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Abstract: The rapid spread of the virus, the surge in the number of deaths, and the unavailability of
specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity.
SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase
(RdRp) complex of viral nonstructural proteins that plays a substantial role in the transcription and
replication of the viral genome. Therefore, RdRp is among the most suitable targets in RNA viruses.
Our aim was to investigate the FDA approved antiviral drugs having potential to inhibit the viral
replication. The methodology adopted was virtual screening and docking of FDA-approved antiviral
drugs into the RdRp protein. Top hits were selected and subjected to molecular dynamics simulations
to understand the dynamics of RdRp in complex with these drugs. The antiviral activity of the drugs
against SARS-CoV-2 was assessed in Vero E6 cells. Notably, both remdesivir (half-maximal effective
concentration (EC50) 6.6 µM, 50% cytotoxicity concentration (CC50) > 100 µM, selectivity index (SI)
= 15) and ledipasvir (EC50 34.6 µM, CC50 > 100 µM, SI > 2.9) exerted antiviral action. This study
highlights the use of direct-acting antiviral drugs, alone or in combination, for better treatments of
COVID-19.

Keywords: ledipasvir; remdesivir; SARS-CoV-2

1. Introduction

Coronaviruses are enveloped viruses belonging to the Coronaviridae family and are
notorious for their ability to cause respiratory infections in humans [1]. Coronaviruses are
categorized into four subgenera (based on differences in protein sequences) named alpha
(α), beta (β), gamma (γ), and delta (δ) [2]. To date, β-coronaviruses have been identified
as the causative agents of respiratory infections in humans, including the common cold.
In 2019, the newly identified coronavirus SARS-CoV-2 causing COVID-19 caused a global
pandemic. The genome of coronaviruses has a size ranging from 27 to 32 kilobase pairs
(kbp) and codes for open reading frames 1a and 1b (ORF1a and ORF1b), i.e., polyproteins
that regulate viral replication [3,4]. Four other coronavirus strains have been known
previously to cause disease in humans and are named 229E, HKU1, NL63, and OC43 [5].

There are different nonstructural proteins (nsps) named nsp1 through nsp16 in coron-
aviruses that play a major role in genome transcription and replication; however, the exact
function of a few nsps remains unidentified. Structural proteins play an important role
in viral infection and virion assembly, whereas the spike-like S protein facilitates surface
attachment to host cells [5,6]. The M protein with transmembrane domains binds to the
nucleocapsid and shapes the virion [7,8]. The envelope protein (E protein) is important
for viral infection pathogenesis because it performs a crucial function in virion budding
and assembly. The N protein is composed of two domains: one with the ability to bind
to the viral genome and a nsp3 triggering the replicase–transcriptase complex and the
encapsulation of the viral genome. Most RNA viruses, with the exception of retroviruses,
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require an RdRp for transcription and replication of their genome; therefore, this protein
is crucial for their survival [9]. RdRp is highly conserved among RNA viruses and is
composed of a 900-amino-acid catalytic core that consists of the palm, fingers, and thumb
domains [10]. RdRp has been identified as a conserved protein within a group of RNA
viruses and therefore could be an attractive research object for analyzing the process of
nucleic acid synthesis and for the development of antiviral drugs [10,11].

Soon after the SARS-CoV-2 pandemic, many in vitro studies and clinical trials were
conducted to identify potent drugs with high antiviral activity. In this regard, favipiravir is
one of the first antiviral drugs authorized by the National Medical Products Administration
of China for use against SARS-CoV-2 [12]. In the current scenario, the efficacy of the antivi-
ral drugs may not be as effective against virus due to single nucleotide polymorphisms
which changes the viral proteins [3]. A similar phenomenon can also be observed in SARS-
CoV2, whereby the viral proteins (i.e., spike protein) acquire mutations due to SNPs and
consequently escape being targeted by antiviral drugs [13–16]. However, the conserved pro-
tein such as RdRp could be an appropriate target to understand the mechanism of nucleic
acid synthesis and the subsequent identification of already available antiviral drugs [17–21].
Several other drugs, such as remdesivir, ribavirin, and sofosbuvir, are currently in different
phases of clinical trials for evaluation of their anti-RdRp activity. Nonetheless, a multistep
approach is needed to speed up the drug discovery process [12,22–24].

In this context, to overcome the problems associated with the discovery of effective
antiviral drugs, the current study was conducted to determine potential effectiveness of
FDA-approved antiviral drugs against SARS-CoV-2 replication. Here, we employed a
combined multistep in vitro and in silico approach, involving virtual screening, docking,
and molecular dynamics (MD) simulations to identify a lead compound effective against the
virus. The best drug was then selected based on a binding score, stability, and its interaction
with key amino acid residues to be confirmed by in vitro tests. The antiviral activity of the
top hits (remdesivir, ledipasvir, and paritaprevir) was then assessed in Vero E6 cells. The
high antiviral activity of remdesivir (half-maximal effective concentration (EC50) = 6.6 µM)
and ledipasvir (EC50 = 34.6 µM) observed in Vero E6 cells against SARS-CoV-2 highlights
their potential utility as an effective therapeutic intervention to be tested in combination to
achieve better efficacy for further clinical evaluation. The findings of this study will also
help physician scientists to treat COVID-19 patients with an appropriate drug.

2. Materials and Methods
2.1. Protein Model Preparation and Active-Site Identification

The three-dimensional (3D) structure of the SARS-CoV-2 RdRp protein was retrieved
from the Protein Data Bank (PDB; ID: 6M71) [25]. The retrieved cryo-electron microscopy
structure was prepared using the Molecular Operating Environment (MOE) software [26].
All water molecules and associated cofactors (nsp7–8) were removed, and hydrogen atoms
were added to the structure. All missing atoms were modeled, and energy was minimized
to remove any steric clashes and to optimize bond lengths and angles. For energy mini-
mization, the AMBER10: EHT force field was utilized with a 0.01 rms kcal/mol gradient.
The structural topology was reviewed for any abnormalities. The active site of RdRp is
located in the seven conserved motifs (A to G). The sterol-sensing domain sequence (amino
acid residues 759–761, particularly residues K545 and R555) was found to be a hotspot.

2.2. Library Preparation

All the available antiviral drugs (n = 63) approved by the FDA in the last 50 years
were selected for virtual screening, and their 3D structures were downloaded from the
PubChem database [27,28]. The antiviral drug library was prepared in MOE, explicit
hydrogen atoms were added, and all molecules were subjected to energy minimization
by means of the Merck molecular force field 94× (MMFF94×) with a root mean square
gradient of 0.1 [29,30].
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2.3. Virtual Screening and Molecular Docking

Docking was performed using Moe-Dock (Chemical Computing Group Inc., Montreal,
QC, Canada). Each FDA-approved antiviral drug was docked separately to the active site
of the RdRp protein. At the first step, water molecules were removed, and 3D protonation
and energy minimization were performed using the MOE software with the following
parameters: force field MMFF94X, gradient 0.05, and current geometry. The FDA-approved
antiviral drug library was docked into the catalytic binding site of RdRp (Arg555, Val557,
Asp618, Asp623, Thr680, Asn691, Ser759, Asp760, and Asp761). Next, active-site residues
were selected, with 10 conformations, and the prepared library was screened against the se-
lected residues. The protein and ligand atoms were kept flexible, and the triangle-matcher
placement method was used along with the London dG scoring function. Among the top
10 hits, three drugs were selected (based on a docking score, binding mode, hydrogen bond-
ing, and interactions) for MD simulations; namely, remdesivir, ledipasvir, and paritaprevir
were chosen, and their intermolecular interactions were studied by means of PyMOL and
MOE [31]. After that, the docked complexes were subjected to MD simulations.

2.4. The MD Simulation Protocol
2.4.1. Ligand Topology Generation

The official CHARMM general force field (CGenFF) server was used to build the
topology of the selected ligands for the MD simulations [32]. Initially, the ligand molecules
were converted into mol2 format, hydrogen atoms were added into the correct tautomeric
and protonation state, and the bond order was corrected accordingly. Next, the ligands in
the mol2 format were uploaded to the CGenFF server to generate a CHARMM-compatible
stream file. The stream file contains ligand topological information, such as atom types,
charges, and bond parameters. The stream file was then converted into a Gromacs-
compatible file using a python script that generates a PDB file, parameters, and topol-
ogy files for the ligand. The generated ligand molecular structure was then saved in the
Gromacs-compatible format.

2.4.2. MD Simulations

The RdRp complexes with the chosen FDA-approved drugs were subjected to MD
simulations to discern the dynamics and interaction behavior of these compounds. The
all-atom simulation method was used to gain insights by solving Newton’s equation
of motion. Initially, SARS-CoV-2 RdRp in complex with a drug (remdesivir, ledipasvir,
and paritaprevir) and the apo-RdRp protein (PDB ID: 7BV1) were subjected to energy
minimization to remove steric effects and to optimize the structure. The CHARMM36
all-atom force field was utilized [33]. Periodic boundary conditions were applied, and the
protein was placed inside a cubic box with 10 Å distance between the boundary and the
protein surface. The TIP3P water model was employed to solvate the systems, and the
system was neutralized by the addition of Na+ ions. The preprocessing steps were then
executed, which included energy minimization and temperature and pressure equilibration.
Energy minimization was carried out by the steepest-descent algorithm for the subsequent
50,000 steps, followed by NVT and NPT ensemble for 100 ps in order to attain a point
of maximum force of 1000 kJ mol−1 nm−1. Then, the temperature equilibration was
performed via the V-rescale algorithm at 300 k with a time constant of 0.1 [34] The particle
mesh Ewald algorithm [35] was used to calculate long-range electrostatic interactions,
while short-range electrostatic and van der Waals were calculated by specifying 1.2 nm
cutoff distance. Additionally, the Parrinello–Rahman algorithm was applied to achieve
pressure equilibration at 1 bar. After that, 100 ns (nsteps 50,000,000) MD simulations were
carried out for protein–ligand complexes and the apo-RdRp protein using the Gromacs
software [36]. The data analyses were performed by means of Gromacs built-in tools, MOE,
and PyMOL.



Cells 2021, 10, 1052 4 of 16

2.5. Post-MD Simulation Data Analysis and Visualization

The trajectories obtained throughout the MD simulations were researched by further
analyses, such as root mean square deviation (RMSD) computation to measure the system
stability, whereas root mean square fluctuation (RMSF) was employed to evaluate flexibility
at the amino acid residue level. The radius of gyration (Rg) was calculated to measure
structure compactness. Principal component analysis (PCA) was performed to evaluate
functional dynamics of the protein. Additionally, to characterize stable and variant states
of the protein, free energy landscape (FEL) analysis was performed. Lastly, to identify
correlated motions of residues, a dynamic cross-correlation matrix (DCCM) analysis was
performed. For all these analyses, Grace (plasma-gate.weizmann.ac.il/Grace), R packages,
and Gromacs built-in and standalone tools were used.

2.6. Principal Component Analysis (PCA)

This is a dimensionality reduction method predominantly serving to demonstrate
slow and functional motions of biological molecules [37]. To perform PCA, a covariance
matrix was calculated by diagonalizing and solving eigenvalues and eigenvectors. The
direction of the motion is represented by eigenvectors, whereas the magnitude of the
motion and direction is denoted by eigenvalues. Furthermore, the covariance matrix for the
illustration of PCA was computed with Gromacs analysis tools g_covar and g_anaeig [38].
Consequently, the trajectories were changed to DCD format by means of stand-alone
software Wordom [39]. The PCA was further executed via the Bio3D analysis tool by a
method described previously [40].

2.7. The Free Energy Landscape (FEL)

An FEL is determined to characterize all possible conformational changes of a protein
in MD simulations [41,42]. The FEL represents two variables that reflect a stable and tran-
sient state of the protein and was computed here from a probability distribution composed
of the first two eigenvectors from the essential plane. Positions of the interacting molecules
in the system were characterized by focusing on their respective energy levels [43]. In the
calculation of the FEL, protein stability was identified by Gibb’s free energy calculation.
Here, we utilized gmx sham, a Gromacs tool, to compute the FEL. In this study, the apo
form and protein–drug complexes were evaluated via the following equation:

Gi = −KBTln(Ni/Nmax)

where KB is the Boltzmann constant, T denotes temperature (300 K), Ni is the population of
bin i, and Nmax is the population of the most populated bin. A color-coded model depicts
various energy levels.

2.8. The Dynamic Cross-Correlation Matrix (DCCM)

The DCCM analysis was carried out to identify correlated motions of residues upon
drug binding, and the Bio3D package available in the R software was employed to calculate
residue–residue dynamic cross-correlations [44]. To build the matrix, only Cα atoms
were selected. Covariations of the matrices were calculated on calling “cov2dccm” upon
calculating Pearson’s covariance matrix correlation coefficients from the coordinates. Based
on the following equation, the cross-correlation ratio and matrix (Cij) represent time-
correlated data between atoms i and j of a protein [45,46]:

Cij =
〈
∆ri · ∆rj

〉
/{〈∆ri〉2〈∆ri〉2}

1/2

In the above equation, both ∆ri and ∆rj show average locations of the ith and jth
residues, respectively. The angular brackets represent the average time. The positive
values indicate correlated motions, and negative values indicate atomic displacements in
opposite directions.
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2.9. MM-PBSA Calculation

The MM-PBSA method was used to calculate the binding free energy between protein
and ligand complexes. In total, 100 frames were extracted from the trajectories and the total
energy of the system was calculated through the following molecular Mechanic/Poisson–
Boltzmann Surface Area (MM-PBSA) equation

∆G(Binding) = G(Complex)− G(Receptor)− G(Ligand)

In the above equation, G (complex) represents the total free energy of the protein-
ligand complex, whereas G (receptor) and G (ligand) are total free energies of the isolated
ligand and protein in solvent. Thus, the ‘g_mmpbsa’ tool from the Gromacs package was
used to perform MM-PBSA calculations [47]. A detailed explanation of the method used in
the calculations can be found in previous studies [48–50]

2.10. In Vitro Activity of the Antiviral Drugs

The compounds were purchased from MolPort (https://www.molport.com), and
20 µM stock solutions were prepared in dimethyl sulfoxide (50–100 µL). The sequence
of a SARS-CoV-2 strain isolated from COVID-19 patients by Korea Disease Control and
Prevention Agency was used (BetaCoV/Korea/KCDC03/2020). One-hour post infection,
the viral inoculum was removed, and Vero E6 cells were treated with serial dilutions of
the candidate drugs in the infection medium. After 48 h, the cells were stained with an
antibody against the constituent protein of the virus to evaluate the degree of inhibition of
viral replication in the sample, and cell viability (drug toxicity) was assessed by examining
the presence of the nucleus in the cells. If a drug was effective in a sample, all the cell nuclei
were stained (drug toxicity 0%), and the virus component protein was not stained by the
antibody (inhibition 100%). Dilutions of the solvent in the infection medium were utilized
to set up mock-treated controls. The virus-inhibitory effect was checked using the antibody
against the viral protein as a vehicle, and cell viability (drug toxicity) was evaluated via the
nuclear staining of cells.

3. Results and Discussion
3.1. Virtual Screening and Molecular Docking

In this study, we chose the virtual-screening approach to identify potential antiviral
drug candidates against SARS-CoV-2 RdRp that target active-site residues (Figure 1). The
active site of RdRp is highly conserved among various microbes [51]. The criteria for
selecting the best compounds are the docking score (S) and multiple interactions with
the active-site residues. The top 10 compounds that satisfied the filtering criteria were
visualized manually. Finally, out of these top hits, three antiviral drugs were selected for
comparative analysis.

https://www.molport.com
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Figure 1. Structure of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and its critical amino
acid residues. On the right, a zoomed view of the active-site residues is shown in detail. RdRp is
highlighted in green, and active-site binding residues are presented as cyan stick models.

3.2. The Analysis of the Interaction of Top Hits with RdRp

The molecular docking of FDA-approved antiviral drugs with the SARS-CoV-2 RdRp
crystal structure was performed next. The docking scores of the top hits (remdesivir,
ledipasvir, and paritaprevir) from the drug library implied a strong interaction with the
key residues. For ledipasvir, the docking score was found to be −8.9 kcal/mol. It forms
three hydrogen bonds with active-site residues. The amidine group of R555 engages in
two hydrogen-bonding interactions with the imidazole group of ledipasvir, with bond
lengths of 2.1 and 2.6 Å. Similarly, the carboxyl group of another amino acid, V166, forms
a hydrogen bond with the methoxycarbonyl amino group (bond length of 2.2 Å; Table 1,
Figure 2a).

Table 1. Docking scores and hydrogen-bonding interactions with important binding-site residues.

Drug Name Hydrogen Bonds Bond Length (Å) Force Field MOE Docking Score (kcal/mol)

Ledipasvir R555 2.1 and 2.6
CHARMM36 −8.9V166 2.2

Remdesivir
T556 2.1 and 2.4

CHARMM36 −8.3D760 2.3 and 2.5
N691 2.5

Paritaprevir D761 2.1
CHARMM36 −9.4S814 2.0
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Figure 2. Binding mode and hydrogen bonds of remdesivir, ledipasvir, and paritaprevir with RdRp. Detailed interactions
occurring within 4 Å of the ligands are shown. RdRp is lime-green (transparent). Ligands ledipasvir, remdesivir, and
paritaprevir are presented as orange stick models. (a) Interactions of remdesivir and the number of hydrogen bonds with
important residues in the ligand-binding pocket of RdRp. (b) Binding mode of ledipasvir and the number of hydrogen
bonds with RdRp. (c) Binding mode of paritaprevir and the number of hydrogen bonds with RdRp.

Remdesivir, with a docking score of −8.3 kcal/mol, yielded five hydrogen bonds.
The carboxyl group of T556 forms two hydrogen bonds with the oxygen atom of the
5-cyano-3,4-dihydroxyoxolan-2-yl moiety, with bond lengths of 2.1 and 2.4 Å. Similarly,
the deprotonated carbocyclic group of D760 and amino group of N691 form two and one
hydrogen bonds, respectively, with the hydrogen and nitrogen atoms of the nucleobase
substituent 4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl group, with bond lengths of 2.3 and
2.5 Å (Table 1, Figure 2b).

The docking score of paritaprevir was −9.4 kcal/mol, and this drug participates in
hydrogen bonding with the key binding-site residues (D761 and S814). The carboxyl group
of D761 forms a hydrogen bond with the amide group of an aza-macrocyclic complex
with a bond length of 2.1 Å. Additionally, the amino group of S814 engages in a hydrogen
bonding with the carbonyl group attached to the acyl-sulfonamide moiety with a bond
length of 2.0 Å (Table 1, Figure 2c). This study suggests that remdesivir engages in stronger
interactions with RdRp than ledipasvir and paritaprevir do, thereby inhibiting the template
entry site more effectively. It is known that aspartate, serine, and arginine play critical
roles in the formation of hydrogen bonds [52]. Furthermore, the number of hydrogen
bonds between the protein and ligands is shown in (Figure 2a–c). During MD simulations,
the number of formed hydrogen bonds in both RdRp–ledipasvir and RdRp–remdesivir
complexes varied between 0 and 6, while for RdRp–paritaprevir, the hydrogen bond
number varied between 0 and 7.

3.3. Measurement of Variations in the Cα Atoms of RdRp in the Presence and Absence of Drugs

All the RdRp–ligand complexes were simulated in an aqueous environment for 100 ns
each to measure the conformational changes and discern the dynamics of stability. The
deviation of backbone atoms was measured by means of RMSD. RMSDs of all the systems
are given in Figure 3. To characterize the dynamic behavior of RdRp during the interaction
with the selected FDA-approved antiviral drugs (remdesivir, ledipasvir, and paritaprevir),
MD simulations of the RdRp-drug complexes, with each selected drug, were performed
in an explicit water environment. Dynamic behaviors of the protein and ligands were
analyzed individually using MD simulation trajectories. The RMSDs of the complexes
were assessed and compared with the RMSD of apo-RdRp (Figure 3a). In this analysis, the
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RdRp–ledipasvir complex displayed steady incremental deviation during the simulation
with RMSD starting from 2.1 Å and reaching 3.3 Å. Similarly, RdRp–remdesivir showed
incremental deviation (2 to 3.6 Å) throughout the simulation, along with some accept-
able convergence during the time intervals. By contrast, the RdRp–paritaprevir complex
manifested a dramatic increase in the deviation from 2 to 4 Å between nanosecond 0 and
nanosecond 6, but soon the complex stabilized and stayed stable throughout the rest of
the simulation, with the RMSD reaching 4.3 Å. In the comparison, the RMSD of RdRp in
the complexes with remdesivir and ledipasvir yielded a trajectory similar to that of the
apo-form of RdRp, with slight variation during the time interval. Overall, the RdRp–ligand
complexes attained an average RMSD of approximately 3.7 Å by the end of the simulations.
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Moreover, we measured residue flexibility by means of RMSF. In the case of apo-RdRp,
greater fluctuation primarily occurs in residues K50 (3.099 Å), R116 (7.783 Å), N403 (4.14 Å),
and D910 (6.617 Å), which are present in loop regions, while no significant fluctuations were
observed in other regions (Figure 3b). Additionally, RMSFs of the active-site residues, R555
(0.876 Å), V166 (1.301 Å), T556 (0.854 Å), D760 (1.157 Å), N691 (0.727 Å), D761 (1.038 Å),
and S814 (1.01 Å), indicated no significant fluctuations (Figure 3b).

Nevertheless, for the RdRp–remdesivir complex, significant fluctuations were noted
in the loop regions, especially surrounding residues Y69 (6.38 Å), F103 (5.317 Å), and T262
(9.17 Å). On the other hand, the scores (Cα RMSFs) for the catalytic binding-site residues
T556, D760, and N691 were 1.512, 1.536, and 0.94 Å, respectively. Additionally, a similar
fluctuation pattern was identified in the loop region of the RdRp–ledipasvir complex; in
particular, residues Y69, F102, H362, M906, and E919 featured greater fluctuations. The
scores (Cα RMSFs) for the active-site residues R555 and V166 were 1.741 and 1.34 Å,
respectively.

In the RdRp–paritaprevir complex, loop region residues Y69 (5.307 Å), F102 (4.221 Å),
T262 (3.157 Å), R365 (3.156 Å), E431 (3.806 Å), K508 (3.67 Å), D824 (3.992 Å), G852 (4.02 Å),
and L907 (5.801 Å) showed greater fluctuation. The scores (Cα RMSFs) for the catalytic
binding-site residues D761 and S814 were 1.489 and 1.791 Å, respectively.

Overall, the protein–ligand interactions were found to differently affect residue flexi-
bility and internal dynamics. The average RMSF for the RdRp–drug complexes are 1.49 Å,
which is slightly higher than that of unbound RdRp (1.00 Å).

3.4. Calculation of Equilibrium Conformation of Systems

Structural compactness of all the systems was measured through the calculation of Rg
of their MD trajectories, and average values were obtained. The effects of drug binding
on Rg of the protein were measured and compared with the apo-RdRp protein structure.
The average Rg of apo-RdRp turned out to be 29.9 Å, and the system remained stable
and compact. For the RdRp–ledipasvir complex, the average Rg was 30.2 Å and showed
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negligible deviation in terms of compactness and stability as compared to the apo-structure.
Similarly, an average Rg of 30.0 Å was observed in the RdRp–paritaprevir complex. On
the contrary, for the RdRp–remdesivir complex, Rg increased to 30.5 Å (Figure 3c). Thus,
RdRp in all the complexes showed sustained stability and compactness corresponding to
native RdRp.

3.5. Analysis of Essential Dynamics of Protein

Essential dynamics in a protein are controlled by switching between different confor-
mations, and the phenomena governing this modular nature of the protein are controlled
by overall collective motions [53]. This concept is important in many biological processes
and plays an important role in biological signaling pathways. In this context, considerable
flexibility and rigidity are required for a protein to be functional, especially in a binding
site [54,55]. Moreover, a strong interaction may restrict protein movement, thereby affecting
its biological activity [56]. Therefore, PCA was carried out to investigate the collective
motion of unbound and bound drugs (ledipasvir, remdesivir, and paritaprevir) in the MD
trajectories. In this dimensionality reduction method, a projection of two principal compo-
nents, PC1 and PC2, is calculated by diagonalizing the covariance matrix of eigenvectors
to describe the subspace in which maximum protein dynamics occur. Furthermore, by
PCA, the MD trajectories of all the protein–ligand complexes and of the apo-protein were
examined to evaluate the conformational and structural changes upon ligand binding. The
dynamic motions of the protein determined by PCA are depicted in Figure 4. The unbound
protein (apo-RdRp) clearly possesses fewer stable clusters compared to the RdRp–drug
complexes, particularly in PC2. In the RdRp–drug complexes, a greater number of stable
clusters in some protein regions were identified, indicating a reduction in the overall collec-
tive motion because the drug binding effectively limits the protein backbone movements
in certain regions. The conformational space covered in the case of the ledipasvir and
remdesivir complexes proved to be broader than that of the complex with paritaprevir.
These results mean that upon ligand binding, the overall conformation of the RdRp protein
changes, which may alter the desired protein functionality.

3.6. Protein Folding Dynamics Exploration

The landscapes of energy minima of both apo-RdRp and drug-bound RdRp were
visualized using the FEL against two principal components, PC1 (RMSD) and PC2 (Rg),
which showed ∆G values between 0 and 10 kJ/mol (Figure 5). The stability of the protein
is represented by the darkest and centralized blue regions of the FEL. This region in the
plot denotes the energy minima of different conformations and represents the stability of
the protein complex. As illustrated in Figure 5a–d, the lowest-energy state of the FEL of
apo-RdRp is achieved after 13 ns, whereas the RdRp in complex with remdesivir, ledipasvir,
or paritaprevir achieves stability at 15, 77, and 35 ns, respectively. Moreover, the low-energy
zones of the apo form and of RdRp in complex with remdesivir or ledipasvir are larger
than those of the paritaprevir complex. This finding suggests that the RdRp–paritaprevir
complex goes through a comparatively lengthy transition state to achieve an equilibrium.
Nonetheless, overall, the selected drugs (remdesivir, ledipasvir, and paritaprevir) have a
potential to cause the RdRp protein to enter a local energy minimum state.
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complex; (c) the RdRp protein–ledipasvir complex; and (d) the RdRp protein–paritaprevir complex.
Snapshots were extracted from minimum energy wells.
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3.7. Time-Correlated Protein Domain Motions and Molecular Flexibility

The DCCM is a 3D matrix that graphically depicts time-correlated information on
correlations among a protein’s amino acid residues. The most common method used to
analyze residues based on time-correlated data is visual pattern recognition. In this regard,
DCCM analysis of Cα atoms was performed throughout the simulations to probe the
dynamics of apo-RdRp and of RdRp in complex with a drug (remdesivir, ledipasvir, or
paritaprevir), as illustrated in Figure 6. The residues with highly positively correlated
motions are shown as red regions, while highly inversely correlated motions are blue
regions. According to Figure 6a, the active-site residues in the apo form undergo stronger
correlated motions. In the RdRp–remdesivir complex, the active-site interacting residues
(T556, N691, and D760) showed a positive correlation, just as in the apo-form. Similarly,
interacting residues V166 and R555 in the ledipasvir complex and D761 and S814 in the
paritaprevir complex also manifested strong correlations. These results uncovered the
presence of stronger cross-correlation dynamics between residues in the RdRp–drug com-
plexes (Figure 6b–d), suggesting strong interactions and better stability. As documented in
this study, residues in these regions also have similar RMSF values in both the apo form
and RdRp bound with the selected drugs. Thus, it can be concluded that the pattern of
correlation observed here improves overall system stability.
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3.8. Binding Free Energy Calculations

The MM-PBSA method was employed to calculate the binding free energy from the
trajectory obtained during MD simulation. For each protein–ligand complex, binding free
energy (∆Gbind), van der Waals energy, electrostatic energy, and polar solvation energy
were calculated as shown in Figure 7a. It has been observed in previous studies that binding
free energy values lower than −30 kJ/mol can be taken for binding, but lower binding free
energy values are considered to be more favorable for the interaction [57,58]. In the current
study, RdRp-drugs (remdesivir, ledipasvir, and paritaprevir) showed acceptable binding



Cells 2021, 10, 1052 12 of 16

free energy values as shown in Figure 7b. The cumulative binding energy contributed
for selected drugs remdesivir, ledipasvir, and paritaprevir were −94.877, −81.18, and
−132.108 kJ/mol respectively. In all three complexes, the van der Waals interactions
significantly contributes in the binding energy. Overall, our analysis established that the
selected drugs have the potential to bind tightly to the SARS-CoV2 RdRp protein.
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3.9. In Vitro Antiviral Activity

To determine the effectiveness of the selected FDA-approved drugs against the repli-
cation of highly pathogenic SARS-CoV-2, the antiviral activities of the three drugs were
evaluated next. In this assay, (a) remdesivir, an adenosine analogue that has been evaluated
before the 2018 Kivu Ebola epidemic [59]; (b) ledipasvir, an orally administered NS5A
inhibitor used against hepatitis C virus (HCV) [60]; and (c) paritaprevir, a 3/4A protease
inhibitor prescribed against HCV infection [61] were evaluated against SARS-CoV-2. Here,
we performed antiviral assays on the Vero E6 cell line, and remdesivir served as a positive
control according to the observed antiviral activity. We assessed virus replication in the
cultured cells exposed to various drug doses (100, 33, 11, 3.7, and 1.2 µM). Judging by
the results, 50% cytotoxicity concentration (CC50) of remdesivir was >100 µM, EC50 was
6.6 µM, and the selectivity index (SI) was >15 (Figure 8a). By contrast, ledipasvir manifested
antiviral activity with an EC50 of 34.6 µM, and CC50 was >100 µM with SI > 2.9 (Figure 8b).
Paritaprevir was found to have an antiviral activity with EC50 of 33.9 µM, and CC50 was
28.5 µM with SI = 0.84 (Figure 8c). Although remdesivir showed a higher effective drug
concentration than ledipasvir did, its SI remains of interest.
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Taken together, these results mean that remdesivir has a more potent in vitro antiviral
activity than ledipasvir does at various doses for the control of viral replication within
24–48 h in our assay system. We can hypothesize that the mechanism is the inhibition of
the replicase complex of the virus. Unfortunately, paritaprevir does not have any useful
antiviral activity against SARS-CoV-2. Remdesivir is effective against SARS-CoV-2 but
has adverse effects [62]. Furthermore, it has a half-life of 0.4 h in nonhuman primates,
and for this reason, it offers human angiotensin-converting enzyme 2 (ACE2) inhibition of
shorter duration. By contrast, the nucleoside triphosphate metabolite of remdesivir has
a half-life of 14 h in nonhuman primates and approximately 20 h in humans [63]. On the
other hand, ledipasvir is not extensively metabolized, and its median terminal half-life
is 47 h [64]. Due to its longer half-life, ledipasvir shows promise for prolonged action on
extracellular human ACE2 as a target. Similarly, the intracellular concentration effective
against RdRp in host cells is apparent from a mechanistic insight into known antiviral
activity against HCV. Additionally, ledipasvir is a highly protein-bound drug (>99.8%),
implying better free-drug concentration at the target site, and therefore should be suitable
for an effective therapeutic intervention. Consequently, a multitarget treatment strategy
involving a synergistic combination of drugs with different mechanisms of action may
offer more robust practical treatment of COVID-19.

4. Conclusions

The present study identified suitable FDA-approved drugs for the inhibition of the
SARS-CoV-2 RdRp enzyme. In this regard, a structure-based virtual screening of FDA-
approved antiviral drugs was implemented to find lead molecules on the basis of the
interaction with the RdRp active site. MD simulations were performed for 100 ns to
investigate the dynamic behavior of protein–ligand interactions, revealing that the protein–
ligand complex maintains a stable conformation with lower protein–ligand interaction
energy. The top hits were then confirmed by an in vitro assay to validate the efficacy of the
selected drugs experimentally against SARS-CoV-2 replication. In this context, remdesivir
and ledipasvir exerted antiviral action against the virus, and unexpectedly, the antiviral
activity of our selected drugs was recently identified in another cell-based screening
assay against SARS-CoV-2 [65,66]. This evidence may guide the selection of downstream
experiments in further studies and may be a starting point for further confirmation of the
selected drugs in a synergistic combination for use in a biologically relevant and more
complex preclinical model of COVID-19.
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