ‘‘neutral’’ baseline expectations for how human

settlement sizes should be distributed, we adapt a simple model of

urbanization that Manrubia and Zanette used to study city size

distributions [32]. Their results were consistent with their

empirical studies of large cities and supported Zipf’s law. However,

as with their empirical work, they exclude small settlements. We

modify their model to include a reproduction component

(population growth) and replicate their study to examine whether

Zipf’s law indeed holds across the entire range of settlement sizes.

We make the simplest assumptions about migration and

reproduction. We assume that on a global scale, human migration

is essentially random and uniform. Though people are more likely

to migrate to local towns and cities, and most stay within their

birth country, we assume that the net effect on the global pattern is

equivalent to random migration. For reproduction, we assume

a uniform growth rate across all populations. Because we are most

interested in global patterns, we ignore fine-scale differences across

regions that are observed empirically. Along with death, migration

and reproduction are the only means for changing population size.

More detailed descriptions of this kind of reaction-diffusion

model are elsewhere [11,32]; here we will describe its general

properties. In the model, we take a uniform, square-celled lattice of

size L2 and begin at time t = 0 with some initial population n(0) in

each cell (all units are arbitrary and can be scaled to represent the

resolution of the model). There are three steps that occur from

time t to t+1. In step one, we induce random, global migration by

redistributing the population: each cell independently either

increases to (1/r)n with probability r or decreases to 0 with

probability 12r. Step two represents urban sprawl: a fixed

proportion a of each cell is distributed among its four nearest

neighbors. (The lattice has periodic boundaries, so there are no

edge effects.) In step three we increase the population of each cell

by some small proportion r to represent reproduction. The model

is then iterated to some time T.1000 to resolve any transient

behavior. In this type of stochastic reaction-diffusion model

without the reproduction term, the global population Sn(t)

naturally converges to zero as tR‘ [11]; therefore, a small

population correction is made if Sn(t),Sn(0). On average, this

only occurred in 4% of the time steps in each simulation. The

parameters of the simulation are L = 256, n(0) = 10, r= 0.5,

a= 0.25, r = 0.025, T = 1024.

By the end of each simulation, most cells have very small

populations of 0#n(T),1. (See Figure 3 for an illustration of the

model’s evolution on a smaller lattice.) Intermittent spikes of very

large population are scattered sparsely across the lattice. These high-

population cells appear in clusters throughout the lattice since

nearest neighbors exchange population. The population distribution

of the lattice can be measured in several ways: 1) every cell n(T); 2)

only ‘‘large’’ cells n(T).1; 3) cluster populations, summed across all

cells in a cluster; or 4) cluster area measured as the number of cells in

a cluster. These correspond to different measurement criteria for real

cities: all cities, large cities only (the tail of the distribution),

metropolitan area population and metropolitan area extent.

RESULTS

Empirical results
For both the census data (Figure 4) and the night light clusters

(Figure 5), the tails of all distributions (e.g., light cluster areas

exceeding 50 km2) appear to approximate power laws (using

maximum likelihood estimation). However, slopes of power laws

(fitted over the large cities only) are almost all significantly different

from each other and lie between 20.729 and 20.888, far from the

theoretically expected Zipf exponent of 21.

More remarkably, when all city sizes are considered, the bulk of

the data are better fit by a lognormal distribution than by a power

law. Figure 4 shows the rank-size distributions for the same

locations as Figures 1 and 2, but this time including all settlements,

which increases the sample size ten-fold for Swiss municipalities,

58-fold for World ‘counties’ (2 administrative levels below the

nation), and 75-fold for US populated places. Maximum likelihood

estimates of the lognormal parameters (m and s) for of the world

(m= 10.95, s = 1.92, r2 = 0.439, p,0.0001), all populated places of

the USA (m= 7.26, s = 1.73, r2 = 0.840, p,0.0001), and all

municipalities of Switzerland (m= 6.77, s = 1.36, r2 = 0.858,

p,0.0001) fit the data very well over four orders of magnitude

in population size, particularly in the bodies of the distributions.

Figure 3. Development of the urban growth simulation, shown here
on a small lattice of L = 32. a) At time t = 0 there is some population
n(0) in each cell. b) Time t = 4. c) Time t = 8. d) By time t = 16,
intermittent spikes of large population are clustered together in an
otherwise sparsely-populated lattice.
doi:10.1371/journal.pone.0000934.g003
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Similar patterns occur in the nighttime light data. Figure 5

shows cumulative probability distributions (another way of plotting

rank-size relationships) of nighttime light clusters for continental

and sub-continental regions around the world. Sample sizes in

each region range from 1,369 light clusters in Australia to 18,521

clusters in Europe. (Delineation of regions did not precisely follow

political boundaries.) Clusters are defined with the four-cell

neighborhood rule, such that illuminated cells are contiguous

and therefore members of the same cluster only if they touch along

one of their four sides. As with the population data, the body of

each distribution is fit well by a lognormal (MLE parameters were

all significant), and the tails (largest clusters) are fit well by power

laws (fits not shown in the figure) whose slopes are between

20.729 and 20.888, all significantly different from the Zipf’s law

expectation of 21.

All data sets have similarly-shaped lognormal distributions

despite large differences in socioeconomic factors, settlement

history, region size, and measurement criteria. The bodies of the

distributions (which contain the bulk of the data) are clearly

lognormal. Interestingly, for the global population data, the

lognormal overestimates the population of the largest cities (i.e., the

lognormal tail is too heavy, Fig. 4), whereas for more regional data,

lognormal estimates are always too low for the largest cities (i.e., the

tail is too light). Even though developed regions have more cities and

larger urban agglomerations, the character of the distributions is

strikingly similar across regions (Fig. 5). Table 1 summarizes the

lognormal parameter estimates for the population data.

Model results
The model generates lognormal distributions (fitted using

maximum likelihood estimation) of city sizes that mimic power

laws for the largest cities and are very similar to those found

empirically (Figure 6). The lognormal fit is statistically indistin-

guishable from the distribution of all cells (m= 22.90, s = 3.15,

r2 = 0.660, p,0.00001), though it does deviate from the data for

the largest cells. As expected, the slopes and sample sizes of the tail

varies depending on the measurement criteria. But all three tail

distributions are fit well by power laws: tail cells with n(T).1

(P = 7.476106 R21.702, s.e. = 0.002, r2 = 0.992, p,0.00001), cluster

Figure 4. Rank-size distributions and lognormal fits (dashed blue
lines) for all ‘counties’ (2 administrative levels below the nation) of
the world, all populated places of the USA, and all municipalities of
Switzerland. All three samples are fit well by a lognormal over four
orders of magnitude in population, particularly in the bodies of the
distributions. Key indicates sample sizes.
doi:10.1371/journal.pone.0000934.g004

Figure 5. Cumulative probability distributions of nighttime light
clusters for continental and sub-continental regions. Key indicates
number of clusters in each region (total N = 68,530). The body of each
distribution is fit well by a lognormal (not shown). The tails (largest
clusters) are fit well by power laws (not shown). Slopes of the scaling
regions are all significantly different from the Zipf’s law expectation of
21.
doi:10.1371/journal.pone.0000934.g005

Table 1. Lognormal parameter estimates for city size
distributionsa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region n m s r2 p

World counties 19,023 10.95 1.92 0.439 ,0.0001

USA populated places 22,093 7.26 1.73 0.840 ,0.0001

Swiss municipalities 2,902 6.77 1.36 0.858 ,0.0001

Simulation, all cells 62,983 2.90 3.15 0.660 ,0.00001

aIn the lognormal model, ln(Size) has the normal distribution with mean m and
standard deviation s. n: sample size. Parameters fitted using Maximum
Likelihood Estimates.

doi:10.1371/journal.pone.0000934.t001..
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Figure 6. Rank-size distributions of cities from the simulation. The
lognormal fit (dashed line) is statistically indistinguishable from the
curve for all cells. The three tail distributions are fit well by power laws
(fits not shown).
doi:10.1371/journal.pone.0000934.g006
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populations (P = 3.976106 R22.079, s.e. = 0.005, r2 = 0.963, p,

0.00001), and cluster areas (A = 3.996104 R 21.169, s.e. = 0.007,

r2 = 0.525, p,0.00001).

These results are relatively robust for 0.41,r,0.592,

0.1,a,0.35, and r,0.5. The limits of these parameters are

mechanically related to the neighborhood rule and the geometry

of the lattice that are used, and little demographic meaning can be

ascribed to them. For example, for any lattice where r$0.592,

a single cluster forms that spans the whole lattice. The value of

0.592 is well known from percolation theory to be a critical value

for the connectivity of square cells with a four-cell neighborhood

[33]. Analytic solutions to such a lattice (though without

reproduction, such that r = 0) have been worked out [11,32] and

show, for example, that the scaling of cluster populations breaks

down when r varies across the lattice. Parameters for the

lognormal fit are also in Table 1.

DISCUSSION
We have shown that for all regions of the world, most human

settlements are distributed lognormally, whether by population or

by area. Even though we have used data sets with very different

measurement criteria, our analysis shows the same pattern:

a lognormal distribution with the largest cities approaching

a power law. Eeckhout [34] analyze US census data and also

find that the distribution is lognormal when all cities are included

in the analysis. This appears to be a general feature of human

settlement patterns that is robust to changes in measurement

criteria, socioeconomic factors, and settlement history. We have

also shown that the largest cities deviate from the lognormal and

approach a power law, that the scaling exponent is significantly less

than21, and that there is substantial systematic deviation from the

power law fit. This supports Gabaix&Ioannides’ [21] conclusion

that exponents are lower for urban agglomerations than for

politically defined cities. While night light data suggest that all

regions are converging onto a power law, lognormals are known to

mimic power laws over a broad range of values if the variance is

large [35,36]. The type of fit is more than a semantic argument;

lognormal distributions are indicative of probabilistic, multiplica-

tive processes quite different from those suggested by power laws.

Results from the model not only support the empirical findings,

but demonstrate that fundamental demographic (i.e., ecological)

behaviors can account for this universal pattern. Although the

model is extremely simple, the multiplicative process of population

aggregation suffices to generate a lognormal distribution of cell

population sizes with the largest cells approaching a power law.

We expect quantitative measures of real city distributions may

differ from our results somewhat due to spatial heterogeneity of the

substrate (which would result in spatial variation of n(0), r, a and

r), non-random migration, finite size effects, and other factors not

accounted for in this model.

As these patterns appear to be global—insensitive to regional

history, topography, climate, and socioeconomic factors—it is likely

that human populations are constrained by some fundamental laws

related to the flow and distribution of resources within and among

cities. Because sociological and economic processes ultimately serve

the ecological needs of humans for survival and reproduction,

patterns of urban distribution should be explicable in ecological

terms [37,38]. Research on fractal scaling in river basins [39] and

allometric scaling in organisms [40] illustrates how energy

minimization principles and conservation laws can govern the

structure and function of complex natural systems [41]. This body of

theory is based on the premise that hierarchical branching networks

efficiently distribute energy and materials through landscapes (in the

case of river networks) and organisms (in the case of vascular

networks) across orders of magnitude in scale. We hypothesize that

the distribution of resources within and among cities should be

governed by principles similar to those that appear to underlie the

physiology of organisms and structures of ecosystems [40–44].

There is evidence that human populations adhere to these same

principles. For example, human reproductive output is related to

per capita power consumption by the same scaling laws that

describe reproductive effort for all other mammal species—even

though modern humans consume most of their energy in the form

of fossil fuels rather than food [45]. Bettencourt [46] shows how

scaling principles may provide a framework for a quantitative

understanding of city growth. There is also reason to believe that

urban systems should develop highly effective network structures:

whereas natural ecosystems flux between 1,000 and 10,000 Kcal -

m22 yr21, industrialized cities flux between 100,000 and

300,000 Kcal m22 yr21 [47]. This 10-fold increase in the energy

throughput of urban areas ought to be both a product and driver

of a highly developed network structure [41].

Some urban network structure is easily visible, for example in

the hierarchical branching of road networks from highways to

urban arteries and residential streets. Road networks determine

the rate of flow of people and goods in cities, in much the same

way that the cardiovascular system determines the rate of oxygen

delivery to cells [48]. Similar to the way that body mass influences

circulation times in organisms, city area and population size are

key determinants of transportation time through urban road

networks. Thus, in addition to the ecological processes of birth,

death and migration, city size distributions may also reflect

fundamental properties of urban networks. Interestingly, body size

distributions have also been characterized as both lognormal [49]

(although sometimes skewed lognormal [50]) and power law [42].

Indeed, common distributions may result from very general

processes in natural, economic and engineered systems [51].

Cities are elements in what has become a global network that

distributes people, food, energy, materials, wealth and informa-

tion. While city networks probably differ from river basins and

cardiovascular systems in fundamental ways, similar principles

likely apply to their dynamics.

SUPPORTING INFORMATION

Figure S1 Raw data for population sizes of the US, Switzerland,

and the world (used in Figures 1 and figure 3).

Found at: doi:10.1371/journal.pone.0000934.s001 (1.10 MB

XLS)
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