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Abstract

Systematic monitoring of pasture quantity and quality is important to match the herd forage

demand (pasture removal by grazing or harvest) to the supply of forage with adequate nutri-

tive value. The aim of this research was to monitor, assess and manage changes in pasture

growth, morphology and digestibility by integrating information from an Unmanned Aerial

Vehicle (UAV) and two process-based models. The first model, Systems Approach to Land

Use Sustainability (SALUS), is a process-based crop growth model used to predict pasture

regrowth based on soil, climate, and management data. The second model, Morphogenetic

and Digestibility of Pasture (MDP), uses paddock-scale values of herbage mass as input to

predict leaf morphogenesis and forage nutritive value. Two field experiments were carried

out on tall fescue- and ryegrass-based pastures under rotational grazing with lactating dairy

cattle. The first experiment was conducted at plot scale and was used to calibrate the UAV

and to test models. The second experiment was conducted at field scale and was used to

test the UAV’s ability to predict pasture biomass under grazing rotation. The Normalized Dif-

ference Vegetation Index (NDVI) calculated from the UAV’s multispectral reflectance (n =

72) was strongly correlated (p < 0.001) to plot measurements of pasture biomass (R2 =

0.80) within the range of ~226 and 4208 kg DM ha-1. Moreover, there was no difference

(root mean square error, RMSE < 500 kg DM ha-1) between biomass estimations by the

UAV (1971±350 kg ha-1) and two conventional methods used as control, the C-Dax proximal

sensor (2073±636 kg ha-1) and ruler (2017±530 kg ha-1). The UAV approach was capable of

mapping at high resolution (6 cm) the spatial variability of pasture (16 ha). The integrated

UAV-modeling approach properly predicted spatial and temporal changes in pasture bio-

mass (RMSE = 509 kg DM ha-1, CCC = 0.94), leaf length (RMSE = 6.2 cm, CCC = 0.62),

leaf stage (RMSE = 0.7 leaves, CCC = 0.65), neutral detergent fiber (RMSE = 3%, CCC =

0.71), digestibility of neutral detergent fiber (RMSE = 8%, CCC = 0.92) and digestibility of

dry matter (RMSE = 5%, CCC = 0.93) with reasonable precision and accuracy. These
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findings therefore suggest potential for the present UAV-modeling approach for use as deci-

sion support tool to allocate animals based on spatially and temporally explicit predictions of

pasture biomass and nutritive value.

Introduction

In most livestock systems, animal feed represents the highest proportion of variable costs.

Therefore, a general aim for most grazing-based animal production systems is to maximize

profitability by increasing the amount of homegrown forages converted into animal product

(meat or milk). Livestock grazing-based systems are required to provide a large quantity of for-

age of high-nutritive value in the most efficient and cost-effective way. Frequent monitoring of

pasture cover is one way to schedule grazing rotations and to allocate forage according to the

herd forage demand (pasture removal by grazing or harvest). A proactive approach to allocate

pasture forage to animals must consider grazing management as a set of dynamic decisions

that take into account the temporal and spatial variation of pasture growth associated mainly

to weather, soil nutrients and grazing management factors. However, this approach can be

time consuming and requires adequate methods and techniques to systematically monitor

changes in pasture cover [1].

Recent advances in sensor technology [2] have allowed the development of lightweight

multi-spectral cameras with remote sensors suitable for mounting on unmanned aerial vehi-

cles (UAV) for a variety of purposes related to plant monitoring. This novel UAV-based tech-

nology offers the opportunity to use high-resolution (< 1 m) spectral data collected over large

areas for calculation of vegetation index that can be interpreted in units of dry matter (DM)

biomass, sward height, or nutrient composition. Although UAV-mounted sensors have been

used in crop production to measure spatial variability of crops, including yield [3] or distance

between plants quickly and accurately [4], they have not been used to estimate and monitor

changes of grazed pasture both in space and time.

Practical evidence from on-farm situations indicates that the efficiency of most grazing sys-

tems depends largely on the farmer’s ability to accurately track timely changes of pasture bio-

mass both within and across grazed paddocks [5]. However, the accurate monitoring of

changes in pasture cover is usually a challenging task. Pasture growth typically exhibits short-

term variation in relation to meteorological conditions like temperature, radiation and rainfall,

which in turn interact with changes in leaf area associated to grazing pressure and residual pas-

ture cover [6, 7]. A possible solution to accurately estimate both spatially and temporally varia-

tions of pasture growth is to integrate remotely sensed multispectral data into biophysical

models that can estimate plant growth in relation to growing conditions [8]. In this sense, bio-

physical simulation models may represent an important complementary tool to field measure-

ments, thereby providing predictions to proactively guide grazing management

recommendations [9].

The aim of this research was to monitor and model changes in pasture growth, morphology

and digestibility of grazed pastures by integrating site-specific information from UAV and

process-based models. We hypothesize that spatial and temporal variations of pasture spectral

reflectance can be used in conjunction with results from crop simulation models to accurately

monitor and predict changes in pasture growth and nutritive value, and to guide grazing man-

agement based on the observed spatial variations. To test this hypothesis, two field experiments

were conducted at plot and at field and farm scales on previously established ryegrass- and tall

fescue-dominated pasture grazed by lactating dairy cows.

Estimation variability of pasture growth with UAV and crop models
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Materials and methods

Study site

The study was conducted during spring-summer of 2016 using sixteen 1-ha paddocks of

robotic and grazing dairy farm at the Michigan State University’s W.K. Kellogg Biological Sta-

tion (KBS), Hickory Corners, MI, USA (42˚250N, 85˚220W, 291 m.a.s.l.). The present field

study did not involve any use of endangered or protected plant or animal species. The KBS

dairy farm included two pre-established grass-based pastures used for rotational grazing with

lactating Holstein cows: a tall fescue-based pasture (referred hereafter as Fescue) that consisted

of tall fescue (Festuca arundinacea Schreb.), orchardgrass (Dactylis glomerata), red clover (Tri-
folium pretense) and alfalfa (Medicago sativa), and, a ryegrass-based pasture (referred hereafter

as Ryegrass) that consisted of perennial ryegrass (Lolium perenne) and white clover (Trifolium
repens). The proportions of legumes were 15% and 40% for Fescue and Ryegrass, respectively.

Soils at the dairy farm are well-drained typic hapludalfs with a sandy loam layer over the first

30 cm and a deep profile with moderate water-holding capacity (range: 143 to 223 mm). The

soil analysis of top A horizon (0.018 m) was as follows, organic matter content of 22 g kg-1, pH

6.4 and P content of 34 mg kg-1. Mean annual air temperature at the site is 9.4˚C, varying from

21.9˚C in July to -4.5˚C in January. Mean annual precipitation is 962 mm, 50% of which falls

from May to September.

Integrating UAV and crop model

The experimental approach (Fig 1) integrated the use of an UAV for estimation of actual pas-

ture biomass (kg DM ha-1) at paddock scale, and, two process-based models. The first model,

Systems Approach to Land Use Sustainability—SALUS, is a process-based crop growth model

used to predict pasture regrowth in relation to soil, climate, and management data. The second

model, Morphogenetic and Digestibility of Pasture—MDP, uses the estimated pasture biomass

to predict temporal changes in leaf stage and digestibility of pasture at sward level [10]. Finally,

modeled output data included UAV-derived pasture maps and paddock-scale predictions

both of next grazing date and resting length for reaching pre-grazing pasture cover targets,

common practice in dairy farms that is usually defined by the use of a predefined grazing

wedge.

Biomass monitoring by UAV

The method used to estimate pasture biomass (kg DM ha-1) by the UAV included the follow-

ing three steps: extraction of geospatial pasture reflectance with UAV-mounted sensor, calcu-

lation of Normalized Difference Vegetation Index (NDVI) from pasture reflectance data, and

development of the calibration equation to convert NDVI values into kg DM ha-1 of pasture.

Briefly, multispectral imaging and LIDAR (Light Detection and Ranging) sensors were

mounted on a Microdrone md4-1000 UAV to measure canopy reflectance at high spatial reso-

lution (every 6 cm). Flyovers were conducted at ~100 m elevation. All digital captures were

then revised, stitched and processed using Pix4DMapper (Pix4D, Lausanne, Switzerland) and

ArcGIS software (ESRI, Redlands, CA, USA). Finally, the NDVI was calculated from the

acquired geospatial reflectance raster maps, as follows:

NDVI ¼ ðNIR780 � RED660Þ=ðNIR780 þ RED660Þ ð1Þ

[11]

where RED660 and NIR780 are the spectral reflectance in the red (660 nm) and near infrared

radiation (780 nm) band, respectively. This NDVI data were then converted to pasture

Estimation variability of pasture growth with UAV and crop models
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biomass (kg DM ha-1) according to the following calibration equation:

UAVi ¼ ae
b NDVIi ð2Þ

where UAVi is the UAV-derived pasture biomass (kg DM ha-1) at paddock scale (i = 1-n), α
and β are equation parameters determined during the UAV calibration in experiment 1. Val-

ues of UAVi were used as the input pasture biomass for SALUS crop model.

Modeling pasture growth using SALUS model

SALUS model is a functional crop simulation model designed to simulate and predicts the

effects of the interactions between soil, climate, genetics and management on crop growth and

yield, and on environmental outcome. SALUS has a complex and simple modeling approach

depending on the type of crops and applications. SALUS has been used in several applied and

tested in various contexts (e.g. [12–14]). For our approach, SALUS was used purely as a pasture

growth simulator by parameterizing for the physiology of pasture species and the soil type. A

companion validation dataset is presented as supplementary material (S1 Table) and is part of

the previously published modeling work by [15]. Briefly, the SALUS model [16–18] estimated

Fig 1. Schematic representation of the integration of a UAV-modeling system.

https://doi.org/10.1371/journal.pone.0212773.g001
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aboveground growth (kg DM ha-1d-1) from the product of radiation use efficiency (RUE) and

the intercepted photosynthetically active radiation (PAR) that is related to the actual leaf area

index (LAI). Soil properties (bulk density and soil texture), crop species description, agro-

nomic management and daily weather data (solar radiation, temperature and precipitation)

are required inputs of the model. Water and N stress factors are calculated daily as rate of

actual vs potential.

Linking UAV images with SALUS simulations

We connected the UAV-derived pasture data and SALUS pasture growth simulations “in

series.” The predicted daily pasture growth rate by SALUS were exported to a spreadsheet for

further computation together with the UAV-derived pasture biomass data and on-farm graz-

ing schedule (i.e. days of regrowth for each paddock).

From UAV-derived pasture biomass (UAVi, kg DM ha-1) data, we also calculated for each

paddock (i = 1-n) the residual pasture biomass (post-grazing kg DM ha-1) left by cows in the

last grazing event, as follows:

Post grazingi ¼ UAVi � Growth RateSALUS � Days of regrowthi ð3Þ

where Growth RateSALUS is the pasture growth rate (kg DM ha-1d-1) estimated by SALUS and

Days of regrowth is the number of days between the last grazing event (input by the user) in

each paddock (i = 1-n) and the last UAV flight.

Additionally, the pre-grazing pasture biomass and days to achieve a given pre-defined pas-

ture biomass target (input by user) were calculated as follows:

Pre grazingi ¼ UAVi þ Growth RateSALUS � Days in rotationi ð4Þ

Days to targeti ¼ ðTarget � UAViÞ=Growth RateSALUS ð5Þ

where Pre-grazingi is the predicted pasture biomass (kg DM ha-1) at a given user-defined rota-

tion length (i.e. days of resting or grazing interval) and Days to targeti is the number of days to

achieve a given user-defined pre-grazing pasture biomass (Target, kg DM ha-1) for each conse-

cutive paddock (i = 1-n).

In practice, Pre-grazing and Days to target provide useful information and alternatives for

different grazing management schemes. The former is used when the grazing schedule is based

on fixed-length rotation and the latter is used when it is based on the maintenance of a fixed

pre-grazing and post-grazing pasture biomass (i.e. predefined grazing wedge). The present

UAV-based pasture modeling approach calculates both alternatives.

Modeling morphology and digestibility of pasture using MDP model

The MDP model incorporated the predicted pasture biomass data to simulate key nutritive

value parameters. The MDP model is described in detail by [10]. Briefly, it involves the use of

daily temperature and post-grazing (residual) pasture data to drive a leaf morphogenetic

model that predicts plant morphology traits (i.e. leaf number and length) and digestibility of

pasture. The distinctive feature of the MDP model is that it takes into account the effect of

grazing (severity and frequency) on leaf morphogenesis (appearance, growth and senescence)

and digestibility of pasture fiber [19]. The model closely predicts variation of pasture dry mat-

ter digestibility (DMD, %) during regrowth by simulating the dynamics of its components,

neutral detergent fiber (NDF, %), and NDF digestibility (NDFD, %), all related to modelled

changes in the leaf stage and leaf length of plants.

Estimation variability of pasture growth with UAV and crop models
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Parameters for key leaf morphogenetic and nutritive value variables (S2 Table) were

implemented in the MDP model to represent both Fescue and Ryegrass pasture and by using

both tall fescue and perennial ryegrass as dominant plant species, respectively. Parameters

for plant morphology and nutritive value of Fescue were set as default and were based on a

robust dataset that included several tall fescue regrowth experiments [10]. For the case of

Ryegrass, the faster leaf turnover of perennial ryegrass compared to tall fescue [20] was prop-

erly represented by reducing the leaf lifespan from 630 to 330 degree days (˚Cd) [21]. Like-

wise, both Ryegrass leaf appearance and elongation rate parameters were increased two-fold

in comparison to Fescue. Finally, in order to reflect the lower fiber content and higher digest-

ibility for Ryegrass pasture compared to Fescue pasture [22–24], both the minimum NDF

and maximum NDFD parameters were both reduced and increased by 5 and 20 percentage

units, respectively.

Experiment 1: UAV calibration and models validations (plot scale)

The first experiment (Exp. 1) was carried out during spring (May 6 to June 9) and summer

(June 21 to August 15) of 2016 using an enclosed pasture area of the KBS dairy farm. The

experiment included both measurements of pasture and UAV flyovers, both used for: i) cali-

bration of the UAV pasture measurement technique, and ii) both testing of the SALUS and

the MDP model. Briefly, typical on-farm variation in pasture cover was generated by using

three residual (i.e. initial state of regrowth) pasture treatments, a low (3 cm), medium (6

cm), and high (12 cm) pasture stubble, respectively. The three pasture residual sward height

treatments were randomly applied and assigned to main plots following a split-plot design

replicated across three blocks. Main plots (n = 18, 2 species x 3 residual treatment x 3

blocks) were further subdivided into six subplots, which were randomly assigned to six con-

secutive harvest dates. Pasture growth across the six consecutive harvests was then per-

formed every 7–10 days. Before each harvest event, the canopy leaf area index was measured

using a LAI-2000 plant canopy analyzer (LI-COR Inc, Lincoln, NE, USA). Concurrently, the

herbage mass accumulation at each harvest event was determined by clipping a randomly

placed 0.25 m2 quadrat of pasture to ground level. The material harvested was immediately

bagged and oven-dried at 60˚C for 48 h to estimate the accumulated DM biomass (kg DM

ha-1).

In tandem with harvesting events, intact tillers of tall fescue or perennial ryegrass were

removed from two of the blocks of Fescue and Ryegrass, respectively. Seven tiller samples

(harvest II, III, IV, V for spring regrowth and harvest II, IV, VI for summer regrowth) were

collected per residual sward height treatment. At each of the 84 sampling events (3 treat-

ments x 2 pastures x 7 harvest x 2 blocks), selected tillers (~1000 per block) were obtained

from randomly placed quadrats (0.25 m2). Plants were cut at the tiller base and pooled to

form one sample per replicate. The plant material was immediately stored at -20˚C until fur-

ther processing. In the laboratory, the material was thawed and plant material from ~300 til-

lers was randomly selected. Leaves of the selected tillers were separated into leaf blade and

leaf sheath components both for leaf morphological (leaf length and leaf number per tiller)

determination and nutritive value analysis. Thereafter, leaf blades were dried to constant

weight and ground to pass 1 mm screen for determination of NDF with an ANKOM 200

fiber analyzer (ANKOM Techn., New York, USA), and 24 h in vitro digestibility using a Dai-

syII apparatus (ANKOM Techn., New York, USA). The 24 h NDFD [(NDFincubated–

NDFresidual) / NDFincubated] was estimated [25]. Finally, the 24 h apparent DMD was cal-

culated by subtracting the metabolic factor 119 mg kg-1 [26] from the 24 h true DMD [1-

(NDFresidual/ weight of incubated DM)], [25].

Estimation variability of pasture growth with UAV and crop models
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UAV calibration. The UAV-derived NDVI was calibrated against the pasture biomass

harvested from the 18 georeferenced plots during the first four harvests events of summer

regrowth. The biomass accumulated (kg DM ha-1) per plot was related to the mean NDVI

value determined by UAV remote sensing immediately before each harvest. The NDVI data

comprised ~1200 pixel measurements across each 8 m2 plot (6 cm of resolution). The average

NDVI value of all pixel points per plot (excluding the quadrat area sampled for previous har-

vests) was calculated and then regressed (Eq 2) against the actual pasture biomass that was pre-

viously determined by clipping.

Models evaluation. The SALUS and MDP models were evaluated by the comparison

between simulated and observed data from Exp. 1. Evaluation analysis of SALUS model per-

formance in Exp. 1 was recently conducted in [15] (S1 Table). For MDP evaluation the ability

of the model to predict plant morphology (length and number of leaves per tiller) and digest-

ibility of pasture was tested in this study.

The experimental Fescue and Ryegrass regrowths for spring and summer season were sim-

ulated by using the same weather and residual pasture height of experiment 1. Temperature

(˚C) was used as daily input data and residual pasture height was specifically adjusted for each

of the three treatments, 3, 6 and 12 cm for the low, medium and high residual pasture height

treatment, respectively. Following the statistical analysis proposed by [27], linear regression

between observed and simulated data was analyzed for intercepts and slope values of 0 and 1,

respectively (accuracy), as well as for the coefficient of regression (R2, precision). Simulated

and observed data were compared by deviations, root mean square error (RMSE) and relative

prediction error (RE), as follows:

Deviationi ¼ Simulatedi � Observedi ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðDeviationiÞ

2

n

s

ð7Þ

RE ¼
RMSE

�X
� 100 ð8Þ

where Simulatedi is simulated valuei, Observedi is observed valuei, n is the total number of

observations, �X is the mean of observed values over n, and i is the i-th observation. Finally, the

extent of agreement between simulated and observed values was tested by the concordance

correlation coefficient (CCC) which is a simultaneous measure of accuracy and precision with

an ideal fit indicated by a value of 1, and the bias correction factor (Cb) which indicates degree

of bias from the y = x line with a value of 1 indicating no bias.

Experiment 2 (farm scale)

A second on-farm grazing experiment (Exp. 2) was carried out for a 4-week period (24 days)

during summer of 2016. Protocols for animal handling and husbandry have been previously

revised, approved and applied according to the Michigan State University’s Institutional Ani-

mal Care and Use Committee (IACUC) office, under project application number 02/14. The

milking herd comprised 66 US Holstein-Friesian cows. A total of sixteen 1-ha paddocks (1 ha

each) were used for this experiment and were divided into 8 Fescue and 8 Ryegrass 1-ha pad-

docks. Paddocks were connected via two-way laneways to a centralized free-stall robotic milk-

ing barn for voluntary milking. The daily diet of cows comprised primarily grazed pasture plus

an addition of pellet concentrate and free choice of a molasses-based mineral and vitamin sup-

plement. The pellet concentrate was fed during milking at a rate of 1 kg DM of pellet every 6
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kg of milk, and up to a maximum of 7 kg DM d-1. Cows had 24 h access to pasture through the

use of selective sorting gates located at the south end of the barn. Each day, cows received a

daily allowance of ~25 kg DM cow-1 of fresh pasture in two breaks of ~12.5 kg DM cow-1 that

were offered on alternating locations of the farm (north and south); this 2-way grazing system

(i.e., A-B grazing schedule) was decided for improved voluntary cow traffic and milking of

cows [28]. Pasture allocations were made available from 1000 to 2200 h and from 2200 to 1000

h, respectively. Additionally, the criteria to adjust the size of pasture allocations also included

the following pasture management rules, the use of a pre-grazing pasture biomass target of

2700 kg DM ha-1, the use of a post-grazing pasture biomass target of 1300 kg DM ha-1, and the

maintenance of an average pasture cover of no less than 1800 kg ha-1 across the entire grazing

platform. The size of the daily allocation of pasture varied in relation to animal consumption

and pasture growth rate, and resulting on average in 1 to 3 grazing days per 1-ha paddock.

Weekly pasture biomass of each paddock was systematically monitored alongside transects

by using a calibrated Rapid Pasture Meter (C-Dax; Agricultural Solutions, Ltd, Palmerston

North, New Zealand). The C-Dax meter consists in a trailer-like attachment that is towed by

an all-terrain vehicle. The equipment uses optical sensors to measure plant height at very high

frequency (200 MHz), providing geospatial pasture data every ~2.7 m. The original average

pasture height (x, mm) recorded by the C-Dax was converted into average pasture biomass (y,

kg DM ha-1) according to two previous formulas, one for Fescue (y = 15x-150, R2 = 0.82,

n = 32) and one for Ryegrass (y = 17x-57, R2 = 0.75, n = 72). By using a GPS device (± 1 m)

mounted to the equipment, the C-Dax can provided accurate data both of pasture mass and

location [29]. The geospatial pasture data was downloaded and transferred into a GIS database

for mapping and spatial analysis.

In addition to C-Dax measurements, pasture mass in each paddock was estimated by the

sward ruler method by using 23±2 sward height readings alongside a parallel linear transect

to the C-Dax track. Sward surface height was measured from ground level using a first-con-

tact technique [30] with a Hill Farming Research Organization sward stick [30, 31]. A

unique pre-defined equation for both pastures (y = -515 + 123x; R2 = 0.86; n = 90) was

developed on site to convert average ruler sward height (x, cm) into average herbage mass

(y, kg DM ha-1).

On-farm evaluation of the UAV monitoring method. Four UAV flyovers were per-

formed in June 24 and 30, and July 11 and 18, 2016 to collect multispectral data and to develop

NDVI raster maps (Fig 2). Flights were conducted ~8:30 am on same pasture monitoring days

and immediately before field-based methods, C-dax and ruler. Following each flight, the pad-

dock average biomass was estimated from the paddock-average NDVI according to the cali-

bration equation (Eq 2) developed previously during the UAV calibration phase. All UAV

flights were conducted at 100 m elevation and by using the same west-east transect flight pat-

tern across fields. On average, four flight transects were needed to cover the entire experimen-

tal area with a 75% horizontal overlap between transects. The NDVI-derived biomass for each

paddock was compared against the average biomass determined by the two field-based meth-

ods, C-Dax and ruler. Technical information for the three monitoring methods is presented in

Table 1.

Comparison of methods was conducted as follows. First, vector maps of C-Dax sampling

transects were imported into the ArcGis database and approximately 70±6 spatially explicit

measurement points were identified for each 1-ha paddock transect and monitoring date. Sec-

ond, the average NDVI-derived biomass enclosed within a 1 m diameter around C-Dax sam-

pling points was intersected and calculated. Finally, the mean NDVI-derived biomass for each

paddock transect and sampling date was calculated and compared to that of the C-Dax and
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ruler methods by calculation of the mean deviation and RMSE, as follows:

Deviationi ¼ UAVi �
CDaxi þ Ruleri

2

� �

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðDeviationiÞ

2

n

s

ð10Þ

where UAVi, CDaxi and Ruleri are the pasture biomass estimated by the UAV, C-Dax and

ruler, respectively, for each consecutive paddock and date (i = 1-n). Additionally, the regres-

sion line between UAV-derived biomass (x axis) and mean biomass of C-Dax and ruler (y
axis) was analyzed for intercept and slope values of 0 and 1, respectively (accuracy), as well as

for coefficient of regression (R2, precision).

Fig 2. UAV-derived NDVI maps of grazed pasture of the KBS dairy farm (area of 15.6 ha) collected on four consecutive dates. Maps exhibit the spatial

variability of high-resolution measurements (6 cm pixels) of pasture NDVI (-1: blue to 1: red color) in two blocks of eight 1-ha paddocks (200 x 50m) used

for rotational grazing with lactating dairy cows.

https://doi.org/10.1371/journal.pone.0212773.g002

Table 1. Characteristics of three methods of pasture monitoring used at the KBS dairy farm. Technical data of

Ruler, C-Dax and UAV based methods of pasture monitoring used during four consecutive weekly dates at the KBS

dairy farm. Values in table represent reference data for a 1-ha paddock (200 x 50 m).

Technical data Ruler C-Dax UAV

N˚ observations 23 70 2,000,000

Frequency (m) 10 2.7 0.06

Time to cover (sec) 300 45 300

Speed (m/sec) Walking 5 12

Measurement height (m) - 0.02 100

Calibrated equations 1 2 1

https://doi.org/10.1371/journal.pone.0212773.t001
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UAV-modeling system outputs. Once the three main components (UAV, SALUS and

MDP models) were evaluated, main outputs of UAV-modeling data were summarized and

presented for the four flights. The area coverage for this synthesis included the 16 ha of pasture

of the KBS dairy farm covered during the four UAV flyovers. Weather data (rainfall, solar radi-

ation and temperature) recorded at a meteorological station located at the experimental site

were used as daily input for the SALUS and MDP models.

Results

UAV system

During Exp. 1, pasture biomass ranged from 226 to 4208 kg DM ha-1 for Fescue and from 255

to 3200 kg DM ha-1 for Ryegrass, respectively. Likewise, the NDVI for same plots was 0.28 to

0.76 for Fescue and 0.23 to 0.77 for Ryegrass, respectively. Similarly, the measured LAI ranged

from 0.01 to 6.5 for Fescue and 0.01 to 5.0 for Ryegrass, respectively. The NDVI derived from

multispectral imagery collected by the UAV system (n = 72 plots) was strongly related

(p = 0.001) both to the measured pasture biomass (R2 = 0.80) and LAI (R2 = 0.87; Fig 3). When

NDVI was regressed against biomass, the coefficients for non-linear regressions of Fescue and

Ryegrass did not differ (p = 0.38), supporting a common NDVI-based herbage mass predicting

equation for both species (Fig 3a).

Results of pasture biomass estimations of Exp. 2, using the UAV, C-Dax and ruler meth-

ods are presented in Table 2. Estimations of pasture biomass by the UAV (1971±350 kg DM

ha-1) were similar (p > 0.05) to estimations by the C-Dax (2073±636 kg DM ha-1) and ruler

(2017±530 kg DM ha-1) methods, respectively. Consequently because there was no differ-

ence (p > 0.05) between control methods, data from the C-Dax and ruler methods were

pooled and used for comparison of the UAV performance. Fig 4a shows that the UAV

method provided similar estimations that fell within the range of the one standard deviation

by the C-Dax and ruler methods. Further, in almost all cases (85% of observations), the dif-

ference in pasture biomass estimations among methods fell within the range of ± 500 kg

DM ha-1.

SALUS model

The results for the evaluation of the SALUS for estimation of pasture growth were recently

reported by [15] and it is summarized in S1 Table. The SALUS model adequately simulated

the herbage mass (RE = 19%, RMSE = 509 kg DM ha-1, CCC = 0.94) of spring and summer

regrowth, with a slightly better estimation for Ryegrass (RE = 14%, RMSE = 390 kg DM ha-1,

CCC = 0.93) compared to Fescue (RE = 22%, RMSE = 590 kg DM ha-1, CCC = 0.92). Overall,

the ability of SALUS to effectively simulate the effect of different residual sward height treat-

ments was reflected by high values for the following model fit statistics: R2 = 0.89, r = 0.94 and

Cb = 0.99, respectively.

MDP model

Reduction of residual sward height in Exp. 1 shortened (p < 0.001) the length of consecutively

produced leaves in spring and summer, both improving the NDFD and DMD of Fescue

(p< 0.02) and Ryegrass (p< 0.04) pasture. Overall, the MDP model adequately predicted leaf

length and leaf stage, and the NDF, NDFD and DMD of pasture (Table 3). The length of leaves

(RE = 23%, RMSE = 6.2 cm, R2 = 0.92) was predicted with greater accuracy compared to pre-

dictions of leaf stage (RE = 39%, RMSE = 0.7 leaves, R2 = 0.70), and the leaf stage was predicted

with greater accuracy for Fescue pasture (RE = 29%, RMSE = 0.5 leaves, R2 = 0.60) compared
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to Ryegrass (RE = 46%, RMSE = 0.9 leaves, R2 = 0.33) pasture (Fig 5a). There was a good agree-

ment between the observed and simulated DMD (Fig 5c), and both the DMD and NDFD

(RE = 8%, RMSE = 5%, R2 = 0.74) were simulated with better accuracy compared to simula-

tions of NDF content (RE = 16%, RMSE = 9%, R2 = 0.77).

Fig 3. UAV calibration. Relationship among UAV-remotely sensed NDVI and pasture biomass (a) and leaf area index

(b) in georeferenced plots of tall fescue- (black) and ryegrass-based (white) pasture plots (n = 72) in Exp. 1.

https://doi.org/10.1371/journal.pone.0212773.g003

Table 2. Summary of statistics and comparison of the UAV-based method for estimation of herbage mass of tall fescue- and ryegrass-based pastures rotationally

grazed by lactating dairy cows. Comparisons were performed for each 1-ha paddock during the four pastures’ monitoring dates in Exp. 2.

Biomass estimation (kg DM ha-1) Comparison vs UAV

Mean SD n Bias t-test RMSE RE R2 r

UAV 2017 530 52 - - - - - -

C-Dax 1971 350 52 -46 0.37 363 18 0.53 0.73

Ruler 2073 636 52 56 0.30 386 19 0.63 0.80

Mean 2022 472 52 5 0.90 313 15 0.65 0.81

https://doi.org/10.1371/journal.pone.0212773.t002
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UAV-modeling integrated system

The results for on-farm estimation of pasture biomass, morphology and digestibility for pad-

docks of the rotational grazing system of the KBS dairy farm are reported in Figs 6–8. The spa-

tial variability of estimated biomass is shown in Fig 6 and the estimated mean biomass and

forage digestibility for each paddock is shown in Fig 7a. The coupled UAV modeling system

predicted both the quantity and nutritive value of forage for each paddock based on the

expected rotation and resting time that was needed to achieve a set pre-grazing target of 2700

kg DM ha-1. This predicted information is shown in Fig 7b together with the predicted residual

pasture biomass values. Figs 7c and 8 show the actual leaf stage for each paddock as a graph

and as a scheme, respectively. Fig 7c also shows the calculated resting days required to achieve

the predefined pre-grazing biomass target of 2700 kg DM ha-1.

Fig 4. Evaluation of UAV method. Evaluation of the UAV method for estimation of biomass of tall fescue- (solid

symbols) and ryegrass-dominated (open symbols) pasture for four sampling dates conducted during Exp. 2. (a)

Graphical representation of goodness of fit of pasture biomass estimated by the UAV compared to mean reference

values estimated by the two control methods, ruler and C-Dax. (b) Deviation of pasture biomass estimations by the

UAV method compared to the ruler (■□) and C-Dax (▲Δ) methods.

https://doi.org/10.1371/journal.pone.0212773.g004
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Discussion

The aim of this work was to develop and test an integrated systems approach to monitor, assess

and plan grazing management on farms (Fig 1). This novel system is based on the integration

of remotely collected data by UAV-mounted sensors and process-based models. Overall, the

results reported in this paper provide sufficient evidence both to support the feasibility of the

proposed approach and its validation by using data both from plot and field scale experiments.

Table 3. Summary of statistics for testing of the MDP model for prediction of leaf morphogenetic traits and forage nutritive value of tall fescue- and ryegrass-based

pasture. Mean, standard deviation (SD), mean bias, root mean square error (RMSE), relative error (RE), coefficient of the regression (R2) and Pearson correlation coeffi-

cient (r) for leaf length (cm), leaf stage (leaves per tiller), neutral detergent fiber content (NDF, %), and digestibility of dry matter (DMD, %) and NDF (NDFD, %), both of

summer and spring regrowth managed with different residual sward heights in Exp. 1.

Mean SD Bias RMSE RE R2 r CCC Cb n

Actual Simulated Actual Simulated

Leaf length

All 27.3 27.4 9.8 14.1 -0.1 6.2 23 0.85 0.92 0.62 0.67 22

Fescue 30.4 31.2 11.1 16.4 -0.8 7.6 25 0.82 0.91 0.68 0.75 13

Ryegrass 22.9 22.0 5.8 7.6 0.9 3.1 13 0.86 0.93 0.82 0.89 9

Leaf stage

All 1.8 2.1 0.6 0.9 -0.2 0.7 39 0.49 0.70 0.65 0.93 36

Fescue 1.7 1.7 0.7 0.8 0.0 0.5 29 0.60 0.78 0.67 0.86 21

Ryegrass 2.0 2.5 0.5 1.0 -0.5 0.9 46 0.33 0.58 0.45 0.79 15

NDF

All 51.5 53.0 4.8 3.2 -1.4 3.4 7 0.59 0.77 0.71 0.93 36

Fescue 56.8 50.3 12.7 11.2 6.5 8.8 16 0.77 0.88 0.57 0.71 21

Ryegrass 48.8 50.2 2.8 2.5 -1.4 2.8 6 0.31 0.55 0.55 0.99 15

NDFD

All 64.8 59.3 13.8 14.4 5.5 7.8 12 0.85 0.92 0.92 1.0 36

Fescue 53.5 54.9 5.1 2.1 -1.4 3.8 7 0.66 0.81 0.87 0.99 21

Ryegrass 75.9 71.8 4.5 7.0 4.1 6.0 8 0.58 0.76 0.69 0.91 15

DMD

All 69.4 66.1 9.2 9.0 3.3 4.8 7 0.86 0.93 0.93 1.0 36

Fescue 64.5 60.6 9.0 7.4 3.9 5.4 9 0.82 0.91 0.89 0.98 21

Ryegrass 76.2 73.8 2.6 4.1 2.4 3.6 5 0.56 0.75 0.68 0.91 15

https://doi.org/10.1371/journal.pone.0212773.t003

Fig 5. Evaluation of the MDP model. Predicted vs. observed leaf stage (a), leaf blade length (b) and digestibility of dry matter (c) of spring and summer regrowth of

tall fescue- (solid symbols) and ryegrass-based (open symbols) pasture managed under three residual sward height treatments (low,●�; medium,■□; high,▲Δ) in

Exp.1.

https://doi.org/10.1371/journal.pone.0212773.g005
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The results also suggest potential for scalability of the present UAV- modeling approach to

other grass species, soils and weather conditions, but the testing and validation of this hypothe-

sis warrants further carefully conducted investigations.

Pasture monitoring with UAV

Recent studies have shown great potential for UAV applications in forestry and agriculture

(e.g. [3, 32–34]) but this modern technology has not yet been used to assess pasture growth in

livestock grazed systems. In the present study, the strong relationship shown (R2 = 0.80)

between NDVI values derived by UAV-mounted sensors and the actual biomass measured on

Fig 6. Example (Flight 4) of output map of estimated pasture biomass for a platform of 15.6 ha rotationally

grazed with lactating cows in Exp. 2. The map shows high-resolution (6 cm) spatial variability of pasture cover with

colors denoting<500 kg DM ha-1 (red), 500–1700 kg DM ha-1 (yellow), 1700–2800 kg DM ha-1 (green) and> 2800 kg

DM ha-1 (blue).

https://doi.org/10.1371/journal.pone.0212773.g006
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Fig 7. Main outputs of the UAV-modeling system for Flight 4 (corresponding to Fig 6). (a) Actual pasture cover

and model estimation of digestibility (DMD, %) for each paddock in rotation. (b) Model estimations showing the

predicted post-grazing (shaded bars) and both the predicted next pre-grazing biomass, digestibility (DMD, %) for each

paddock in rotation. (c) Model estimations of leaf stage (leaves per tiller) and number of resting days needed to achieve

the predefined pre-grazing target of 2700 kg DM ha-1 for all paddocks in rotation. The dotted line indicates the ideal

resting days in relation to the length of rotation.

https://doi.org/10.1371/journal.pone.0212773.g007
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geo-referenced plots (Fig 3) supported the use of UAV-derived NDVI values to estimate pas-

ture biomass.

Previous NDVI values using ground-based sensors in tall fescue have been reported to

range from 0.53 to 0.78 [35]. Similarly, UAV-derived NDVI registered from Fescue and Rye-

grass plots in Exp. 1 ranged from 0.23 to 0.78. As observed in other species [36–38], the curvi-

linear relationship observed between the NDVI and biomass (Fig 3a) shows that this

vegetation index increased with pasture growth up to a maximum NDVI value of ~0.8. This

typical saturation of NDVI occurred when the LAI value of pasture was sufficiently high (Fig

3b) to minimize reflectance of red light associated to high soil cover [39]. In this sense, [40]

observed that the NDVI had a reduced biomass prediction capability with values of LAI

greater than ~3. Consistent to this finding, our results demonstrate that the present UAV tech-

nology can be used to monitor well-managed grazed pastures that usually do not exceed ~3000

kg DM ha-1 of pre-grazing cover or a LAI of 3; greater biomass or LAI will certainly lead to

more poor pasture biomass prediction.

The scalability of the UAV for prediction of pasture biomass at paddock and farm scales

was confirmed during Exp. 2. Pasture biomass at paddock scale determined from UAV-

derived NDVI values was similar to concurrent biomass estimations by two more commonly

used pasture monitoring transect methods, the ruler and the C-Dax pasture meter (Table 2,

Fig 4a). Overall, the mean difference between methods was less than 400 kg DM ha-1. More-

over, only 15% of observations from the entire dataset had an estimation difference greater

than ± 500 kg DM ha-1 (Fig 4b), and almost all of those were comparisons of post-grazing

herbage mass estimations (i.e. low pasture biomass) associated to low soil cover or greater

quantity of senescent vegetation or litter. Consequently, these underestimations (Fig 4a) were

usually due to the fact that UAV-mounted sensors discriminated dead from green plant mate-

rial by increasing red light reflectance and by decreasing NDVI values (and pasture cover esti-

mations), whereas estimations by the other two more traditional pasture monitoring methods

did not discriminate between dead and green plant tissue. The present results therefore suggest

that the UAV system could be a more adequate method to assess more nutritious green plant

Fig 8. Schematic representation of the leaf morphology and leaf stage of tillers simulated by MDP model. Figures correspond to the

average 1.3- and 4.0-leaf stage of plants recommended for tall fescue and ryegrass in order to achieve the predefined pre-grazing target

of 2700 kg DM ha-1.

https://doi.org/10.1371/journal.pone.0212773.g008
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components, which indeed is the fraction of pasture that is more likely to be consumed in a

rotational grazing system.

The high measurement frequency (6 cm) combined to a greater spatial extent and resolu-

tion of UAV data also allowed for more representative estimations of pasture biomass com-

pared to the conventional control methods (Table 1). Further, this high measurement

frequency may solve possible issues related to a weak UAV calibrations (i.e. < R2), especially

in situations with large spatial variability of pasture associated to uneven animal grazing. This

is perhaps one of the most remarkable applications of the UAV method, in particular if the

extent and sampling intensity of the UAV method is compared to the more limited capabilities

of more common pasture monitoring methods used by dairy farmers [8]. Finally, spatial pat-

terns of pasture from UAV-derived NDVI values (Figs 2 and 7) are of a much finer scale than

the mean of pasture biomass predicted by conventional methods on a single linear transects

per paddock. This offers the potential to quantify pasture biomass with high spatial resolution,

map large areas (Fig 6) or gain relevant information to understand and manage the spatial var-

iability of pasture associated to uneven grazing behavior (i.e. patch grazing), landscape hetero-

geneity, or soil properties [41]. These findings further suggest that the average pasture cover

per paddock as estimated by UAV-mounted sensors would represent the most meaningful

pasture biomass data for accurate forage allocation to animals in pasture-based livestock

systems.

Prediction of pasture growth

A proactive approach to grazing management must consider both the actual pasture cover to

manage forage allocations, and the change in pasture growth trends to either avoid over- or

under-grazing in a grazing rotation (e.g. grazing paddocks either too soon or too late). Reason-

ably, predictions of pasture growth need to consider both the prevailing meteorological condi-

tions and the actual soil properties. Therefore, a unique feature of the present approach is the

integration of high-resolution UAV data and process-based models to predict pasture growth

based on actual soil, plant and weather components (Fig 1). A similar approach combining

both field measurements and information obtained by a simulation model has been used by

[42] to help farmers to reduce the frequency of pasture monitoring.

In the present study, SALUS was used as the model to estimate pasture growth and cover

up to ~10 days after the last UAV flyover. This short-term simulation offered both, the oppor-

tunity to estimate quickly and accurately post-grazing residuals left by animals (shaded bars in

Fig 7b) and to predict the number of days that would be needed to achieve the desirable pas-

ture pre-grazing target, usually predefined by farmers by the setting of a targeted grazing

wedge (line in Fig 7c). Eventually, our approach also predicted the next pre-grazing biomass at

a given length of rotation (bars in Fig 7b), which is a useful piece of information for rotational

systems that are grazed at fixed day intervals. Finally, prediction of leaf stage tiller data (Figs 7c

and 8) could be used as companion information to apply plant-related indicators to further

guide grazing management [43]. Thus, multiple sources of model information can be inte-

grated and used to drive informed decisions for grazing management, including adjustments

of pasture allocations, changes in grazing rotations, decisions of pasture harvest, or use of feed

supplementation. For example, as shown by Fig 7b the actual biomass across paddock (Fig 7a)

might allow reaching the desired pre-grazing target of 2700 kg DM ha-1 (future situation) in

most of the paddocks, except for the last three paddocks in the rotation (with bars below the

targeted wedge line). Consequently, Fig 7c predicts that the next grazing rotation must be

extended by ~3 days, otherwise an expected decrease of ~400 kg DM ha-1 of pre-grazing pas-

ture cover over the last three paddocks (Fig 7b) will imply that additional supplementary feed
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would be needed to offset pasture deficits and to avoid over-grazing or decline in pasture

intake. Finally, it is important to acknowledge that the present UAV-modeling approach to

predict and guide management of pasture growth was based on a multistep process that has

potential to aggregate errors across estimations. Therefore, further testing of the present UAV-

modeling approach, including scalability to other pasture systems would be needed for more

reliable testing and application on farms.

Estimation of pasture digestibility

The nutritive value of pasture is a dynamic plant-related trait that can significantly affect ani-

mal performance [44]. For most farmers the more commonly used trait to assess pasture nutri-

tive value is digestibility, which is an accurate reference for the actual feed value of most

forages. Importantly, the present testing of the MDP model to predict digestibility of Fescue

and Ryegrass pasture managed with different defoliation heights (Table 3 and Fig 5) supports

the ability to proactively provide information of pasture nutritive value to guide grazing man-

agement (Fig 7b and 7c).

Criteria to determine timing of grazing quite often is based on a fixed number of days, a tar-

geted herbage mass or a given number of leaves per tiller (i.e. leaf stage). However, the present

UAV-model approach provided more precise information to decide grazing management

both based on estimations of cover and forage digestibility. This is perhaps the most notewor-

thy feature of the present UAV-modeling system since changes in nutritive value can signifi-

cantly affect the voluntary intake of pasture [44] and animal performance, in particular when

lower pasture nutritive value related to high pasture cover (> 3500 kg DM ha-1) is related to

the use of very high pre-grazing targets [5] and/or very long grazing rotations in relation to the

onset of leaf senescence [19]. For example, Fig 7a and 7b indicate that during the present graz-

ing experiment (Exp. 2) dairy cows were provided consistently high-quality forage associated

to a fast grazing rotation (< 14 days). Consequently, this rotation speed resulted in grazing

intervals that were shorter (< 325 ˚Cd) than the leaf lifespan of the grass species [20], thereby

avoiding rapid increase in NDF and decrease in NDFD associated with increasing leaf senes-

cence [19]. Finally, it is important to acknowledge that a greater temporal and spatial variation

in pasture nutritive value could be expected in commercial farms where grazing plans are not

carefully monitored and controlled as in the present grazing experiment, and therefore scal-

ability of the present UAV- and model-based approach for use in other farms and systems war-

rants further carefully conducted investigations [45].

Conclusion

The present UAV-modeling approach integrated pasture NDVI data remotely collected by

UAV-mounted sensors and process-based models for prediction of pasture growth, morpho-

genesis, and forage nutritive value. Both, results from plot and filed scale experiments provide

sufficient evidence to support feasibility for the UAV-modeling approach and potential for

broad scalability to other grass species, soil types and weather conditions, but the testing and

validation of this hypothesis warrants further carefully conducted investigations.

Importantly, this study supports the use of fine scale resolution maps based upon UAV-

derived estimations of pasture biomass to guide grazing management decisions. Further, this

work also demonstrates that it is technically possible to link UAV data and process-based crop

models for use as a decision support tool to monitor, assess and plan grazing management.

However, to become a practical approach for use by land managers and farmers future techni-

cal work must focus on the automation of UAV data processing and mapping, and pasture

modeling steps to allow for rapid output data that can be available near real-time.
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33. Berni J, Zarco-Tejada P, Suárez L, González-Dugo V, Fereres E. Remote sensing of vegetation from

UAV platforms using lightweight multispectral and thermal imaging sensors. Int Arch Photogramm

Remote Sens Spatial Inform Sci. 2009; 38(6).

34. Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, et al.

Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods.

2015; 11:35. https://doi.org/10.1186/s13007-015-0078-2 PMID: 26106438

35. Flynn ES, Dougherty CT, Wendroth O. Assessment of pasture biomass with the Normalized Difference

Vegetation Index from active ground-based sensors. Agron J. 2008; 100(1):114–21. https://doi.org/10.

2134/agronj2006.0363

36. Peñuelas J, Isla R, Filella I, Araus JL. Visible and near-infrared reflectance assessment of salinity

effects on barley. Crop Sci. 1997; 37(1):198–202.

37. Ma B, Dwyer LM, Costa C, Cober ER, Morrison MJ. Early prediction of soybean yield from canopy

reflectance measurements. Agron J. 2001; 93(6):1227–34.

38. Friedl M, Schimel D, Michaelsen J, Davis F, Walker H. Estimating grassland biomass and leaf area

index using ground and satellite data. Int J Remote Sens. 1994; 15(7):1401–20.

39. Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index.

Remote Sens Environ. 1997; 62(3):241–52.

40. Serrano L, Filella I, Peñuelas J. Remote sensing of biomass and yield of winter wheat under different

nitrogen supplies. Crop Sci. 2000; 40(3):723–31. https://doi.org/10.2135/cropsci2000.403723x

41. Laca EA. Foraging in a heterogeneous environment: intake and diet choice. Resource Ecology:

Springer; 2008. p. 81–100.

42. Romera AJ, Beukes P, Clark C, Clark D, Levy H, Tait A. Use of a pasture growth model to estimate

herbage mass at a paddock scale and assist management on dairy farms. Comput Electron Agr. 2010;

74(1):66–72. https://doi.org/10.1016/j.compag.2010.06.006

43. Fulkerson WJ, Donaghy DJ. Plant-soluble carbohydrate reserves and senescence—key criteria for

developing an effective grazing management system for ryegrass-based pastures: a review. Aust J Exp

Agric. 2001; 41(2):261–75. http://dx.doi.org/10.1071/EA00062.

44. Chapman D, Lee J, Waghorn G. Interaction between plant physiology and pasture feeding value: a

review. Crop Past Sci. 2014; 65(8):721–34.

45. Insua JR, Agnusdei MG, Utsumi SA, Berone GD. Morphological, environmental and management fac-

tors affecting nutritive value of tall fescue (Lolium arundinaceum). Crop Past Sci. 2018; 69(11):1165–

72. https://doi.org/10.1071/CP18182.

Estimation variability of pasture growth with UAV and crop models

PLOS ONE | https://doi.org/10.1371/journal.pone.0212773 March 13, 2019 21 / 21

https://doi.org/10.3168/jds.2015-9463
http://www.ncbi.nlm.nih.gov/pubmed/26254528
https://doi.org/10.1111/j.1365-2494.1983.tb01656.x
https://doi.org/10.1016/j.agrformet.2012.12.013
https://doi.org/10.1016/j.agrformet.2012.12.013
https://doi.org/10.1186/s13007-015-0078-2
http://www.ncbi.nlm.nih.gov/pubmed/26106438
https://doi.org/10.2134/agronj2006.0363
https://doi.org/10.2134/agronj2006.0363
https://doi.org/10.2135/cropsci2000.403723x
https://doi.org/10.1016/j.compag.2010.06.006
http://dx.doi.org/10.1071/EA00062
https://doi.org/10.1071/CP18182
https://doi.org/10.1371/journal.pone.0212773

