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Abstract

Motivation: Genome scale metabolic models (GSMMs) are increasingly important for systems

biology and metabolic engineering research as they are capable of simulating complex steady-

state behaviour. Constraints based models of this form can include thousands of reactions and

metabolites, with many crucial pathways that only become activated in specific simulation settings.

However, despite their widespread use, power and the availability of tools to aid with the construc-

tion and analysis of large scale models, little methodology is suggested for their continued man-

agement. For example, when genome annotations are updated or new understanding regarding

behaviour is discovered, models often need to be altered to reflect this. This is quickly becoming

an issue for industrial systems and synthetic biotechnology applications, which require good qual-

ity reusable models integral to the design, build, test and learn cycle.

Results: As part of an ongoing effort to improve genome scale metabolic analysis, we have developed a

test-driven development methodology for the continuous integration of validation data from different

sources. Contributing to the open source technology based around COBRApy, we have developed the

gsmodutils modelling framework placing an emphasis on test-driven design of models through defined

test cases. Crucially, different conditions are configurable allowing users to examine how different designs

or curation impact a wide range of system behaviours, minimizing error between model versions.

Availability and implementation: The software framework described within this paper is open

source and freely available from http://github.com/SBRCNottingham/gsmodutils.

Contact: jamie.twycross@nottingham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Stoichiometric constraints based modelling for biological systems

has been a mainstay of systems biology for several decades (Fell and

Small, 1986; Varma and Palsson, 1994). Given its flexibility, low

barrier to entry and requirement only on minimal knowledge regard-

ing the stoichiometry of metabolic networks this structural approach

has become an extremely popular method for modelling steady-state

behaviour of large, biochemical networks (Kauffman et al., 2003).
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Such large scale reconstructions are often referred to as genome scale

metabolic models (GSMMs), as the processes is significantly aided

through the advent of relatively inexpensive genome sequencing

(Land et al., 2015; O’Brien et al., 2015). Indeed, owing to their

ability to model complex aspects of metabolism, GSMMs have been

widely adopted as a standard to elucidate and optimize industrial

biotechnology processes (Kim et al., 2017).

The reconstruction of GSMMs is a time consuming process of

manual curation that follows a complex protocol to ensure model

validity (Thiele and Palsson, 2010). Whilst many popular automated

methods exist to construct GSMMs from reference genomes (Henry

et al., 2010; Poolman, 2006), there is still a significant amount of

manual curation. However, treating the creation of models as an iso-

lated ‘one-off’ event ignores the significant amount of curation that

is required for applications such as biotechnology.

As a consequence, a significant amount of work has gone into

the management of genome scale models. The BiGG models data-

base (King et al., 2016), for example, exists to provide a standar-

dized repository of validated models that can be shared and reused.

Perhaps one of the best examples of a well curated model developed

in an iterative manner is yeast-GEM, a model for Saccharomyces

cerevisiae under continuous development (Sánchez et al., 2018).

Similarly, the MetaNetX (Moretti et al., 2016) system exists to pro-

vide a standardized namespace and toolchain for GSM analysis.

However, in many cases too little focus is placed upon the collabora-

tive design aspect of such models with few mechanisms existing to

capture the differences between two model versions, model deltas.

Better tools for developing automated reconstructions of

genome scale models are always under development. For example, a

recent development in the domain of genome scale models is the

EMBL-GEMS model repository for automated reconstructions of

bacterial species created from NCBI annotations by the CarveMe

tool (Machado et al., 2018). However, these tools will often add

incorrect reactions, such as aerobic reactions in organisms that only

survive in anaerobic environments (Norman et al., 2018b).

Furthermore, we feel a specific advantage of genome scale models is

that they encode domain specific knowledge that allows contradic-

tions in understanding to be uncovered. For example, an entirely

automated process is unlikely to find the correct cofactors involved

in reactions under specific conditions.

Furthermore, as with many areas of bioinformatic study the

number of available computational tools has become vast. This cov-

ers a huge variety of software platforms including the COBRA tool-

box for MATLAB (Schellenberger et al., 2011), ScrumPy and

COBRApy in python (Ebrahim et al., 2013; Poolman, 2006) with

additional tools and libraries such as cameo (Cardoso et al., 2018),

OptFlux in Java (Rocha et al., 2010) and SurreyFBA (Gevorgyan

et al., 2011). Whilst most of these tools are Open Source and follow

standards, such as SBML (Finney and Hucka, 2003), it is often chal-

lenging to replicate the initial modelling efforts conducted by

authors of papers. Consequently, we feel that software tools are ur-

gently needed to address this issue. Similarly, the archetype design,

build, test and learn cycle of synthetic biology heavily relies on bio-

informatics software and modelling to improve the production of

natural products (Carbonell et al., 2016). In order to speed up the

use of bioinformatics tools to produce high value platform chemi-

cals, genome scale models are often used to discover methods for

process optimization in silico.

For example, many tools such as RetroPath (Carbonell et al.,

2014a), XTMS (Carbonell et al., 2014b) and GEM-Path

(Campodonico et al., 2014) suggest thousands of potential heterol-

ogous pathways. Many of these tools significantly increase the value

of genome scale models, for example by coupling commodity pro-

duction to an organism’s growth (Feist et al., 2010). These tools all

suggest major changes to wild-type strains must be tracked and com-

pared to allow models to remain relevant. In effect, mechanisms are

required to relate to modified test and production strains.

Similarly, many conventional applications of genome scale mod-

els in systems biology have often suffered from unnecessary replica-

tion of work due to a lack of adherence to standards (Monk et al.,

2014). For example, there are now many independently developed

models of Clostridium acetobutylicum (Dash et al., 2014; Lee et al.,

2008; McAnulty et al., 2012; Senger and Papoutsakis, 2008; Yoo

et al., 2015), an organism used in the production of solvents for

around a century (Moon et al., 2016; Weizmann, 1919). These mod-

els all exist to solve similar biological problems some being updates

to the initial base models. However, there has been disagreement

over fundamental biochemical properties of this anaerobic organ-

ism, notably with the focus on redox balancing (Dash et al., 2014).

Such models also include updates based on improved genome anno-

tations and the inclusion of fluxomic, transcriptomic and metabolo-

mic characterizations (Yoo et al., 2015).

Unfortunately, many of the results reported in (Dash et al.,

2014; Lee et al., 2008; McAnulty et al., 2012; Senger and

Papoutsakis, 2008; Yoo et al., 2015) are difficult to compare or re-

produce as the result of a number of issues. Often, model authors do

not use a standardized set of identifiers for reaction names [such as

the MetaNetX namespace (Moretti et al., 2016)], which makes dir-

ect comparison of model structure as well as differences between

reactions a challenge. Where models are shared, it is often in non-

standard spreadsheet formats, rather than SBML models. Indeed,

even in the case of valid SBML models being made available at the

time of publication few details are given as to how to run such mod-

els for conditions discussed in original articles.

In this paper, we present a software framework geared towards

test-driven genome scale model development, a concept that is

taken directly from good software development practices (Martin,

2002). By this we mean the notion that, as a model is curated to

represent biological phenomena, much of the validation can be

turned into specific test cases that can be repeated between model

versions. We provide an example test case for Clostridium autoe-

thanogenum, an organism that has had considerable focus in terms

of genome scale models and how a working methodology using

the software presented here can reduce repetition of work and im-

prove the reproducibility of results. This article aims to summarize

the main objectives of the gsmodutils software and we refer the

reader to the software user guide for a more detailed exploration

of features.

2 Improving the design phase of industrial
biotechnology

Recent efforts in systems and synthetic biology have been based

around a form of iterative, design, build, test and learn cycle

(Carbonell et al., 2016) (see Fig. 1). In terms of computational mod-

els, this iterative strategy requires adapting and updating models to

integrate new biological knowledge (Reed et al., 2006). However,

the conventional processes of scientific literature often coalesces to a

point at which models are published. In reality, an iterative process

means that it is essential that digital experiments can be repeated in

a reproducible manner (Cooper et al., 2015). Future changes to

models, borne out of a need to meet new challenges and integrate

new knowledge, should reflect this.
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An agile methodology for the development of models places the

focus on adapting work to new requirements (Martin, 2002). Such an

approach best fits genome scale models because they are rarely cre-

ated to investigate individual processes and, instead, capture the com-

plexity of large systems. Genome scale models are intrinsically related

to available genome annotations. Such annotations rely heavily on

automated matches to related species, with the characterizations of in-

dividual genes or changes in cofactors and substrates for specific reac-

tions often being left to a few of critical interest (Seemann, 2014).

This modelling formation costs an in-depth understanding of dynamic

behaviour. However, capturing steady-state phenomena still provides

a good understanding of system properties (O’Brien et al., 2015).

As such, approaches often leave models with missing reactions,

incorrect gene-reaction rules (Thiele and Palsson, 2010) or with

pathways based on gap filling methods that add reactions that may

not actually be catalyzed by the organism in question (Benedict

et al., 2014). When attempting to understand specific natural phe-

nomena, genome annotations are frequently updated and models

are often corrected in an ad hoc manner.

Therefore, models undergo significant manual annotation and

curation; a process which has a high chance of error. In this work, we

advocate a test-driven approach to model development highlighted in

Figure 1 (top). Here, the model is changed to achieve research goals

that are dynamic in response to the changes of a project. In order

to meet this objective, validation criteria for a model such as growth

conditions or the impact of gene knock-outs, should be formally set.

When a model is changed, all such validation criteria should be

retested to ensure that models do not regress to previous states.

We feel that many of the current software tools for genome scale

models do an excellent job of facilitating answers to crucial research

and design questions. However, there is a major gap in terms of the

reliability and re-usability of models due to a lack of standardization

and software tools to aid such processes. The following sections pro-

vide an overview of the gsmodutils software framework. gsmodutils

aims to provide a basis for test-driven, version controlled agile

model development. All software and packages are open source and

is designed to be interoperable with platforms widely used in the do-

main of constraints based modelling.

3 Software

3.1 Outline and features
Test-driven development is motivated by the idea of clearly defined

test cases written before significant changes are made to any under-

lying architecture. In the case of genome scale models, errors can

easily occur as a product of human curation designed to better repre-

sent newly discovered aspects of metabolism.

By automatically integrating COBRApy (Ebrahim et al., 2013)

users can easily write convenient test cases following examples given

in the user guide. A standard test case, ensuring that a given model

grows on media is given in Figure 2. When a new model repository

is created with the gsmodutils tool, a number of pre-written test

cases are automatically added to a file. However, we stress that the

vast majority of individual use cases for a model must be specific to

a given biological problem.

The software provides a number of features such as import and ex-

port of models in different formats and the generation of test reports

through use of the command line. The use of flat files enables easy in-

tegration with version control software such as git and mercurial. In

addition, projects are easy to export using portable standardized

docker images (Merkel, 2014), the idea being to allow users to share

models as quickly and easily as possible without concern for custom

system configurations (see software documentation for more details).

3.2 Strain designs
A core aspect behind the implementation of gsmodutils is the con-

cept of a design, this encompasses a simple set of changes to a ‘wild-

type’ model that are required for analysis. However, it is often the

case that such deletions are of scientific or industrial interest and, as

such, the strain will be used in future work. Consequently, such

designs are hereditary in nature. By taking the difference between

Fig. 1. Iterative cycle for systems and synthetic biology development, preva-

lent in industrial biotechnology applications. This approach captures an itera-

tive mode of development, where models are used to inform wet lab decision

making and the information is fed back into future modelling decisions. By

integrating test-driven model development (top section) the objective is to

simultaneously capture research questions, model validation criteria and

minimize the impact of changes on previously completed models

Fig. 2. An example gsmodutils test case written in python. In this test, flux

variability analysis is used to compare a model against 13C carbon flux track-

ing data. The test also demonstrates how designs can be integrated into a

test workflow by specifying the identifier in the ‘ModelTestSelector’ function

decorator
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the constraints applied to an initial model and subsequent modifica-

tions, gsmodutils allows users to easily reuse and export models

with this design delta.

Formally, we consider a design delta to be the set of differences

between any reactions, metabolites and genes stored within the

COBRApy object. This should not be considered the same as a diff

in version control systems such as git. Instead, designs of this nature

are stored as JSON objects within the gsmodutils project and can be

tracked by version control systems.

As designs inherit from a base model, future curation to a wild-

type base model is automatically included in the resulting models.

Similarly, designs are self contained and will not interfere with one

another allowing project management and annotation as to the

function of each design. Figure 3 shows how this could work in a

practical situation. Here we consider how functional gene knock-

outs can be combined with heterologous genes to create production

strains. As designs can be inherited common knock-outs or changes

to designs can be combined.

Designs of this nature can also be programmatic, allowing the

implementation of features such as non-standard constraints that

can be dynamically loaded. An example of this is shown in Figure 4.

This example converts an existing model to one based on a Mixed

Integer Linear Program (MILP) and sets the objective to minimize

the number of enzymatic reactions used with a fixed biomass con-

straint. This relates to minimizing the number of active genes within

a system. As the reaction names do not need to be specified, should

reactions be altered within the base model the design will remain

functionally the same. Alternative examples could include reduc-

tions of models through methods such as elementary flux modes or

minimum cut sets, which can change dramatically with only small

changes to stoichiometry. Furthermore, functionality of all strain

designs is automatically included in tests as part of the default gsmo-

dutils testing framework.

3.3 Development workflow
In this section, we propose a method for the development of genome

scale models that integrates gsmodutils with version control systems.

The basic workflow is that the user writes a formal test case for

some modelling goal, perhaps driven by captured experimental data,

Fig. 3. Examples of gsmodutils design inheritance. Each design stores the delta between the wild-type base model, any parents and the changes to constraints

the design contains. In the example presented above, a heterologous production pathway is combined with a reusable set of knock-outs. Rather than keeping re-

dundant copies of models, designs make projects easier to maintain and understand by only storing annotated differences between models. Designs can then be

loaded in a hierarchical manner. In practice, ideally, these designs should relate to experimentally evaluated constructs and strains

Fig. 4. An example gsmodutils programmatic design written in python. This

design converts reactions to integer type, allowing an MILP formation. The

above example seeks to utilize the MILP problem in order to minimize the

number of reactions to produce the required biomass components. Loading a

model of this form dynamically, as opposed to storing it as an SBML model,

allows any underlying reactions to be changed. Designs of this form can also

easily be exported to model files via the command line utility
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that fits a specific form of validation criteria. We note that, in prin-

ciple, test cases should be written before changes to a model are

made.

Figure 2 highlights the notion of test cases, taken from test-

driven development. In this example, a reusable test is written that

incorperates data from 13C metabolic flux tracking. Flux variability

analysis is then used to compare the expected flux ranges of a model

against the experimental data. The test assertions will pass or fail

based upon the models flux values when compared to the experi-

mentally observed data.

4 Case study usage Clostridium
autoethanogenum

Clostridium autoethanogenum is a bacterial species used for the pro-

duction of commodity chemicals at industrial scale (Abrini et al.,

1994; Norman et al., 2018a). A new GSMM of C.autoethanogenum,

‘MetaCLAU’, has been analyzed to improve this bioprocess (Norman

et al., 2018b) (submitted for peer review). In this section we describe

how gsmodutils has been utilized to ensure that future versions of

MetaCLAU will remain functionally relevant from the perspective of

industrial biotechnology.

4.1 Scientific background and model integration
C.autoethanogenum is a strictly anaerobic, acetogenic bacterium

which naturally produces ethanol and trace amounts of 2,3-butane-

diol (2,3-BD) from carbon monoxide and water (Abrini et al., 1994;

Norman et al., 2018a; Schuchmann and Müller, 2014). Since carbon

monoxide is readily available in the form of industrial waste gas,

and 2,3-BD has a global market value of $43 billion (Köpke et al.,

2011), the optimization of yields of 2,3-BD from carbon monoxide

is highly desirable in the context of industry (Norman et al., 2018a).

MetaCLAU was built using Pathway Tools (Karp et al., 2002) and

ScrumPy (Poolman, 2006), and is based on a manually annotated

genome sequence of C.autoethanogenum (Humphreys et al., 2015).

The resulting model consisted of 758 reactions, 773 metabolites and

518 genes. For full details of the model (see Norman et al., 2018b)

(submitted for peer review). The model has been integrated with the

gsmodutils modelling framework as a test-driven project. The fol-

lowing section details specific tests used to evaluate the model at

each stage of its continued development.

4.2 Evaluation of model validation criteria
In this section we outline specific test criteria that have been applied

for the C.autoethanogenum model discussed in this study. All of the

examples discussed here are available in more detail in the supple-

mentary repository Supplementary Material File S1.

Energetic consistency: An important limitation of FBA is that op-

timal solutions may be thermodynamically infeasible if appropriate

constraints are not applied (Fell et al., 2010). In order to identify

these unwanted flux distributions and to constrain the model such

that they are not in the feasible solution space, a diagnostic FBA is

applied with the following constraints: i) All transport reactions are

constrained to allow no uptake, and ii) the ATPase reaction is given

a fixed flux of one. If a (non-zero) solution to this problem exists, it

must contain a thermodynamic inconsistency, which can be dealt

with by manual inspection of the solution and modification of one

or more of the involved reactions (Fell et al., 2010).

Flux-minimization tests: One conventional approach in FBA is

to set an optimization criterion of minimizing flux across enzymatic

reactions with a fixed biomass constraint (Holzhütter, 2006). The

solution to this FBA problem represents minimal protein investment

(Holzhütter, 2006). Execution of flux minimization in COBRApy

requires a model in which reversible reactions are split into two irre-

versible reactions, representing forward and backward reactions. A

gsmodutils strain design was created in which all reversible reactions

are split using a programmatic python based design.

In the case of MetaCLAU, the minimal-flux solution includes

both ethanol and acetate production, which represents good qualita-

tive agreement with experimental data (Norman et al., 2018a, under

review). Since any changes to this predicted phenotype must be

investigated, the flux minimization analysis has been formulated as

a gsmodutils test which utilizes the above mentioned design.

Product scans: Of interest to this project were changes in the

product spectrum of C.autoethanogenum under conditions where

the organism can and cannot produce molecular hydrogen (with car-

bon monoxide as sole carbon and energy source). The hypothesis

tested in (Norman et al., 2018a, under review), was that in the case

where hydrogen production is infeasible, alternative electron sinks

like lactate and 2,3-BD would be produced. As in the previous case,

the model-predicted behaviour showing both lactate and 2,3-BD

was deemed an important result, which model curators should be

notified of if lost during model development. Thus the analysis was

built into a gsmodutils test.

Lethal knock-out mutants: The prediction of lethal single-gene

KO mutants through FBA of a GSMM is useful in two ways:

i) the identification of essential genes is an important first step for

metabolic engineering strategies, and ii) with the advent of high-

throughput TraDIS gene-essentiality datasets (Langridge et al.,

2009), GSMMs can be validated by their ability to predict essential

genes. Furthermore, any change in the set of essential genes (particu-

larly an increase in their number) represents important information

for metabolic engineering. For these reasons, a test has been built

into the MetaCLAU project which enables the computation of the

set of essential genes and their comparison with TraDIS datasets.

5 Related software

The reproducibility of computational based research has achieved

more and more attention within the last decade (Cooper et al. 2015;

Peng, 2011; Sandve et al., 2013). Consequently, there has been a

proliferation of tools to support researchers in this endeavour.

In this section we briefly review a number of tools that exist, both

for genome scale models and from the wider mathematical and com-

putational biology community.

PSAMM: PSAMM (Steffensen et al., 2016) is a tool that has

similar goals to gsmodutils in aiding the portability of genome scale

models. PSAMM uses a custom YAML format which allows the an-

notation of models in a simpler manner than the conventional

SBML standard. This, simultaneously allows model settings to be

easily curated in a human friendly manner as well as allowing

changes to be tracked in version control software such as git. This

format relates, directly, to a gsmodutils design object, which cap-

tures the difference between cobra objects. Both approaches allow

export to standardized SBML, MATLAB and JSON models for

usage in other tools. A core difference between the two frameworks,

however, is that PSAMM includes much more functionality for

working with genome scale models including gap filling and even its

own interface to linear programming solvers. In contrast, gsmodutils

is designed to sit on top of the already existing COBRApy stack,

with tools such as cameo (Cardoso et al., 2018) providing additional

functionality for more complex analysis. To this end, gsmodutils

Gsmodutils 3401

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz088#supplementary-data


also has a full python API allowing models and designs to be loaded

from within external scripts or jupyter notebooks.

Memote: Lieven et al. (2018) is an excellent tool with similar

ambitions to gsmodutils for making reusable genome scale models.

It features a fully specified set of tests, including custom test cases

and has strong version control integration with git. The core func-

tionality of memote is to provide a standardized, community driven

set of tests that check model consistency as well as annotations.

Along with user defined tests for experimental data, these tests allow

continuous integration as models are updated within a git reposi-

tory. One of memotes strongest aspects is providing human readable

reports between model versions, this allows one to easily track the

changes between annotations in reconstructions.

A major difference between these projects is that gsmodutils has

a stronger focus on reducing the redundancy in model storage

through the use of design deltas, as described above. Similarly, a

core goal of gsmodutils is to allow easy import and export outside

of the framework for compatibility with other modelling suites. It

should be noted that, as memote is written in python, utilizes

COBRApy and, at the time of writing, is fully compatible with

gsmodutils.

Model repositories: Models are frequently shared, at the time of

publication through services such as BiGG (King et al., 2016) and

BioModels (Chelliah et al., 2013). Whilst these repositories encour-

age the reuse of models and the reproducibility of in silico predic-

tions, they are not designed to improve collaboration. The software

presented here is designed with the notion that genome scale models

are never finished, per se, but under continuous development. The

cornerstone of this is the use of test cases, which formalize modelling

validation criteria. Model repositories such as EMBL-GEMs, based

on automated reconstructions generated by CarveMe (Machado

et al., 2018), could greatly benefit from an ever evolving set of tests

that better capture biological understanding. Indeed, adding more

features to control the future management of the BioModels reposi-

tory has achieved recent attention with tools such as JUMMP (JUst

a Model Management Platform (JUMMP) is available at https://bit

bucket.org/jummp/jummp/, Accessed: 2018-12-13) that aim to add

version control to the management of repositories.

Tools such as BiVes and BudHat (Scharm et al., 2016) also exist

and apply more generally than gsmodutils to capture the changes to

models between versions. In a similar manner to gsmodutils, this

utility lends itself to version control between model versions by cap-

turing changes to parameters that impact a models performance. As

with gsmodutils, this type of approach ignores irrelevant properties

such as changes to the white space within XML files captured by a

conventional unix diff.

6 Discussion

In order to facilitate the sharing and dissemination of high quality

computational research, good standards and software are required

(Jimenez et al., 2017). Naturally a great deal of effort has gone into

producing high quality systems and synthetic biology standards

(Cox et al., 2018; Hucka et al., 2003). Furthermore, when research

projects end it is common for important, large models to be pub-

lished and become relics lost within the literature, forgotten to all

but the most dedicated of individuals. As GSMMs grow in terms of

the information about metabolism they contain as well as the bio-

logical problems they are used to solve, problems with annotation

and curation naturally accumulate as a product of human error.

Software that facilitates actively improving how researchers develop

and apply models to new phenomena is required.

We have presented a framework with a number of features taken

from the software development world specifically designed to im-

prove collaboration and minimize such error. However, it is import-

ant to stress the difference between defined behaviour expected

from pre-written test cases and novel predictions made by a model.

Indeed, a core objective of this framework is to ensure that good

practices are followed in model development that help scientists to

better trust the results discovered by their models. In an ideal world,

we would envision a methodology such as ours becoming a pre-

requisite for GSMMs to pass peer review.

As with most software development projects, gsmodutils will see

expanded features. Initially this will include tighter integration with

version control systems such as git and mercurial. Furthermore, the

objective of the project is to cultivate collaboration by simplifying

the process of distributing large models to different users.
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