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ABSTRACT

The North American nightsnakes in the genus Hypsiglena is composed of nine named and at least two
unnamed species. Here, we provide the first mt-genome of H. affinis, an additional mt-genome for H.
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sp. nov. 1, and four additional mt-genomes from the widespread H. jani. These mtDNA genomes were

sequenced using both lllumina and lon Torrent sequencing technologies. The resulting genomes con-
tained the expected 13 protein coding genes, 22 tRNA genes, 2 rRNA ?enes, and 2 control regions typ-
ical of colubroid snakes. Two of the H. jani samples had partial tRNA" genes upstream of CR2 which
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has not been previously documented in colubroid snakes. A maximum likelihood gene-tree based on
these data combined with previously published sequence data recovers a well-supported phylogeny
and is in concordance with previous estimates of evolutionary relationships in this group.

North American nightsnakes are small, nocturnal colubroid
snakes widespread across the arid Nearctic (Mulcahy 2008).
This genus contains nine known species, and two unnamed
species awaiting formal recognition (Mulcahy 2008; Mulcahy
et al. 2014). Mitochondrial genomes for nearly all species
have previously been sequenced to better understand this
group’s historical biogeography (Mulcahy and Macey 2009).
Here we sequence four additional mitochondrial genomes
from Hypsiglena jani Duges, 1865, one H. affinis Boulenger,
1894, and one of an unnamed species.

Specimens/tissues of H. jani were collected from Hidalgo
county, New Mexico, USA (AMNH R-504522: 31.897,
—109.216; AMNH R-504524: 32.028, —109.035), Cadereyta de
Montes, Queretaro, Mexico (AMNH R-504774: 20.925,
—99.756), and Tlahualilo, Durango, Mexico (AMNH R-504773:
26.696, —103.747). The H. affinis tissue voucher is from
Jalisco, Mexico (LSUMZ 39533: 19.985, —103.630) and the ‘H.
sp. nov. 1" was collected from Cochise County, Arizona, USA
(AMNH R-504527: 32.210, —108.951). The H. dffinis was proc-
essed as in Mulcahy et al. (2014). For the others, DNA was
extracted using Qiagen DNeasy Tissue Kits (Valencia, CA),
genomic libraries were prepared using the Nextera XT kit,
shearing DNA fragments to an average base pair length of
480, and were sequenced on an lllumina MiSeq with paired-
end 250 base pair reads (lllumina, San Diego, CA). Sequences
were initially mapped to a H. jani mitochondrial genome
(EU728592) in Geneious v10.2.6 (Biomatters Ltd, 2005-2017).
After constructing a consensus sequence, all reads were
mapped back to this consensus to construct the final

assembly. All six newly assembled mitochondrial genomes
contained 13 protein coding genes, 22 tRNA genes, 2 rRNA
genes, and 2 control regions which is typical of colubroid
snakes (Kumazawa et al. 1998). The control regions were
difficult to assemble in C-rich regions of several samples,
unobtainable in AMNH R-504774 and short three C’s in
AMNH R-504527, likely due to the difficulties of sequencing
through homopolymers using Illumina sequencing. The
recovered genome lengths and corresponding GenBank num-
bers of each specimen are: AMNH R-504522 (MT561495)
17,200; AMNH R-504524 (MT561496) 17,235; AMNH R-504527
(MT561497) 17,235; AMNH R-504774 (MT561500) 17,205;
AMNH R-504773 (MT561498) 17,202; LSUMZ 39533
(MT561499) 17,190 base pairs. Mean depth of coverage
ranged from 23.6-53.6x (average: 37.9). Two mt-genomes
(AMNH R-504524 and AMNH R-504527) contained identical
putative pseudogenes, partial tRNA"®, on the 5’ end of the
second control region.

Our six new mt-genomes were aligned with data from 14
published Hypsiglena mt-genomes, ~5kb of mtDNA data
from H. tanzeri and complete mt-genomes of
Pseudoleptodeira latifaciata, Sibon nebulatus, Imantodes
cenchoa, Leptodeira septentrionalis were included as out-
groups (Mulcahy 2008; Mulcahy and Macey 2009; Mulcahy
et al. 2014). A maximum likelihood phylogeny was generated
with RAXML v8.2.3 using the simultaneous rapid-bootstrap
(1000 replicates) and thorough ML search (Stamatakis 2014),
with each gene in a separate partition and only one control
region (CR2), with the GTRCAT substitution model. The
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Figure 1. Maximum likelihood gene-tree based on complete mt-genomes of nightsnakes (Hypsiglena). Bootstrap values of support (based on 1000 replicates) are
shown for each node. H. tanzeri is represented by ~5kb of mtDNA data. New mt-genomes are shown in bold font.

phylogeny (Figure 1) is well supported and in concordance
with previous estimates of relationships within the genus
Hypsiglena (Myers et al. 2013, 2017; Mulcahy et al. 2014).

A previous study of nightsnakes produced 12 complete
mt-genomes (Mulcahy and Macey 2009), with four from each
of H. ochrorhyncha and H. chlorophaea. The other widespread
species H. jani, as well as H. slevini, H. torquata, and the
undescribed H. sp. nov. 1, were represented by single individ-
uals. A later study (Mulcahy et al. 2014) added two mt-
genomes to the southern portion of H. ochrorhyncha,
elevating two species (H. catalinae and H. unaocularus) and
identified another undescribed species from Sonora, MX (H.
sp. nov. 2). All Hypsiglena mt-genomes to-date showed no
deviations in gene-order from previously published
Dipsadines (Mulcahy and Macey 2009; Sun 2017), with the
exception of lacking the partial tRNA”®. Here, we provide the
first mt-genome of H. affinis, an additional one for H. sp. nov.
1, and four additional mt-genomes from the widespread H.
jani. Two individuals (AMNH R-504524 and AMNH R-504524)
near the contact zone between H. jani and H. sp. nov. 1,
show partial tRNA"® genes in the same region as the pseudo
tRNAP® reported in Dinodon (NC 001945; Kumazawa et al.

1998). Both pseudo-genes, and their respective parent genes
(tRNAP™ and tRNA"®), reside upstream of control regions. In
Dinodon, the pseudo-tRNA"™ was found upstream of CR2,
with the functional tRNA™ upstream of CR1 (Kumazawa
et al. 1998), as in most vertebrates. Viperids show two unique
gene-orders in these regions, where both have functional
tRNAP™ upstream of CR2 and one has a pseudo tRNAP™
upstream of CR1; the other lacks the pseudo tRNAP® (Yan
et al. 2008). The presence of two CRs in advanced snakes has
been attributed to tandem duplication during replication or
concerted evolution (Kumazawa et al. 1998; Dong and
Kumazawa 2005). The repetitive nature of tRNAs bordering
duplicate control regions are likely involved in, or are a prod-
uct of, the evolutionary events driving this phenomenon.
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