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Abstract

PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell

lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lym-

phoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense

mutations of this gene have already been found in patients of CTCL and AITL. The non-

synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as

well as its functions. In this study, probable deleterious and disease-related nsSNPs in

PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and

SNPS&GO tools. Further, their effect on protein stability was checked along with conserva-

tion and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0

server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery

studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs

had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H,

A401V and L455F) were predicted to be highly conserved. Among the six highly conserved

mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic

domain. L411P, L455F and G493D made significant structural change in the protein struc-

ture. Two mutations-Y210C and R1158H had post-translational modification. In the 5’ and 3’

untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed

possible miRNA target sites and DNA binding sites. This in silico analysis has provided a

structured dataset of PLCG1 gene for further in vivo researches. With the limitation of

computational study, it can still prove to be an asset for the identification and treatment of

multiple diseases associated with the target gene.

Introduction

Single nucleotide polymorphisms (SNPs) are the most common genetic variations found in

humans (3–5 million) [1]. It is a type of polymorphism in which a single nucleotide differs

between individuals. SNPs of coding region cause the change in amino acid sequences, result-

ing in an alteration of protein function and hence are termed non-synonymous SNPs
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(nsSNPs). It has been proven that these mutations show molecular effects with actual pheno-

types [1]. Half of the SNPs are nsSNPs and these nsSNPs can affect the protein, both structur-

ally and functionally [2, 3]. Moreover, mutations in the highly structured non-coding regions

of the gene can have a significant impact on gene expression. Mutations in the 5’ and 3’

untranslated region can alter the secondary structure of the protein, and thus the binding of

proteins and ligands to these regions [4].

Phospholipase C gamma-1 (PLCG1) gene has been found associated with noteworthy

T-cell lymphomas like peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell

lymphoma (AITL), cutaneous T-cell lymphoma (CTCL) and adult T-cell leukemia/lym-

phoma [5–9]. It has also been linked to two subtypes of CTCL- Sezary syndrome and

Mycosis fungoides (MF) [10, 11]. Moreover, the mutation of this gene has been found

responsible for diseases like bipolar disorder and angiosarcoma [12, 13]. The protein,

Phospholipase C gamma-1 (PLCγ1) encoded from the PLCG1 gene creates inositol

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) from phosphatidylinositol 4,5-bispho-

sphate (PIP2). It is located on chromosome 20 with eight domains. It is bound with calcium

while catalyzing the reaction [14]. PLCγ1 also mediates DNA and mRNA synthesis in the

process [15]. Epidermal growth factor receptor (EGFR) activates PLCγ1 and helps in can-

cer cell mitogenesis [16]. It is also suggested that the binding of EGFR-PLCγ1 through SH2

domain is needed for cell cycle progression [16]. An exciting fact is that PLCγ1 can also

inhibit cancer cell proliferation by binding with JAK2 and PTP-1B. These two opposite

characteristics of the protein make the study of the target gene much more intriguing [14].

The production of DAG and PIP2 is in downstream signaling of the T-cell receptor (TCR)

pathway, where mutation may cause AITL. S345F and G869E missense mutations have

already been found in cases of CTCL and AITL [7]. R707Q missense mutation was found

in angiogenesis based lymphoedema angiosarcoma. It is proposed that constitutive angio-

genesis signaling driven by PLCγ1 may be the underlying reason for this [13]. K713N mis-

sense mutation was found in a sample of MF patient where NF-κB (nuclear factor kappa-

light-chain-enhancer of activated B cells), NFAT (Nuclear factor of activated T-cells), and

STAT3 (signal transducer and activator of transcription proteins-3) pathways were acti-

vated together [11].

No in silico analysis of the gene PLCG1 has been done till now to find all the possible

nsSNPs related to the functional and the structural change of the protein. Therefore, the pri-

mary purpose of this study was to find possible coding and non-coding SNPs, which can affect

the protein function by utilizing various computational approach and bioinformatics tools.

These tools find out the possible conserved residues, mutations with the chance of most func-

tionality, possible altered molecular mechanism, structural change in the protein, decreasing

protein stability, post-translational modifications (PTM), and other predictable changes to

recognize the most significant SNPs [17, 18]. Now-a-days such computational research has

become popular to find pathogenicity of genes, such as CSN3, RETN, FOXC2, CHK2 and so

on [17–20]. Through our study, it may be possible to identify and predict new SNPs that can

be associated with possible diseases.

In this study, we have utilized a number of in silico tools to comprehensively characterize

the coding and non-coding SNPs located at the PLCG1 gene. We have shortlisted the most sig-

nificant nsSNPs and further validated their structural impact through structural analysis. We

identified four potentially deleterious nsSNPs (R355C, A401V, L411P and L455F) through

our analysis, which form a part of the catalytic domain of PLCG1. Among these, L411P L455F

made significant structural changes in the protein structure. Our analysis will provide the

framework for further in vitro and case-control studies to validate the structural and functional

impact of the SNPS in the PLCG1 gene.
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Materials and methods

Dataset collection of SNPs

The nsSNP dataset of our target gene PLCG1 was collected from the dbSNP database (https://

www.ncbi.nlm.nih.gov/snp/). After searching for the gene, a missense filter was used to get the

nsSNPs. The protein sequence for the gene (FASTA format) was retrieved from the UNIPROT

database. To get unique results in our study, SNPs of protein ID ENSP00000362368 were

selected. This isoform has been chosen as the canonical sequence. All positional information

in this entry refers to it. This is also the sequence that appears in the downloadable versions of

the entry [21–23]. For analyzing the non-coding region SNPs, the dataset was collected from

ENSEMBL database for the above-mentioned protein ID.

Detection of deleterious and functional SNPs

Four tools were used to find out the deleterious functional nsSNPs of our dataset. Sorting

intolerant from tolerant (SIFT) was adopted in the study to predict whether an amino acid

substitution is deleterious or tolerant based on protein conservation with the homology

sequence and physical properties of amino acid. Substitution with a probability score of less

than 0.05 is considered to be deleterious or functional [24]. Protein variation effect analyzer

(PROVEAN) predicts the functional effect of single or multiple amino acid substitutions,

insertions, and deletions. The cutoff value for the substitution to be deleterious is -2.5. Any-

thing above is counted as neutral or non-deleterious [25]. Polymorphism Phenotyping version

2 (PolyPhen-2) is a similar kind of tool which predicts damaging missense mutations using

multiple sequence alignment and structural information [26]. Protein analysis through evolu-

tionary relationship (PANTHER) does an evolutionary analysis of coding SNPs to find the

damaging amino acid substitutions [27].

Disease related SNPs

The common nsSNPs found to be deleterious in all four previous tools, were then run in 3 dis-

ease-associated SNPs predicting tools. Predictor of human Deleterious Single Nucleotide Poly-

morphisms (PhD-SNP) uses support vector machine (SVM) method to predict whether a

phenotype of nsSNP can be related to any disease associated conditions. The output of the

result comes with a reliability index predicting if the SNP is disease-causing or neutral [28].

Pathogenic mutation prediction (Pmut) server uses a neural network-based predictor which

is trained by a manual database SwissVar to predict if a mutation is associated with a disease

or not. A prediction scoring from 0.5–1 is termed as disease-causing [29]. SNPS&GO is

another SVM based tool which predicts a mutation to be disease-causing based on the protein

sequence as well as the protein structure (when available) and gene ontology terms [30, 31].

Prediction of change in protein stability

The common SNPs found to be disease-causing were then run to check protein stability. The

deleterious nsSNPs with decreasing protein stability are considered as substantial. I-mutant

2.0 and MUpro were used to predict the change in protein stability due to the mutations. I

mutant 2.0 is another SVM based tool that provides the free energy change (Delta Delta G)

value and predicts the sign as increase or decrease. A Delta Delta G (DDG) (kcal/mole) value

<0 means a decrease in the protein stability, whereas DDG (kcal/mole) value>0 means an

increase in the protein stability [32]. MUpro uses two methods: SVM and neural networks.

However, SVM method result is recommended. A confidence score <0 indicates a decrease in
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protein stability, and a confidence score >0 indicates an increase in protein stability with the

mutation [33].

Prediction of the molecular mechanism of pathogenicity

The common SNPs found to be disease-related from PhD-SNP, Pmut and SNPS&GO were

run in Mutpred2 server. It is a server that can predict the pathogenicity of the substitutions

with a detailed molecular target and affected mechanisms. It uses multiple neural networks,

and the final score is the cumulative results from all of them, ranging from 0 to 1. The closer

the result is to 1, the higher the chance of the substitution to alter its stability. The threshold

of p value was set at 0.05; only substitutions with p value equal or less than this were col-

lected [34].

Prediction of post-translational modification

ModPred server was used to see if there were any post-translational modification (PTM) sites

in our common target SNPs, which were found to be disease-causing. This server uses a collec-

tion of datasets containing 278,703 PTM sites. The tool then assesses those PTM sites for mul-

tiple protein sequences. The output gives potential PTM sites for each residue with a

confidence score. Only high and medium confidence score PTMs were taken into consider-

ation [35].

Sequence conservation and solvent accessibility

Again, the disease-causing SNPs’ conservation and solvent accessibility were checked. Consurf

predicts the evolutionary conservation of residues of a protein sequence. It estimates the evolu-

tionary rate of the amino acids and further can anticipate if the substitution has any structural

or functional effect along with a conservation score ranging from 1–9. Here score 9 indicates

the most conserved amino acid, whereas scoring 1 to the most variable. It also provides solvent

accessibility of the amino acid residues where the results show if the amino acids are buried or

exposed. Generally, they evaluate their result from protein structure, but as our structure was

not available on PDB, they predicted the result through protein sequence (Conseq) [36].

Netsurf 2.0 was also used to predict the solvent accessibility of the amino acid residues. It

uses a neural network that has been used on protein structures and shows the buried and

exposed regions of the protein [37].

Mutation cluster prediction

Mutation3D is a web-based tool to identify clusters of amino acids which can arise from

somatic mutation. It can predict driver genes for mutation, separating the functional SNPs

from the nonfunctional ones. The common SNPs found to be disease-related from PhD-SNP,

Pmut, and SNPS&GO were put along with query sequence to identify possible clusters [38].

Structural analysis

Homology modeling by SWISS-MODEL. The target protein structure was not available

on PDB, so the homology modeling of the protein was done by the SWISS-MODEL server.

This server takes a query sequence as input, searches for closely related sequence template for

the structure and aligns them [39]. Using that structure as template homology modeling was

done, and the model was further validated by QMEAN value. It also provides Ramachandran

plot to ensure the quality of the generated structure further. The template with maximum cov-

erage and highest sequence identity was chosen. The native wild type protein structure and

PLOS ONE Approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0260054 November 18, 2021 4 / 22

https://doi.org/10.1371/journal.pone.0260054


mutant protein residues’ structures were generated. The mutant residues which had high con-

servation scores were generated for homology modeling.

Model validation. All the structures generated by homology modeling were validated by

the tool PROCHECK. It is a standard tool to verify the stereochemical quality of a protein

structure. It generates a Ramachandran plot to validate the structure with details of residues in

the core and other allowed regions [40].

RMSD value and TM align value. The RMSD value associated with the mutant residues

after superimposition with the native protein structure was calculated with PyMol, an open-

source software to perform structural analysis [41].

TM align value is checked to see the structural dissimilarity between the native and

wild type structure. A score of 1 means that there is no dissimilarity between the struc-

tures; a score < 0.2 means unrelated protein structures, whereas a score > 0.5 means the

same fold [42].

Chemical property analysis by BIOVIA discovery studio visualizer. Further analysis of

the mutant residue structures compared with the wild type structure was done by BIOVIA dis-

covery studio visualizer, a structural analysis tool [43]. It is downloadable from the website

(https://discover.3ds.com/discovery-studio-visualizer-download). It can help to visualize pro-

tein structures, residue solvent accessibility, polar and non-polar bonds, and analyze the differ-

ence between native and wild type residues. Specific SNPs were selected with a cumulative

result of conservation score, solvent accessibility, structural/functional prediction by Consurf,

RMSD value, TM align value, Mutation cluster prediction, respectively, and taken into further

consideration.

Analysis of 5’ and 3’ UTR non-coding SNPs

Investigation of non-coding regions was done using the ENSEMBL database [44]. The 5’ and

3’ region SNPs were filtered out. Minor allelic frequency (MAF) value of� 0.001 was selected

only. Later the SNPs were run in Regulome DB, which relates SNPs to regulatory elements of

the human genome [45]. It gives a ranking based on DNA binding, and also provides Chip

data, chromatin states, and motifs, if available. Information of our gene was checked in the

PolymiRTS database- a server to predict naturally occurring DNA variation in miRNA target

sites, mainly in the 3’ UTR region [46]. The results are given in 4 classes D, O, C and N with a

context and conservation score along with miR ID and miR target site.

Gene-gene interaction analysis

Gene MANIA server was used to correlate the target PLCG1 gene with functionally similar

genes and further analyze the interactions among them [47]. Currently, it supports six organ-

isms with datasets collected from GEO, BioGRID, Pathway commons, I2D etc. Ensemble was

used as the primary identifier. Interaction data available between the genes include physical

interaction, co-expression, co-localization, genetic interaction.

An outline of the methodology used in this study has been summarized (Fig 1).

Results

SNP datasets

SNPs of the PLCG1 gene were retrieved from the dbSNP database. Primarily, 11096 SNPs were

found, but after applying the missense filter, 745 SNPs were retrieved (https://www.ncbi.nlm.

nih.gov/snp/?term=PLCG1). Later, protein isoform P19174-1 was selected for the current

study, and its sequence was retrieved from the UniProt database to perform the analyses.
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Detection of deleterious and functional SNPs

After running the 745 SNPs in the SIFT tool, the result was filtered with our target protein ID

and 74 SNPs were obtained. The 74 SNPs were then run in PolyPhen-2, PROVEAN, and PAN-

THER tools. After combining the results, 16 SNPs were found to be deleterious in all the tools

(Table 1). SNPs having neutral or non-deleterious results in any of the tools were not selected

for further analyses (Fig 2).

Disease related SNPs

The 16 deleterious SNPs were then run in three tools: PhD-SNP, Pmut and SNPS&GO to predict

if the mutations can be related with diseases or disease associated conditions. Out of the 16 muta-

tions, 13 SNPs showed disease-causing effects in all the three tools (Table 2). Again, any SNP

having neutral result in any of the tools mentioned above was not selected for further analyses.

Prediction of change in protein stability

The 13 disease-associated SNPs were put in I-mutant 2.0 and MuPro to check their effect on

protein stability. All the SNPs showed decreasing protein stability in MuPro server, but three

SNPs Y210C, A401V and L455F showed increasing stability in the I-mutant 2.0 server (Table 3).

Prediction of the molecular mechanism of pathogenicity

The 13 common SNPs were run in MutPred2 server to check protein stability alteration capa-

bility and molecular effect of the mutations. Out of them, 11 SNPs showed a satisfactory result

Fig 1. An outline of the methodology used in this study.

https://doi.org/10.1371/journal.pone.0260054.g001
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within the threshold range. The functional impacts included altered stability, loss of DNA

strand, altered metal binding, gain of helix, loss of phosphorylation sites, altered ordered inter-

face, and gain of relative solvent accessibility. Details of the result along with p value and pre-

diction score are given (Table 4).

Prediction of post-translational modification

ModPred server provided significant results for two of the SNPs: Y210C and R1158H. Both

the SNPs had post-translational modification in the native and mutant residue. Y210C showed

proteolytic cleavage in the native residue and amidation modification in the mutant residue.

R1158H had proteolytic cleavage in both mutant and native residues (Table 5).

Sequence conservation and solvent accessibility

All the 13 SNPs had good conservation scores in Consurf, but only the ones with score 8 and 9,

and prediction of effect in MutPred2 server were chosen for further structural analysis. Six

Table 1. Prediction of functionality of nsSNPs with SIFT, PROVEAN, Polyphen-2 & PANTHER.

SNP Amino acid Change SIFT Prediction SIFT score PROVEAN PROVEAN score Polyphen-2 Probability Score PANTHER

rs373972267 L411P Deleterious 0.002 Deleterious -6.863 probably damaging 1 probably damaging

rs367808225 I109T Deleterious 0.002 Deleterious -4.06 probably damaging 0.971 probably damaging

rs202246756 A816P Deleterious 0.005 Deleterious -4.497 probably damaging 1 probably damaging

rs201158224 R355C Deleterious 0.02 Deleterious -7.485 probably damaging 1 probably damaging

rs200946488 R601Q Deleterious 0.032 Deleterious -3.413 probably damaging 1 probably damaging

rs199826230 Y210C Deleterious 0.003 Deleterious -5.022 probably damaging 0.991 possibly damaging

rs199669312 P244L Deleterious 0.036 Deleterious -3.398 possibly damaging 0.835 possibly damaging

rs191463364 G493D Deleterious 0.037 Deleterious -6.517 probably damaging 0.964 probably damaging

rs186053167 R1105L Deleterious 0.004 Deleterious -6.414 probably damaging 0.995 probably damaging

rs148020473 P1152A Deleterious 0.036 Deleterious -6.908 probably damaging 0.986 probably damaging

rs147844565 D1075V Deleterious 0.031 Deleterious -7.077 possibly damaging 0.919 probably damaging

rs147137389 S345C Deleterious 0.007 Deleterious -3.82 probably damaging 1 probably damaging

rs141684852 R1158H Deleterious 0 Deleterious -4.72 probably damaging 1 probably damaging

rs7266677 A401V Deleterious 0.002 Deleterious -3.883 probably damaging 1 probably damaging

rs6065316 L455F Deleterious 0.005 Deleterious -3.92 probably damaging 1 probably damaging

rs2235361 I949T Deleterious 0.002 Deleterious -3.957 probably damaging 0.999 probably damaging

https://doi.org/10.1371/journal.pone.0260054.t001

Fig 2. Venn diagram representation of most deleterious nsSNPs estimated by various in silico tools. A total of 16

SNPs were showed concordant results as deleterious nsSNPs by SIFT, PolyPhen 2.0, PROVEAN and PANTHER.

Further analysis of these SNPs using different in silico tools resulted in 8 nsSNPs, which were selected for structural

analysis.

https://doi.org/10.1371/journal.pone.0260054.g002
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SNPs (L411P, R355C, G493D, R1158H, A401V and L455F) scored 9. Among them, L411P,

G493D, A401V and L455F were shown to have possible structural effects as they were highly

conserved and buried. The rest two SNPs were shown to have a possible functional effect as

they were highly conserved exposed residues. Netsurf 2.0 showed contradictory results in three

SNPs. R355C and R1158H were shown as buried residues instead of exposed shown by Con-

surf. In Netsurf 2.0, Y210C was shown as exposed residue, unlike Consurf where it was shown

as buried. The details are given (Table 6), and the conservation score prediction figure is given

(S1 Fig).

Mutation cluster prediction

The 13 disease-causing SNPs were used to predict the mutation clusters. Mutation 3D showed

a cluster in the PI-PLC-X domain consisting of three substitutions L411P, L455F, and A401V.

There can be other clusters but not shown in the prediction tool because of the unavailability

Table 2. Prediction of disease associated nsSNPs by Pmut, PhD-SNP & SNPS&GO.

SNP Amino acid change Pmut Prediction score PhD-SNP Reliability Index SNPS & Go Reliability Index Probability

rs373972267 L411P Disease 0.927 (94%) Disease 9 Disease 6 0.816

rs367808225 I109T Disease 0.876(92%) Disease 8 Disease 2 0.622

rs202246756 A816P Disease 0.725 (87%) Disease 4 Disease 2 0.584

rs201158224 R355C Disease 0.865 (91%) Disease 7 Disease 6 0.8

rs200946488 R601Q Disease 0.674 (85%) Disease 6 Disease 3 0.664

rs199826230 Y210C Disease 0.580 (82%) Disease 7 Disease 6 0.797

rs191463364 G493D Disease 0.522 (79%) Disease 6 Disease 0 0.502

rs186053167 R1105L Disease 0.666 (85%) Disease 4 Disease 7 0.842

rs148020473 P1152A Disease 0.790 (89%) Disease 6 Disease 2 0.615

rs147844565 D1075V Disease 0.756 (88%) Disease 5 Disease 4 0.676

rs141684852 R1158H Disease 0.834 (90%) Disease 9 Disease 5 0.745

rs7266677 A401V Disease 0.866 (91%) Disease 8 Disease 6 0.817

rs6065316 L455F Disease 0.852 (91%) Disease 8 Disease 2 0.583

https://doi.org/10.1371/journal.pone.0260054.t002

Table 3. Prediction of protein stability of nsSNPs by I-mutant 2.0 & MuPro.

SNP Amino acid change I-mutant 2.0 DDG value prediction (Kcal/mol) MuPro Value (SVM)

rs373972267 L411P Decrease -0.48 Decrease -1.642

rs367808225 I109T Decrease -3.75 Decrease -2.151

rs202246756 A816P Decrease -2.75 Decrease -1.004

rs201158224 R355C Decrease -0.39 Decrease -0.614

rs200946488 R601Q Decrease -1.7 Decrease -1.125

rs199826230 Y210C Increase 0.91 Increase 0.908

rs191463364 G493D Decrease -1.58 Decrease -0.936

rs186053167 R1105L Decrease -0.71 Decrease -0.548

rs148020473 P1152A Decrease -1.83 Decrease -1.379

rs147844565 D1075V Decrease -1.04 Decrease -0.738

rs141684852 R1158H Decrease -2.64 Decrease -1.759

rs7266677 A401V Increase 0.07 Decrease -1.759

rs6065316 L455F Increase 0.47 Decrease -0.871

https://doi.org/10.1371/journal.pone.0260054.t003

PLOS ONE Approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0260054 November 18, 2021 8 / 22

https://doi.org/10.1371/journal.pone.0260054.t002
https://doi.org/10.1371/journal.pone.0260054.t003
https://doi.org/10.1371/journal.pone.0260054


of the whole structure in the tool’s database. While doing structural analysis, this criterion was

taken into account. The result is given along with other structural information (Table 7).

Structural analysis

Homology modeling. Eight SNPs (L411P, R355C, G493D, R1158H, A401V, L455F,

A816P and R601Q) were chosen for structural analysis (Fig 2). 6pbc.1. A template (X-ray

structure) was used to generate our native and mutant protein structures in the SWISS--

MODEL server. It had 97.19% sequence identity and 91% coverage. All the targeted SNPs

were in the covered region. The native structure of the protein is shown (Fig 3).

Table 4. Effect of nsSNPs on the structure and function of protein predicted by Mutpred2.

SNP Amino acid change MutPred2 score Effect P value

rs373972267 L411P 0.934 Altered Metal binding 0.02

Altered stability 0.01

rs367808225 I109T 0.815 Altered Metal binding 0.04

Altered stability 0.01

rs202246756 A816P 0.907 Altered Ordered interface 0.02

Gain of Loop 0.04

Altered Transmembrane protein 1.50E-03

Gain of Relative solvent accessibility 0.04

rs201158224 R355C 0.859 Altered Ordered interface 8.30E-03

rs200946488 R601Q 0.725 Loss of Strand 0.02

Altered Ordered interface 0.05

Altered DNA binding 0.01

rs199826230 Y210C 0.577 Loss of Phosphorylation at Y210 0.02

rs191463364 G493D 0.841 Altered Transmembrane protein 4.80E-04

Gain of Helix 0.05

Loss of Strand 0.03

rs148020473 P1152A 0.618 Altered Transmembrane protein 0.03

rs141684852 R1158H 0.796 Altered Ordered interface 0.04

Loss of Strand 0.04

Altered Transmembrane protein 1.60E-03

Altered Metal binding 0.01

Gain of Sulfation at Y1162 1.30E-03

Altered Stability 0.04

rs7266677 A401V 0.859 Altered Metal binding 4.60E-03

rs6065316 L455F 0.799 Loss of Relative solvent accessibility 0.02

Gain of Strand 0.03

Gain of Acetylation at K456 0.04

https://doi.org/10.1371/journal.pone.0260054.t004

Table 5. Prediction of post-translational modification site of SNPs by ModPred.

SNP Amino acid change Native residue Modification Type Score Confidence level Mutant residue Modification type Score Confidence level

rs199826230 Y210C Tyrosine Proteolytic

cleavage

0.77 Medium Cysteine Amidation 0.75 Medium

rs141684852 R1158H Arginine Proteolytic

cleavage

0.9 High Histidine Proteolytic

cleavage

0.86 Medium

https://doi.org/10.1371/journal.pone.0260054.t005
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Model validation. All the structures generated from SWISS-MODEL were given in the

PROCHECK tool. It showed almost 90% residues in the core region for all the structures. The

results of core region residues are given (Table 7), and the quality assessment of structure and

data are given (S3–S11 Figs).

RMSD value and TM align value. The RMSD values of the eight SNPs were calculated by

PyMol software. Among them, five SNPs (L411P, L455F, R355C, G493D and A816P) showed

a high deviation. Their TM-align value was also checked, and all five SNPs showed fluctuation

in their property. The results are given (Table 7).

Chemical property analysis by BIOVIA discovery studio visualizer. A filtration of SNPs

was done for further analysis of our protein structures. Total hydrogen bonds of all the eight

SNPs were generated by the BIOVIA discovery studio visualizer (Table 7). Then taking

account of RMSD value, TM align value, total hydrogen bonds, and mutation cluster predic-

tion, three SNPs (G493D, L411P and L455F) were chosen for further chemical analysis. The

three SNPs had RMSD values of 2.423Å, 0.096Å, and 1.973Å, respectively. They had TM align

Table 6. Conservation prediction & solvent accessibility analysis of selected nsSNPs by Consurf & Netsurf 2.0.

SNP Amino acid change Consurf conservation score Buried/Exposed (Consurf) Buried/Exposed (Netsurf 2.0) Disorder probability (Netsurf 2.0)

rs373972267 L411P 9 B b 9.64E-05

rs367808225 I109T 7 B b 8.71E-06

rs202246756 A816P 8 B b 0.001336

rs201158224 R355C 9 E b 0.000234

rs200946488 R601Q 8 E e 0.001724

rs199826230 Y210C 7 B e 0.002218

rs191463364 G493D 9 B b 0.010974

rs186053167 R1105L 8 E e 0.045405

rs148020473 P1152A 7 E e 0.000897

rs147844565 D1075V 6 E e 0.005478

rs141684852 R1158H 9 E b 3.82E-05

rs7266677 A401V 9 B b 0.00229

rs6065316 L455F 9 B b 0.003929

b: Buried; e: Exposed.

https://doi.org/10.1371/journal.pone.0260054.t006

Table 7. Structural analysis of highly conserved residues by various tools.

SNP Amino acid

change

TM align

value

RMSD

value

Residues in core region

(Procheck)

Total Hydrogen Bonds (BIOVIA Discovery Studio

visualizer)

Mutation

cluster

rs373972267 L411P 0.98036 2.423 88.4% 1310 Cluster

rs141684852 R1158H 0.99 0.062 87.9% 1260 -

rs7266677 A401V 1.0 0.011 88.3% 1292 Cluster

rs6065316 L455F 0.99998 0.096 88.2% 1278 Cluster

rs201158224 R355C 0.99988 0.195 88.2% 1276 -

rs191463364 G493D 0.98644 1.973 88.4% 1329 -

rs202246756 A816P 0.99998 0.092 88% 1274 -

rs200946488 R601Q 1.0 0.044 88.3% 1285 -

�Native protein structure has 1293 hydrogen bonds;

“-” means no cluster.

https://doi.org/10.1371/journal.pone.0260054.t007
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value showing differences in the structures and the hydrogen bonds compared to the wild

structures. L411P and L455F showed mutation cluster in the prediction by Mutation 3D

(Table 7). Three SNPs showed changes in hydrophobicity and number of hydrogen bonds,

after further analysis by BIOVIA discovery studio visualizer (Table 8). The mutant protein

structures of the three SNPs are given (Fig 3b–3d). The intermolecular bonds generated by

the wild type and mutant structures of the three SNPs-G493D, L411P and L455F, are shown

respectively (Figs 4–6). Finally, the comparative superimposed structures showing hydrogen

bonds and their difference in numbers and angles are shown (Fig 7).

Analysis of 5’ and 3’ UTR non-coding SNPs

After setting the MAF filter of�0.001, 65 SNPs were found in the Ensemble database. In Reg-

ulome DB only the SNPs with ranking < 4 were taken into consideration, and nine SNPs

were chosen. The rankings along with probability score and Chip data are given (Table 9).

Fig 3. (a) Native wild type structure made by SWISS-MODEL. (b) Superimposed image of native protein structure onto mutant L455F (blue) protein

structure, (c) mutant L411P (green) protein structure, (d) mutant G493D (red) protein structure. (Visualized by BIOVIA discovery studio visualizer).

https://doi.org/10.1371/journal.pone.0260054.g003

Table 8. Chemical analysis result of target SNPs by BIOVIA discovery studio visualizer.

SNP Amino acid

Position

Residue Hydrophobicity Secondary structure Number of Hydrogen Bonds (Range)

rs191463364 493 Native Glycine -3.5 Sheet 2 (493G-510F, 510F-493G)

Mutant Aspartic acid -0.4 Sheet 4 (493D-510F, 510F-493D, 494I-493D, 922W-493D)

rs373972267 411 Native Leucine 3.8 Sheet 2 (411L-460L, 462K-411L)

Mutant Proline -1.6 Sheet 1 (462K-411P)

rs6065316 455 Native Leucine 3.8 Turn 2 (455L-451S, 458K-455L)

Mutant Phenylalanine 2.8 Turn 3 (455F-451S, 455F-452P, 458K-455F)

https://doi.org/10.1371/journal.pone.0260054.t008
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In the S1 section, data of all the SNPs of Regulome DB generated from ENSEMBLE has been

given (S7 Table).

PolymiRTS database provided data with miRNA target sites for PLCG1 gene. Among the

SNPs which provided results in Regulome DB, two SNPs rs139043247 and rs62621919 also

provided result in the PolymiRTS database. rs139043247 has two alleles G and A in the data-

base with class of D and C, respectively in all their target sites. All the target sites came with

negative context scores and a high conservation score. rs62621919 has two alleles G and A

with class of D and C, respectively in their target sites along with negative context scores (S4–

S6 Tables).

Fig 4. (a) Structural analysis showing Gly493 (blue) of native structure having 2 hydrogen bonds (green) and (b) Asp493 (red) of mutant

structure having 4 hydrogen bonds (green) and a salt-bridge bond (orange).

https://doi.org/10.1371/journal.pone.0260054.g004

Fig 5. (a) Structural analysis showing Leu411 (blue) of native structure having 2 hydrogen bonds (green), 3 hydrophobic alkyl bonds (purple) and

(b) Pro411 (turquoise) of mutant structure having a hydrogen bond (green), a carbon-hydrogen bond (yellow) and 2 alkyl hydrophobic bonds

(purple).

https://doi.org/10.1371/journal.pone.0260054.g005
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Gene-gene interaction analysis

GENEMANIA interaction analysis showed strong interaction of 20 genes, including onco-

genes like KIT, FYN, RET, CBL with PLCG1. Immunity-related genes like ITK, EPOR,

PECAM1 interact with PLCG1. The figure of the interaction of PLCG1 with all possible

genes is given (S2 Fig).

Discussion

The target gene, human PLCG1 produces the protein PLCγ1, which consists of an N-terminal

PH domain followed by EF hands, TIM barrel (X and Y), and a C-terminal domain C2. There

is an insertion of two parts of another PH domain between the TIM barrel catalytic domain.

Fig 7. Superimposed protein structures of native and mutant structures (a) L411P, (b) L455F and (c) G493D showing comparison of hydrogen

bonds. Blue color shows native residues, Green color shows hydrogen bonds of native residues and Red color shows mutant residues and their hydrogen

bonds.

https://doi.org/10.1371/journal.pone.0260054.g007

Fig 6. (a) Structural analysis showing Leu455 (blue) of native structure having 2 hydrogen bonds (green), 4 hydrophobic alkyl bonds (purple) and

(b) Phe455 (green) of mutant structure having 3 hydrogen bonds (green) and 4 hydrophobic alkyl bonds (purple).

https://doi.org/10.1371/journal.pone.0260054.g006
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The two parts of PH2 domain are further split into two SH domains and one SH3 domain

[48]. It is a monomer with two isoforms found in the human body (P19174-1, P19174-2). Our

selected isoform P19174-1 had 1290 amino acid residues in it, and all the SNPs predicted to

be damaging or having mutations with functional effects are scattered in these domains. The

prediction of nsSNPs has been very significant in recent years as these mutations have been

related to several diseases, and computational approach has become a successful way to predict

them quite efficiently [17–20]. As no in silico analysis has been done to date to predict deleteri-

ous nsSNPs and possible functional non-coding SNPs associated with our target gene PLCG1,

the purpose of this analysis was to find out possible nsSNPs and non-coding SNPs which can

affect the functionality of the protein molecule.

Several tools were used to predict the probable damaging effect of nsSNPs of PLCG1 gene.

At first, the nsSNPs gathered from the dbSNP database were filtered out according to the pre-

diction of their functionality. Using four tools SIFT, PROVEAN, PolyPhen-2 and PANTHER,

16 SNPs were considered to have deleterious effects. These tools generally use the idea of find-

ing the more conserved residues to predict the effect. Similar tools that predict mutations asso-

ciated with diseases are PhD-SNP, Pmut and SNPS&Go. These tools filtered out three SNPs,

and thus, 13 SNPs were finalized for further study. From the Uniprot database, the following

information was obtained: I109T substitution is from Domain PH1 (27–142); R355C, A401V,

L411P and L455F substitutions are from PI-PLC X box domain (320–464); G493D substitu-

tion is from first part of PH2 domain (489–523); R601Q substitution is from one of the SH2

domains (550–657); A816P substitution is from SH3 domain (791–851) “R1105L, P1152A,

D1075V and R1158H” substitutions are from the C terminal C2 domain (1071–1194). These

are important details as different domains are associated with different activities, and nsSNPs

of these domains may alter their structures and activities. The four nsSNPs of the X

box domain are the most significant ones as this domain is part of catalytic activity [48]. On

the other hand, the C2 domain is involved in calcium-binding of the protein and subcellular

localization, so nsSNPs of this domain can be considered important also [49]. SH2 domain is

crucial for cancer cell cycle progression, [16] as a result, R601Q can be a significant nsSNP.

From the cBioPortal database, it was found out that G493D and R355C mutations were found

in patient samples [50]. The G493D mutation was found in Uterine mixed endometrial carci-

noma patient sample, and the R355C mutation was found in the Leiomyosarcoma patient sam-

ple. The link of the result is given. (https://www.cbioportal.org/results/mutations?cancer_

study_list=5c8a7d55e4b046111fee2296&case_set_id=all&gene_list=PLCG1).

Table 9. Regulome DB data for non-coding SNPs of PLCG1.

SNP Probability score Ranking Chip DATA

rs139043247 0.6 2a POLR2A, ESR1, ZIC2

rs543804707 0.604 2b POLR2A, ESR1, ZIC2

rs532229042 0.29248 3a POLR2A, RBFOX2, NRF1, SIN3A, YY1, POLR2G, ZNF592, DPF2, PHF8, AGO2

rs571170027 0.30476 3a POLR2A, PAF1

rs535979515 0.81114 3a POLR2A, PAF1

rs62621919 0.72923 3a POL2RA

rs182769107 0.6352 3a POL2RA

rs114288140 0.66203 3a POLR2A, PAF1

rs551768008 0.90505 3a POLR2A

2a: TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b: TF binding + any motif + DNase Footprint + DNase peak; 3a: TF binding + any

motif + DNase peak.

https://doi.org/10.1371/journal.pone.0260054.t009
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After finalizing the 13 SNPs, the effect of these SNPs on protein stability was checked.

Decreasing protein stability with the effect of substitution indicates the possible effect of SNPs

on proteins [32]. The Gibbs free energy is directly related to protein stability. A value <0 indi-

cates decreasing protein stability [51]. Almost all the proteins showed decreasing result for

both the tools- I-mutant 2.0 and MuPro. ModPred predicted PTM sites in Y210C and R1158H

for native and mutant residues. Y210C had proteolytic cleavage for its native residue, which is

a very important modification as it can produce irreversible post-translational modification

leading to a permanent alteration of protein function [52]. The server predicted amidation for

its mutant residue cysteine, which can alter the localization and stability of the protein. It can

also affect the sensitivity of the protein to surrounding pH, enhanced signaling, and binding to

receptors [53]. R1158H had proteolytic cleavage prediction for both mutant and native resi-

dues, which does not vary, but cleavage in different positions in different cases may still change

the type of alteration. Four SNPs (I109T, L411P, A401V, and R1158H) can lead to the altered

metal-binding site according to MutPred2 server, which can be significant as this protein gen-

erally does not show the metal-binding property. A reason for the prediction can be their pres-

ence in N-terminal, C-terminal and catalytic domains of the protein. A gain of loop was seen

for the substitution A816P which also has altered transmembrane function. A loop in structure

can change the intrinsic functionality of protein along with their transmembrane property [54,

55]. A816P also gains relative solvent accessibility becoming exposed from buried, making it

more available to have active site activity [56]. Altered transmembrane property was also pre-

dicted with substitutions G493D, P1152A and R1158H. G493D had a loss of strand and a gain

of loop property, which can explain this [54, 55]. Y210C can lose its function with the loss of

phosphorylation sites.

Conservation analysis further confirmed the pathogenicity of eight SNPs with high conser-

vation score. Solvent accessibility analysis showed that L411P, G493D, A401V and L455F sub-

stitutions are both highly conserved and buried. Buried residues are generally located in the

core protein, and substitution in them affects the protein function mostly [56].

Homology modeling was done with a template. Then the wild type structure was used to

calculate RMSD value and TM align value to check the change in the 3D protein structures

among the wild type and mutant residues. A higher RMSD value indicates more deviation in

the structure between wild type and mutant protein structures [39]. TM align values of>0.5

and<1 show dissimilarity in the structures. Three substitutions G493D, L411P and L455F

were finalized for further structural analysis by BIOVIA discovery studio visualizer according

to these data. G493D and L411P showed a considerable number of changes in hydrogen bonds

(Table 7). L411P and L455F were predicted to have a somatic mutation cluster according to

Mutation 3D tool.

G493D is part of the PH2 domain, and glycine is changed to aspartic acid. Glycine is a

strong hydrophilic amino acid, and analysis showed the change in hydrophobicity while it

converts to aspartic acid (Table 8). Strong hydrophobicity can induce a change in binding

capacity and interaction of the protein with other molecules [56, 57]. There is an increase in

the number of hydrogen bonds, which can be the reason for a change in the free energy value,

thus changing protein stability [51]. In the glycine residue, there are two hydrogen bonds with

phenylalanine with a distance of 2.87Å and 2.94 Å (Fig 4a). These distances are 2.86Å and

3.01Å, respectively, with the mutant residue aspartic acid, which will indeed affect the Gibbs

free energy [51]. Two extra hydrogen bonds are created with isoleucine and tryptophan (Fig

4b). The two new bonds formed have a distance of 2.72Å (isoleucine) and 2.9Å (tryptophan)

from glycine. L411P mutation showed the amino acid change from leucine to proline, indicat-

ing a huge change in hydrophobicity (Table 8). Being changed from hydrophobic to hydro-

philic can be a reason for significant structural change in the protein. A decrease of alkyl
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hydrophobic bond can be a reason behind this (Fig 5). Also, a leucine-leucine hydrogen bond

is lost, decreasing the number of hydrogen bonds from two to one (Fig 5). The distances of

other hydrogen bonds with lysine residue are 2.84Å (native) and 2.96Å (mutant). Finally, in

the L455F substitution, one hydrogen bond increases with the mutation (Fig 6). Bond forma-

tion with lysine and serine remains the same with the distance of 3.24 Å and 3.26 Å in the wild

type respectively and 3.34 Å and 3.17 Å in the mutant structure respectively. A new bond with

phenylalanine is seen (3.17 Å). There is an apparent change in the angles of all the hydrogen

bonds shown (Fig 7). As L411P and L455F are from the catalytic domain, these SNPs can be

highly damaging to protein function as well.

GENEMANIA results showed FYN and ITK genes interact with PLCG1. These genes are

involved in the T cell mediated pathways, the same as PLCG1 and are related to diseases like

Adult T cell leukemia [58, 59]. Involvement of these two genes with PLCG1 can be a subject

for further study. The results also showed that PLCG1 shares domains with the following

genes: ITK, CBL, PLCG2, FYN and HCK, which may allow them to offer similar functions. PH

domain is common between (PLCG1 and ITK proteins which show interactions in the GENE-

MANIA analysis (S2 Fig). This conserved mammalian domain is responsible for the interac-

tion between ITK and phosphoinositide 3-kinase (PI 3-kinase, PI3K) which in turn is the key

player in lymphocyte differentiation and activation [60]. Computationally predicted function-

ally and structurally deleterious SNPs located in these regions could thus play an important

role in this interaction (Fig 8). Protein-Protein interaction was seen between the SH2 domain

of PLCG1 and ERBB2 which regulates protein tyrosine kinase. Catalytic domain PI-PLC-X

box domain is also seen in PLCL1 protein which monitors GABA mediated synaptic inhibition

[61]. FGFR1 which showed all possible interactions in GENEMANIA network with PLCG1,

executes an engrossing complex activity with PLCG1. Through the binding of SH2, C2, and

catalytic domain, they upregulate the status of these two proteins [62]. Our in silico analysis

found that four SNPs located at the PI-PLC-X box domain (R355C, A401V, L411P and L455F,

Fig 8) are functionally and structurally deleterious. Thus, these SNPs could potentially impact

its functions. However, these findings should further be validated in laboratory experiments.

Among the non-coding SNPs, rs139043247 and rs543804707 showed the best result accord-

ing to Regulome DB. They had a prediction of transcription binding sites, matched or

unmatched motifs, and DNase footprint with DNase peak. rs139043247 also showed a signifi-

cant result in the PolymiRTS database. Generally, the D and C classes with high conservation

score and negative context score are the ones with the highest functional probable effect. Class

D means the derived allele is disrupting a conserved site where class C means the creation of

a new site [46]. This means there are high chances that the two SNPs rs139043247 and

rs62621919 will affect the miRNA with probable mutations occurring in DNA.

Fig 8. Domain organization with structural insights of PLCγ1 protein (protein ID ENSP00000362368). The final 8

nsSNPs shortlisted for structural analysis are marked in their domain.

https://doi.org/10.1371/journal.pone.0260054.g008
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Conclusion

Out of all the missense SNPs, 16 SNPs were found to have deleterious effects by SIFT, PolyPhen-

2, PROVEAN, and PANTHER tools. Further, 13 SNPs were predicted disease associated with dis-

ease predicting tools- PhD-SNP, Pmut and SNPS&GO. Ten SNPs were predicted to decrease the

stability of the protein. Six SNPs (L411P, R355C, G493D, R1158H, A401V, L455F) were predicted

highly conserved. Among them, L411P, G493D, A401V, L455F were predicted as the most signifi-

cant ones with possible structural effect. Two mutations Y210C and R1158H had post-transla-

tional modification prediction in both wild type and mutant residues. Three SNPs L411P, G493D

and L455F showed a promising structural change in the protein structure. R355C and R601Q

mutations can also be important as they are part of domains that have shown previous relations

with diseases. Among the non-coding region SNPs, rs139043247, rs543804707, and rs62621919

showed possible pathogenicity to interact with certain diseases and affect the functions of miR-

NAs. Further study of the gene PLCG1 is highly necessary with the help of the data generated

from the current study. The mentioned SNPs can be related to specific diseases mentioned earlier,

especially with specific types which have been found related to the gene. Nevertheless, this is a

computational study, and there will always be limitations regarding the analysis. So, there needs

to be more in vivo researches with these data to prove their authenticity. Albeit, the study pro-

vided salient information by shedding light on the high-risk coding and non-coding SNPs of the

target PLCG1 gene to predict the possible diseases associated with the gene which will eventually

help the researchers to find out a proper treatment plan to cure the disease-associated conditions.

Supporting information

S1 Table. Results of SIFT, PROVEAN, Ployphen-2 and PANTHER.

(DOCX)

S2 Table. Mutpred Results of the SNPs.

(DOCX)

S3 Table. Pmut, PhD-SNP, SNPS & GO Results.

(DOCX)

S4 Table. SNPs and INDELs in miRNA target sites from CLASH data (PolymiRTS).

(DOCX)

S5 Table. SNPs and INDELs in miRNA target sites (PolymiRTS).

(DOCX)

S6 Table. Target sites created by SNPs and INDELs in miRNA seeds (PolymiRTS).

(DOCX)

S7 Table. Regulome DB result.

(DOCX)

S1 Fig. Conservation scale data of Consurf.

(TIF)

S2 Fig. Gene-Gene interaction of PLCG1 Gene with different colors showing different

types of interactions.

(TIF)

S3 Fig. Ramachandran Plot provided by Procheck for A401V mutation.

(TIF)

PLOS ONE Approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0260054 November 18, 2021 17 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260054.s010
https://doi.org/10.1371/journal.pone.0260054


S4 Fig. Ramachandran Plot provided by Procheck for A816P mutation.

(TIF)

S5 Fig. Ramachandran Plot provided by Procheck for G493D mutation.

(TIF)

S6 Fig. Ramachandran Plot provided by Procheck for L411P mutation.

(TIF)

S7 Fig. Ramachandran Plot provided by Procheck for L455F mutation.

(TIF)

S8 Fig. Ramachandran Plot provided by Procheck for R355C mutation.

(TIF)

S9 Fig. Ramachandran Plot provided by Procheck for R601Q mutation.

(TIF)

S10 Fig. Ramachandran Plot provided by Procheck for R1158H mutation.

(TIF)

S11 Fig. Ramachandran Plot provided by Procheck for wild type protein structure.

(TIF)
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