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The NRAS-mutant subset of melanoma represent some of the most aggressive and deadliest types associated 
with poor overall survival. Unfortunately, for more than 40 years, no therapeutic agent directly targeting 
NRAS mutations has been clinically approved. In this work, based on microsecond scale molecular dynamics 
simulations, the effect of Q61 mutations on NRAS conformational characteristics is revealed at the atomic level. 
The GTP-bound NRAS-Q61R and Q61K mutations show a specific targetable pocket between Switch-II and 𝛼-
helix 3 whereas the NRAS-Q61L non-polar mutation category shows a different targetable pocket. Moreover, a 
new isomer-sourced structure iteration method has been developed for the in silico design of potential inhibitor 
prototypes for oncogenes. We show the possibility of a designed prototype HM-387 to target activated NRAS-
Q61R and that it can gradually induce the transition from the activated NRAS-Q61R to an “off-like” state.
1. Introduction

The RAS family is the most frequently mutated oncogene in some 
cancers, such as melanoma, lung and pancreatic cancer [1,2]. Clini-
cal data indicate that the most frequently mutated RAS isoforms vary 
by tissue and cancer types [3]. In particular, neuroblastoma RAS viral 
(v-ras) oncogene homolog (NRAS) is the most frequently mutated RAS 
isoform in melanoma, with the mutated codon typically occurring at 
residue 61 [2,3]. Together with keratinocyte carcinoma [4], melanoma 
is one of the most common cutaneous cancers worldwide and the one 
annually causing the largest number of deaths [5]. The NRAS-mutant 
subset of melanoma shows aggressive clinical behaviour and a poor 
prognosis, and it is associated with low overall survival [6,7]. Among 
a variety of immunotherapies available to patients with cancers related 
to NRAS oncogenes [7], there is still a lack of efficient strategies ca-
pable of directly targeting NRAS [8–10]. For instance, some strategies 
such as the use of MEK inhibitors are quite promising, but still with 
low clinical efficiency [11]. In 2018, the US Food and Drug Administra-
tion approved preliminary treatments based on drugs encorafenib and 
binimetinib [12], but no significant success was observed. Therefore, 
the detailed conformation and local structure of NRAS is necessary to 
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reveal potential targeting pockets that may facilitate the discovery of 
potential drug-like compounds.

Drug discovery is an extremely expensive, lengthy and interdisci-
plinary subject. A new approved drug usually costs several billion dol-
lars and takes decades to develop [13]. In silico drug design can be 
involved in many stages of drug development, especially in the dis-
covery of initial compounds of promising potential applicability [14]. 
Nowadays, with the development of computational resources and meth-
ods [15–19] together with the proliferation of experimental protein 
structural data [20], the use of computational physics and molecular 
modelling [21,22] for computer-aided drug design has gained enor-
mous momentum. In this way, several in silico drug design methods 
have been recently released [23–26]. Differently to other authors who 
used combined tools for drug design or screening such as Gou et al. 
[27], Sadybekov et al. [28] or Xu et al. [29], our aim in this paper is 
to provide a new simple but efficient computational protocol able to 
improve the efficiency in the design of new potentially useful chem-
ical templates, avoiding the large-scale screening among hundreds of 
compounds.

In this work, benefiting from the fact that molecular dynamics (MD) 
simulations use accurate force fields and can capture the detailed be-
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haviour and interactions of biomolecules at the all-atom level with 
excellent temporal resolution, the impact of NRAS-Q61 mutations on 
its structural conformation has been investigated. According to the de-
tailed analysis of the MD trajectories harvested at the microsecond time 
scale, we distinguish different characteristics of conformational changes 
between NRAS-Q61 mutations and also reveal the detailed molecu-
lar interactions responsible for the behaviour of mutated NRAS at the 
all-atom level. Subsequently, a targetable pocket on GTP-bound NRAS 
Q61 positively charged mutants (Q61R and Q61K) is revealed. Further, 
taking GTP-bound NRAS-Q61R as example and combining structural 
iteration, virtual screening and MD simulations, we introduce a new 
isomer-sourced structure iteration method (ISSI) for the development of 
potentially effective compounds. In this regard, we are reporting, as an 
example of the use of ISSI, a prototype compound (designed as HM-387) 
which might be able to target positively charged NRAS-Q61 mutations. 
We expect to provide valuable information that can foster subsequent 
medicinal development in wet lab experiments.

2. Results and discussion

In this section, we have investigated the microscopic structure of the 
eight main GTP-bound/GDP-bound NRAS isoforms in aqueous ionic so-
lution. The difference between the mutated NRAS species is located at 
codon 61, with the sequences of the eight isoforms shown in Fig. 1
of “Supplementary Material” (SM). As general procedures, we have 
adopted microsecond-scale MD simulations as the main computational 
tool [30], assuming the successful CHARMM36m force field [31] to 
model all simulated systems. All simulations were performed by means 
of the GROMACS/2021 package released on January 28th, 2021 [32]
and crystal structures of GDP/GTP NRAS proteins were obtained from 
RCSB PDB Protein Data Bank [33]. All of our results have been aver-
aged from three independent MD trajectories for each NRAS isoform. 
Radial distribution functions and potentials of mean force have been 
employed to reveal the atomic-level interactions corresponding to the 
conformational changes of the different NRAS-Q61 mutants. Finally, in 
this paper we introduce a new protocol able to develop potential com-
pounds in silico and we apply it to the case of NRAS-Q61R mutations. 
Atomic detail sketches of the main residues for each compound and all 
procedures, data and figures related to the ISSI method are reported in 
SM for the sake of clarity of the manuscript.

2.1. Structural characteristics of NRAS isoforms and the effect of Q61 
mutations on their conformational changes

Firstly, we computed Root Mean Square Deviations (RMSD, Fig. 1
A-D) and Root Mean Square Fluctuations (RMSF, Fig. 1 E-H) in order 
to investigate the overall conformational fluctuations and stability of 
NRAS-WT (wild type) and the three mutant isoforms considered in the 
present work, i.e. NRAS-Q61R, NRAS-Q61K and NRAS-Q61L (Fig. 1). 
On the one hand, RMSD is defined by Eq. (1):

𝑅𝑀𝑆𝐷(𝑡) ≡

√√√√ 1
𝑁

𝑁∑
𝑖=1

𝛿2
𝑖
(𝑡), (1)

where 𝛿𝑖 is the difference in distance between the atom 𝑖 (located at 
𝑥𝑖(𝑡)) of the catalytic domain and the equivalent location in the crystal 
structure whereas, on the other hand, RMSF are defined by Eq. (2):

𝑅𝑀𝑆𝐹𝑖 ≡

√√√√√ 1
Δ𝑡

Δ𝑡∑
𝑡𝑗=1

(𝑥𝑖(𝑡𝑗 ) − �̃�𝑖)2, (2)

where �̃�𝑖 is the time average of 𝑥𝑖 and Δ𝑡 is the time interval where the 
average has been taken. The equilibration part of the MD trajectories 
corresponds to the initial 1 μs in all RMSD plots.

From the results of Fig. 1, we can observe that the overall confor-
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mational fluctuations of the GTP-bound NRAS are lower than those of 
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the GDP-bound NRAS in all cases. Comparing to KRAS species, which 
show distinct conformations [34], NRAS species keep their conforma-
tional fluctuations in a relatively small range. The RMSD of GTP-bound 
NRAS-WT fluctuates stably around 0.25 nm with several short fluctua-
tions (between ∼0.3 and 0.4 nm). When GTP is hydrolysed to GDP, the 
average value and range of the fluctuations of NRAS-WT increase signif-
icantly. GTP-bound NRAS displays significant conformational stability 
when Q61 is mutated to R61 (RMSD ∼0.12 nm) but when GTP is con-
verted to GDP, the conformational fluctuations of NRAS-Q61R returns 
to a similar extent as that of GDP-bound NRAS-WT. Further, the RMSD 
characteristics of other mutations (Q61K and Q61L) are similar to those 
of GTP/GDP-bound NRAS-WT. In addition we should notice that error 
bars at each point, computed as the largest deviation of all three trajec-
tories compared to the average, reveal in some cases (NRAS-WT-GDP, 
for instance) significant fluctuations of RMSD and/or RMSF, but no al-
teration of the main trends of each property has been observed in any 
case.

The ensuing RMSF indicate that the conformational dynamics of 
NRAS-WT and its mutants are mainly reflected by structural changes 
of Switch-I (SW-I, residues 27-37) and Switch-II (SW-II, residues 58-
64). This is fully consistent with previously reported findings [34–37]. 
In the GTP-bound NRAS-WT case the flexibility of the SW-I is around 
1.2 fold larger than that of SW-II. When GTP is hydrolysed into GDP, 
the flexibility of SW-I/II increases simultaneously by about 1.5 fold, in 
a consistent way with the RMSD trend of NRAS-WT. When Q61 is mu-
tated, the overall flexibility of SW-I/II of the GTP-bound NRAS mutants 
is similar to that of NRAS-WT, with the exception of SW-I in GTP-
bound NRAS-Q61R, with significantly reduced fluctuations. Noticeably, 
in the case of GDP-bound NRAS mutants, similar characteristics were 
exhibited among the positively charged mutants of Q61 (Q61R and 
Q61K), namely the flexibility of SW-I decreased slightly compared to 
the WT case, whereas the RMSF values of SW-II increased leading to 
similar flexibilities of SW-I and SW-II. Interestingly, the RMSF trend of 
the non-polar mutation (GDP-bound NRAS-Q61L) was opposite to that 
of positively charged mutations: The flexibility of the SW-II region is 
significantly suppressed (∼1 fold) compared with the NRAS-WT and 
NRAS-Q61 positively charged mutations.

The RMSD and RMSF data in Fig. 1 show the overall conformational 
fluctuations of NRAS and the corresponding active domains (mainly 
SW-I and SW-II). We further performed the so-called “Residue Cross 
Correlation” analysis [38,39] in order to investigate the correlation of 
residue-to-residue motion within NRAS. Results are displayed in Fig. 2. 
Snapshots of representative configurations corresponding to each case 
have been included as a help for the visualisation of the results.

For NRAS-WT (Fig. 2 A and B), the residue cross correlations of GTP-
bound NRAS-WT and GDP-bound NRAS-WT are similar. SW-I exhibits 
the trend of separating from SW-II and from the main structure of the 
NRAS-WT, whereas SW-II behaves differently: it shows a tendency to 
be closer to P-loop (residues 10-14) and 𝛼-helix 3 (residues 86-105). 
The mutations of NRAS to positively charged side chains (Q61R and 
Q61K), show some significant differences to NRAS-WT. For GDP-bound 
NRAS-Q61R (Fig. 2 C), we can clearly observe that the behaviour of 
SW-II is opposite to that of NRAS-WT: SW-II tends to separate from the 
main body of NRAS-Q61R in a drastic fashion (e.g. the P-loop and 𝛼-
helix 3). Besides, both SW-I/II tend to be close each other and their 
surfaces in close contact (Fig. 2 C right side). The residue cross correla-
tions of GTP-bound NRAS-Q61R are similar to GDP-bound NRAS-Q61R, 
but the conformational stability of GTP-bound NRAS-Q61R is signifi-
cantly greater than that of GDP-bound NRAS-Q61R. Another difference 
from GDP-bound NRAS-Q61R is that SW-II can contact the P-loop and 
it is slightly separated from the surface of 𝛼-helix 3, forming a smaller 
cavity. Interestingly, both of the generated cavities on the surfaces of 
GDP-bound NRAS-Q61R (large) and GTP-bound NRAS-Q61R (small) 
may serve as targetable pockets. The residue cross correlation results 

of NRAS-Q61K (Fig. 2 E and F) show features very similar to those of 
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Fig. 1. The impact of Q61 mutations on the dynamic properties of NRAS, from the perspective of RMSD and RMSF. (A)-(D) RMSD of NRAS wild type and its 
Q61 mutant isoforms with the corresponding error bars; (E)-(H) RMSF of NRAS wild type and its Q61 mutant isoforms with the corresponding error bars. The 
RMSD/RMSF are averaged from 3 independent trajectories, and in all cases only “backbone” atoms of NRAS were considered.
NRAS-Q61R, with GDP-bound NRAS-Q61K holding a large targetable 
pocket and GTP-bound NRAS-Q61K holding a small one. When Q61 
is mutated to the non-polar amino acid LEU (case NRAS-Q61L, Fig. 2

G and H), the dynamical trends of SW-I/II maintain a similar fashion 
to those in NRAS-WT, whereas SW-II shows a stronger tendency to be 
closer to the P-loop and 𝛼-helix 3 regions than NRAS-WT.

We can conclude that positively charged mutations Q61R and Q61K 
(henceforth named as R61 and K61, respectively) provide conforma-

tions topologically very different of wild type (renamed Q61) and the 
non-polar mutation Q61L (renamed as L61). The data collected suggest 
three general features: (1) to a large extent, NRAS are similar to other 
RAS family proteins, with their conformational changes mainly embod-

ied by SW-I and SW-II [40,41,34]; (2) the Q61 mutations of NRAS have 
high impact on NRAS conformational changes [42,43,3]; (3) there may 
exist different specific interactions able to drive meaningful conforma-

tional changes of different NRAS isoforms, as they will be described 
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below in Section 2.2.
2.2. The different atomic-level interactions driving conformational changes 
of NRAS

The previous study shows that different types of Q61 mutations can 
have different effects on the conformational changes of NRAS. Hence, 
according to Section 2.1 positively charged R61 and K61 mutations can 
be grouped into the same class and the non-polar mutation L61 should 
be grouped into a different class. In this Section, we will analyse the 
characteristics of the two distinct mutant groups described above, espe-
cially regarding their interactions with solvating water molecules. We 
start considering the so-called atomic pair radial distribution functions 
𝑔𝐴𝐵(𝑟) (RDF, defined in Eq. (3)) to explore the changes in the ability of 
NRAS to form hydrogen bonds (HB) with water molecules, as reported 
in Fig. 3(A-H).

𝑔𝐴𝐵(𝑟) =
𝑉 ⟨𝑛𝐵(𝑟)⟩

4𝑁𝐵 𝜋𝑟2 Δ𝑟
, (3)

where 𝑛𝐵(𝑟) is the number of atoms of species 𝐵 surrounding a given 
atom of species 𝐴 inside a spherical shell of width Δ𝑟. 𝑉 is the total vol-

ume of the system and 𝑁𝐵 is the total number of particles of species 𝐵.
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Fig. 2. The “Residue Cross Correlation” analysis of the NRAS wild type and its Q61 mutant isoforms. Highly (anti)correlated motions are depicted in cyan(pink). 
The figures at the right side of the residual cross correlation plots are the surface version of representative GTP/GDP-bound NRAS, yellow: P-loop, red: SW-I and 

blue: SW-II.

As a general feature, the active sites of the NRAS-Q61 side chain ca-
pable of forming HB are oxygen “O1”, hydrogen “H1” and hydrogen 
“H2” (Fig. 3 A and E, defined in Fig. 2 of SM). In both GTP/GDP-bound 
NRAS-WT case, “O1” can form HB with water with a length of around 
1.85 Å, typical of bonds formed by biomolecules and water [44,45]. The 
2421

ability of “H1” and “H2” to form HB with solvating water is lower than 
that of “O1”, given the shorter height of the RDF, showing a HB length 
of 2.05 Å. The active sites of R61 side chain capable of forming HB are 
“H1” to “H5” (Fig. 3 B and F, defined in Fig. 2 in SM). The GTP-bound 
NRAS-R61 shows a characteristic HB length of 1.85 Å, with the first 
maximum of RDF smaller than that of “O1” but higher than those of 

“H1” and “H2” from the NRAS-WT case (Fig. 3 E). When GTP is hydrol-
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Fig. 3. Radial distribution function analysis of the 61 st. amino acid of GDP/GTP-bound NRAS with water. (A) NRAS-WT-GDP; (B) NRAS-R61-GDP; (C) NRAS-K61-
GDP; (D) NRAS-L61-GDP; (E) NRAS-WT-GTP; (F) NRAS-R61-GTP; (G) NRAS-K61-GTP; (H) NRAS-L61-GTP; (I) RDF value of R61/K61 interaction with terminal P𝛾 , 
with structures of GTP, R61 (residue ARG), K61 (residue LYS) and distances taken to calculate the corresponding RDF; (J) Time-dependent atomic distances between 

R61-CZ/K61-NZ and P𝛾 .

ysed to GDP, the interactions between active hydrogens and water are 
greatly enhanced (Fig. 3 B). For the R61 case, we can conclude that: (1) 
R61 has more active hydrogens and the interaction of R61 with water 
is enhanced; (2) the phosphate tail of GTP (represented by the terminal 
phosphorus P𝛾 located at the end of the GTP tail) can form strong HB in-
teractions with R61 (sketch in Fig. 3 I and distance distributions shown 
in sub-plot J), allowing NRAS-R61 to maintain relatively low conforma-
tional fluctuations and to exist a small targetable cave between SW-II 
and 𝛼-helix 3 (see Fig. 2 D). However, since the phosphate tail of GDP is 
shortened, the HB interaction between R61 and the phosphate tail van-
ishes. Finally, in this latter case the SW-II is stripped from the protein 
surface under the interaction of aqueous solution and forming a large 
targetable pocket (Fig. 2 C).

The main features of the RDF of NRAS-K61 hold similar trends as 
those of NRAS-R61. Three active hydrogens (defined in Fig. 2 of SM) 
forming HBs with water or GTP (Fig. 3 C, G, I and J). The RDF of a 
single hydrogen atom in GTP-bound NRAS-K61 (Fig. 3 G) is slightly in-
creased compared to GTP-bound NRAS-R61. This is because the side 
chain of K61 is shorter than that of R61 and the HB effect between K61 
and GTP phosphate is weakened. Interestingly, the RDF of the three hy-
drogens almost coincide with the GDP-bound NRAS-K61 case (Fig. 3 C). 
This is due to the fact that K61 is completely dissolved by the aqueous 
2422

solution and the three hydrogens of amino group of K61 are equivalent 
to each other, so that water has the same probability of forming HB with 
them. This also aligns well with the concept of “equivalent hydrogen” 
in organic chemistry. Contrary to Q61, R61 and K61, the mutation L61 
showed no HB at all (Fig. 3 D and H), indicating strong hydrophobic 
characteristics.

In order to further analyse the degree of the enhanced HB interaction 
with the aqueous solution when Q61 is mutated to positively charged 
amino acids, we consider the radial distances between two species as 
our order parameters to calculate the potential of mean force (PMF) 
through the so-called reversible work 𝑊𝐴𝐵(𝑟) [46,47], as defined by 
Eq. (4):

𝑊𝐴𝐵(𝑟) = − 1
𝛽
ln𝑔𝐴𝐵(𝑟), (4)

where 𝛽 = 1∕(𝑘𝐵𝑇 ) is the Boltzmann factor, 𝑘𝐵 the Boltzmann con-
stant and T the temperature. This specific free-energy calculation has 
been considered only for the residue 61-water interactions, instead of 
the more complex interactions related to GTP/GDP and other NRAS 
residues. In general, when multidimensional reaction coordinates are 
involved, other methods such as metadynamics [48,49] of transition 
path sampling [50–52] should be used, but they are out of the scope of 
this work. A free-energy barrier defined by a neat first minimum and a 

first maximum of 𝑊 (𝑟) (not shown) is clearly seen in all cases. The full 
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Fig. 4. The binding model of the detected hydrophobic pocket for NRAS-Q61L mutation. All distances in Å.
set of positions and free-energy barriers is reported in Table 1 and Table 
2 of SM. We can observe overall barriers (adding up all contributions) 
of GDP-bound NRAS-Q61, R61 and K61 of 2.8, 8.9 and 5.4 𝑘𝐵𝑇 , re-
spectively (where 1 𝑘𝐵𝑇 = 0.616 kcal/mol). This shows that when Q61 
is mutated to the positively charged amino acids (R and K), the HB in-
teraction of residue 61 with aqueous solution is enhanced by ∼ 2 to 3 
fold, which may be one of the atomic-level forces driving the separa-
tion of SW-II from protein surfaces. Interestingly, for GTP bound NRAS, 
the overall barriers of Q61, R61 and K61 are of quite similar size (3.0, 
6.9 and 4.9 𝑘𝐵𝑇 , respectively). However, the strong HB interactions be-
tween GTP and R61/K61 keep SW-II bound to the protein surface, as it 
has been reported in Figs. 2 and 3.

For the non-polar L61 mutation, the characteristics of conforma-
tional changes are quite different from the positively charged mutations 
R61 and K61. A hydrophobic pocket on the 𝛼-helix 3 is detected (Fig. 4). 
This hydrophobic pocket is mainly composed of the hydrophobic struc-
tures (labelled in green in Fig. 2 of SM) of D92, L95, Y96 and Q99 side 
chains. During the dynamic evolution of L61, this hydrophobic pocket 
can capture the side chain of L61 and, simultaneously, the hydrogen 
“H1” of the amino group of the main chain of L61 can form a stable 
HB with the “O1” (also named “OH” in Fig. 4) of Y96, which further 
stabilises L61 and promotes the tight binding of SW-II to the 𝛼-helix 3. 
These sorts of specific interactions explain well the difference in con-
formational changes between L61 and other NRAS isoforms. In order 
to better characterise this special hydrophobic pocket of L61, we also 
displayed the time-dependent atomic group–group distances between 
selected amino acid residue side chains and the time-dependent atomic 
site–site distances between L61(H1) and Y96(O1), see Fig. 3 and Fig. 4 
of SM.

From the fact that residue Q61 is also involved in the mechanism 
of GTP’s hydrolysis by stabilising the transient hydronium ions around 
𝛾 -phosphate, as it has been reported by several authors [53–57], we 
computed and compared the RDF of the three phosphorus of GTP (P𝛼, 
P𝛽 and P𝛾) with water (oxygen atom), as it is reported in Fig. 5 of SM. 
The distribution of water around P𝛾 shows variations with the occur-
rence of Q61 mutations (Fig. 5C of SM). So, water can easily access to 
the P𝛾 phosphate of NRAS-WT, but when Q61 is mutated to R61 (K61), 
the distribution of water around the P𝛾 phosphate decreases sharply. 
This is consistent with the previous conclusions in Fig. 3. R61 and K61 
2423

can form HB with GTP, thus hindering the approach of water due to the 
steric hindrance effect. This also supports the fact that with the occur-
rence of mutations, the intrinsic GTPase ability will be reduced keeping 
the RAS molecular switch constitutively active [58–61]. Residue Q61L, 
due to the inability of L61 to form hydrogen bonds with GTP, tends 
to be anchored on the side of 𝛼-helix 3. Consequently, this position-
ing ensures that there is no significant reduction in the distribution 
of water molecules around P𝛾 due to the presence of the leucine side 
chain. However, when the residue 61L is anchored at the 𝛼-helix 3, the 
lack of stabilisation of transient hydronium ions around the 𝛾 -phosphate 
will also lead to the decrease in the potential rate of GTP’s hydrolysis. 
Finally, for P𝛼 and P𝛽, both GTP/GDP bound NRAS-WT and their mu-
tations reveal similar features. Moreover, when GTP hydrolyzes away 
(becoming GDP), the steric hindrance of P𝛽 decreases, making it easier 
for water to access P𝛽.

2.3. In silico development of potential inhibitors targeting NRAS-Q61 
mutations using the ISSI method

In the previous section, we investigated the conformational charac-
teristics between wild-type NRAS and its Q61 mutants in detail. We 
found that when Q61 is mutated to positively charged amino acids 
(R and K), there exists a small targetable channel between SW-II and 
𝛼-helix 3 on the surface of GTP-bound NRAS. Moreover there also ex-
ists a significant large targetable pocket on the surface of GDP-bound 
NRAS. We should consider that NRAS-R61 and K61 mutations are noto-
rious for their strong GTP affinity and lack of intrinsic GTPase activity 
and, unlike the KRAS codon 12 mutants, these mutations are rarely 
found in the GDP-bound state. Hence, we have taken the targetable 
pocket on the surface of GTP-bound NRAS-R61 (depicted in Fig. 6 
of SM) as a single target example to carry out corresponding in sil-

ico drug design, structure evolution and screening, aiming to provide 
a potential inhibitor template for potential further medicinal develop-
ment. To do this, we introduce here a new procedure for in silico drug 
design, namely the isomer-sourced structure iteration process. Through 
this protocol, we take the pyrido[4,3-𝑑]pyrimidine core group extracted 
from MRTX1133 [62] as the starting scaffold (details in Fig. 7 of SM), 
and we carry out three rounds of structural iterations to finally obtain 
a potential inhibitor template HM-387 for GTP-bound NRAS-R61 (as 
shown in Fig. 5 A). For the conceptual description of the method, see 

Section “Isomer-Sourced Structure Iteration” below and for the detailed 
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Fig. 5. HM-387 stably binds to the GTP-bound NRAS-R61 and can induce the behaviour of SW-II to the “off” state of GDP-bound NRAS-R61. (A) Structural diagram 
of HM-387, corresponding to the “Binding state I” (C); (B) Probability distribution of the distance between R61 and P𝛽 of GTP/GDP; (C) The binding state of HM-387 
when bound to GTP-bound NRAS-R61; (D) Surface version of “Binding state I” and “Binding state II” (water molecules and ions are not shown).
iterative process, see Section “Full details of the drug design process” in 
SM.

In summary, considering the ligand/receptor flexibility as well as 
the distribution of charges and of surrounding water and ions, we pro-
2424

ceed with a set of MD simulations (three independent trajectories of an 
HM-387+GTP-bound NRAS-R61, for a total 3 μs), that have been em-
ployed to explore in detail the dynamic binding model of HM-387 and 
the impact of HM-387 binding on GTP-bound NRAS-R61. The results 
of these MD simulations reveal in detail the active site of HM-387 and 

the interaction mode between HM-387 and GTP-bound NRAS-R61, as 
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shown in Fig. 5 C and D. From the analysis of trajectories, we have 
found that HM-387 has two binding states on the surface of GTP-
bound NRAS-R61. First, HM-387 tightly binds to GTP-bound NRAS-R61 
(“Binding state I”). As the simulation proceeds, HM-387 can induce 
the breakage of the HB between R61 and the GTP phosphate group 
and stabilise in a “Binding state II”. Interestingly, the conformational 
characteristics of SW-II in “Binding state II” are very similar to the GDP-
bound NRAS-R61 case. Moreover, the statistical results of the three 
independent trajectories show that the ratio of “Binding state I” and 
“Binding state II” is about 1:2. To demonstrate this more intuitively, we 
display the probability distribution of the distance between R61 and P𝛽
of GTP/GDP in Fig. 5 B. Overall, the combination of the three gener-
ations of structural iteration, docking analysis and MD simulation led 
to the design of HM-387, a potential selective inhibitor of NRAS-Q61 
positively charged mutations.

3. Conclusions

The conformational characteristics of NRAS proteins and their un-
derlying atom-level molecular interactions have been thoroughly anal-
ysed by means of extensive MD simulations and trajectory analysis. Q61 
mutations can result in an altered modification of electric charge, which 
in turn alters the interaction of SW-II with its surroundings. The HB in-
teractions of residue 61 with the P𝛾 phosphate group and residue 61 
with water are crucial to the corresponding conformational changes of 
SW-II. With the occurrence of positively charged Q61 mutations (R61 
and K61), the HB interactions between residue 61 and water are sig-
nificantly enhanced. Due to the strong HB interaction between GTP 
phosphate group and R61/K61, SW-II maintains relatively low confor-
mational fluctuations and there exists a small targetable pocket between 
𝛼-helix 3. When GTP is converted to GDP, the HB interactions of residue 
61 with water are enhanced as the interaction of residue 61 with the 
terminal phosphorus vanishes, causing SW-II to be separated from the 
protein surface and forming a huge cavity. In contrast, the L61 muta-
tion reduces the affinity of SW-II to aqueous solution and the side chain 
of LEU can be captured by the hydrophobic pocket on the 𝛼-helix 3, 
thereby anchoring SW-II in the protein surface.

Given that the proportion of positively charged mutations in NRAS-
Q61 is greater than 75%, then an isomer-sourced structure iteration 
method was proposed to design the potential inhibitors targeting the 
potentially druggable pocket of the NRAS positively charged mutation. 
In the Section “In silico development of potential inhibitors targeting 
NRAS-Q61 mutations using the ISSI method”, considering GTP-bound 
NRAS-R61 only as an example, the whole process of designing and ob-
taining a prototype inhibitor (HM-387) by means of the ISSI method 
is fully demonstrated. The compound HM-387 can tightly bind to GTP-
bound NRAS-R61 (“Binding state I”) and gradually induce the protein 
conformation transition toward the “off-like” state (“Binding state II”). 
Switches between the two canonical states (active-inactive) of KRAS 
have been recently observed [63] by NMR measurements and related 
to the mechanism of action of a new covalent inhibitor (BBO-8956) of 
KRAS-G12C. This particular drug can significantly perturb the equilib-
rium of the on-off state and induce the GTP-bound KRAS-G12C species 
towards the inactive state. This also indicates the potential feasibility 
for targeting GTP-bound NRAS-Q61 positively charged mutations. In 
summary, the potential drug reported in the present work may be a 
first step towards the design of an effective inhibitor for NRAS-based 
cancers, although further development of the molecular design of the 
drug, based on wet-lab data, would be in order. We should point out 
that the synthesis and testing in a wet-lab of such a compound is a long 
and complex process and it has not been considered in the present work. 
In conclusion, we have disclosed the conformational changes of NRAS 
oncoproteins in detail at the atomic level and provided a new in silico
drug design method called isomer-sourced structure iteration that can 
2425

be useful for the discovery of potential inhibitors for oncogenes.
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A final remark concerning potential extensions of this work: it would 
be of great interest a comparison of compounds obtained from ISSI with 
others designed using alternative techniques, or in the current case, 
the comparison of HM-387 to MRTX-1133 regarding the binding of 
such drugs to NRAS-R61. A way to carry out this comparison might be 
through the computation of Gibbs free-energy surfaces for the different 
drug bound at NRAS-GTP/GDP complexes. A series of metadynamics 
calculations of such free energies are currently underway in our lab.

4. Materials and methods

4.1. Setting of molecular dynamics simulation parameters

Our main computational tools have been microsecond scale MD, 
which is well suited to model a wide variety of biosystems at all-atom 
level, such as cell membranes [64,65], proteins [66] or micelles [67]
to mention a few examples. In the present work we conducted MD sim-
ulations of eight NRAS isoforms with sequences represented in Fig. 1 
of SM. Each system contained one isoform of the GTP or GDP bound 
NRAS complex fully solvated by 5,699 TIP3P water molecules [68] in 
potassium chloride solution (0.15 M) and magnesium chloride (0.03 M)
yielding a system size of 19,900 atoms.

All MD inputs were generated by means of the CHARMM-GUI solu-
tion builder [69–71] assuming the CHARMM36m force field [31]. The 
different evolutions of his force field have been tested with high reli-
ability throughout the last 20 years [72,31,73]. Our choice is due not 
only to its wide success in a large variety of biosystems, but because it 
includes the parameterisation of the species GTP and GDP (that can 
be found in the corresponding CHARMM36m topology file: https://
www .charmm -gui .org /?doc =archive &lib =csml) and of many small-
molecules. All bonds involving hydrogens were set to fixed lengths, 
allowing fluctuations of bond distances and angles for the remaining 
atoms. Crystal structures of GDP-bound NRAS and GTP-bound NRAS 
were downloaded from RCSB PDB Protein Data Bank [33], namely file 
names “6zio” and “5uhv”. The sets of NRAS proteins (wild type, Q61R, 
Q61K and Q61L) were solvated in a water box, all systems were energy 
minimised and well equilibrated (NVT ensemble) before generating 
the production runs. 24 independent production runs were performed 
within the NPT ensemble for 9 μs (for a total 216 μs). All meaningful 
properties were averaged from 3 independent trajectories.

The pressure and temperature were set at 1 atm and 310.15 K re-
spectively. In all MD simulations, the GROMACS/2021 package (version 
released on January 28th, 2021) was employed [32]. A time step of 
2 fs was used in all equilibration and production simulations and the 
particle mesh Ewald method with Coulomb radius of 1.2 nm was em-
ployed to compute long-ranged electrostatic interactions. The cutoff 
for Lennard-Jones interactions was set to 1.2 nm. Pressure was con-
trolled by a Parrinello-Rahman piston with damping coefficient of 5 
ps−1 whereas temperature was controlled by a Nosé-Hoover thermostat 
with a damping coefficient of 1 ps−1. Periodic boundary conditions in 
three directions of space have been taken. The MD simulation param-
eters for subsequent exploration of the binding mode of HM-387 and 
GTP-bound NRAS-Q61R are the same as above.

4.2. Trajectory analysis and visualisation

The GROMACS/2021 package [32] was employed for the MD sim-
ulations, whereas the software VMD [74], UCSF Chimera [75] and 
LigPlot+ [76] for visualisation purposes and the R-package Bio3D [39]
was used for trajectory analysis (“cross-correlation analysis”).

4.3. Isomer-sourced structure iteration

In this section we provide an overview of the new protocol isomer-

sourced structure iteration, including input content preparation, structure 

iteration and judging criteria. Compared with other virtual screening 

https://www.charmm-gui.org/?doc=archive&lib=csml
https://www.charmm-gui.org/?doc=archive&lib=csml
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Fig. 6. Schematic diagram of the “Isomer-sourced structure iteration” in silico
drug design method.

methods, the ISSI method has the following differences: (1) it uses the 
inhibitor’s backbone structure of homologous proteins as starting tem-
plates, the structural similarity of homologous proteins may save the 
workload required for chemical structure template screening to a cer-
tain extent; (2) during the structure iteration, substituents are used as 
modular tools to splice with the template to quickly find the most suit-
able combination. In the current version reported here, the ISSI process 
follows the established procedure shown schematically in Fig. 6. It can 
be summarised as follows:

1. The input content mainly consists of “receptor structures” and a 
“isomer-sourced template”. Here we used MD simulations to ex-
plore the impact of Q61 mutations on the NRAS conformational 
characteristics, and then obtain the “receptor structure” for the 
forthcoming structure iteration process.

2. The compound MRTX-1133 [62] was selected as the “isomer-
sourced template” molecule, since MRTX-1133 can target the SW-II 
pocket of KRAS-G12D (between SW-II and 𝛼-helix 3 of KRAS-
G12D). The action site of MRTX-1133 is close to the targetable 
pocket on the “receptor structure” (GTP-bound NRAS-Q61R). The 
binding pattern of “template” and “receptor” structures is stud-
ied through docking (here we named it “Docking-I”), and then the 
structural iteration sequence of the substituents is determined.

3. Subsequent structural iterations and the 3D models of the template 
molecule and subsequent iteration molecules were constructed by 
Cgen-FF [77,78]. We select the part of the template to stay un-
changed (i.e. the “core”), whereas the remaining parts are con-
sidered as “substituent residues” (𝑅1, 𝑅2, 𝑅3). These residues can 
be any biological structure satisfying two conditions: (a) its dock-
2426

ing score to the “receptor” is in a high (absolute) range and (b) 
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it maximises the number of hydrogen-bonds that the residue can 
potentially form.

4. First structural iteration (core of MRTX-1133 + substituent 𝑅1, 
keeping 𝑅2 and 𝑅2 unchanged). Then the structure generated by 
structure iteration is docked (Docking-X) with the receptor, to se-
lect the optimal 𝑅1. Second structural iteration, fixing the selected 
𝑅1 and the original 𝑅3, then iterating 𝑅2. Third structural itera-
tion, fixing the selected 𝑅1 and 𝑅2, then iterating 𝑅3.

5. The potential candidates formed by the “core” and three selected 
residues will be further verified by further MD simulations or ex-
perimental test (if conditions permit it). The reader should notice 
that the number of structural iterations can be increased or de-
creased as needed. In the present work, as a sort of a benchmark 
example, we set up three generations of structural iterations for 
𝑅1, 𝑅2, 𝑅3 and finally we get the potential candidate HM-387 (pro-
cess shown in Fig. 8 of SM and the final prototype shown in Fig. 5).
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