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Abstract: Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed
cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic
differentiation of DPCs and affects tooth development, although the precise mechanisms remain
unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for mela-
tonin that plays a critical role in cell differentiation and embryonic development. This study aimed to
explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its
pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was
significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression
of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity
and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was
suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of
odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising
small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced
odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these
results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and
mediate the pro-odontogenic effect of melatonin.

Keywords: nuclear receptor; retinoid acid receptor-related orphan receptor α; melatonin; dental
papilla cells; odontoblastic differentiation

1. Introduction

Oral diseases such as dental caries, pulp and periodontal diseases, dental trauma and
tooth loss are major public health problems worldwide, affecting the general health and
quality of life of individuals [1]. Currently, conventional treatments are widely used in
clinical practice, including root canal therapy, dental prostheses, and implants; however,
these techniques cannot completely recover pulp vitality and tooth function. Therefore, the
promising therapeutic strategy of regenerative medicine is gaining much attention for oral
diseases because they can repair or regenerate various damaged dental tissues [2,3]. To
facilitate the application of dental regeneration, it is essential to understand the process
of tooth development. Dental papilla cells (DPCs), derived from the cranial neural crest,
are precursors of odontoblasts and are responsible for dentinogenesis; thus, they play an
indispensable role in tooth development [4–6]. With the induction of the inner enamel
epithelium, undifferentiated DPCs first become preodontoblasts and then elongate and
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polarize, and finally differentiate into mature odontoblasts to synthesise and secrete pre-
dentin [7]. When the root is incompletely formed, dental papilla residing in the apical zone
is called the apical papilla, which still contains a number of mesenchymal stem cells [8].
These cells contribute to root development, even in the regenerative endodontic proce-
dures [9,10]. Furthermore, DPCs have the potential to self-renew and differentiate into
functional odontoblast-like cells in vitro; therefore, they are considered promising seed
cells for dental tissue regeneration [11–13]. However, the precise mechanisms underlying
odontoblastic differentiation of DPCs are not fully understood. The exploration of related
mechanisms will undoubtedly contribute to the development of dental tissue engineering.

Melatonin (N-acetyl-5-methoxytryptamine) is mainly synthesised in and secreted by
the pineal gland in a circadian rhythm. It has diverse physiological and pharmacological
functions, including free radical scavenging, antiaging, immune regulation and repro-
duction control [14–18]. These predominant effects are generally mediated by membrane
receptors (MT1 and MT2), nuclear receptors, cytosolic binding sites (MT3 and calmodulin)
and mitochondria [19–21]. Recently, numerous studies have shown that melatonin regu-
lates the development of various tissues and organs, including the skin, hair, bone, liver
and the nervous system [22–25]. In addition, melatonin has been extensively studied in
the oral cavity, such as in bone remodelling, osteointegration of dental implants, periodon-
tal disease and oral cancer; however, the effect of melatonin on tooth development and
regeneration has not received sufficient attention [26–30]. Previously, we demonstrated
that melatonin promoted the odontoblastic differentiation of DPCs in vitro and affected
dentin formation in vivo, thus indicating that melatonin may play a critical role in tooth
development [31,32]. However, the precise mechanisms underlying these effects have not
yet been elucidated.

The retinoid acid receptor-related orphan receptors (RORs), which are members of
the steroid hormone receptor superfamily, comprise three distinct subtypes, RORα, RORβ,
and RORγ, which exhibit a typical structure containing four functional domains—a highly
variable N-terminal domain, a highly conserved DNA-binding domain, a C-terminal
ligand-binding domain and a hinge domain [33]. The molecular functions of RORs are
usually achieved by regulating gene transcription through binding as a monomer to the
ROR response elements (ROREs), comprising an AGGTCA motif preceded by an A/T-rich
sequence in the promoter regions of target genes [34,35]. RORα is broadly expressed in
various tissues and is considered a crucial regulator of many biological processes, such as
circadian rhythm, metabolism, embryonic development and cellular differentiation [36–39].
In RORα-deficient mice, RORα has been shown to participate in the regulation of the
development of the cerebellum, hair and lymphocyte [36,40,41]. Studies have also shown
that RORα regulates adipogenic differentiation and myogenic differentiation [42,43]. More-
over, growing evidence suggests that RORα is involved in bone metabolism. In an in vitro
experiment, RORα1 promoted the expression of osteogenic markers and inhibited TNF-
induced NF-κB activation, which is critical for bone resorption [44–46]. In another in vivo
study, RORα (−/−) mice exhibited thin long bones and osteopenia when compared to the
heterozygote and wild-type animals, indicating that bone formation and maintenance were
impaired [47]. These findings indicate that RORα is a positive regulator of bone develop-
ment; however, no information is currently available regarding the functional role of RORα
in odontoblastic differentiation and tooth development. In addition, RORα is known as
the nuclear receptor for melatonin, and thus, it shares some effects of melatonin on oxida-
tive stress, immune response, cardiovascular disease and liver fibrosis [48–51]. However,
whether RORα mediates the pro-odontogenic effect of melatonin remains unknown.

Both dentin and bone are hard tissues, and their formation has many similarities.
Moreover, in previous studies, we found that the pro-odontogenic effect of melatonin is not
mediated by membrane receptors [31]. Based on this, we hypothesised that RORα could
regulate odontoblastic differentiation and that melatonin promotes DPC differentiation
in an RORα-dependent manner. To test this hypothesis, we first examined the expression
pattern of RORα both in vitro and in vivo and then determined the role of RORα in the
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odontoblastic differentiation of DPCs by overexpression and knockdown of RORα. Finally,
we investigated the influence of RORα on melatonin-induced odontoblastic differentiation.
Our study would improve a deep understanding of tooth development and provide a
potential target for dental tissue regeneration.

2. Results
2.1. Expression of Nuclear Receptor RORs in Rat DPCs (rDPCs)

To detect whether nuclear receptor RORs are expressed in rat DPCs (rDPCs), we
performed reverse transcription polymerase chain reaction (RT-PCR) and agarose gel
electrophoresis assay using specific primers for RORα, RORβ, and RORγ. RT-PCR data
revealed that RORα and RORβ, but not RORγ, were expressed in rDPCs; moreover, the
brightness of band of RORα was higher than that of RORβ (Figure 1a). Immunofluores-
cence staining further confirmed the presence of RORα at the protein level and showed
that the RORα protein was mainly localised in the nuclei of rDPCs (Figure 1b).
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Figure 1. Expression of nuclear receptor retinoid acid receptor-related orphan receptors (RORs)
in rat dental papilla cells (rDPCs). (a) Total RNA was extracted from rDPCs and detected by
reverse transcription polymerase chain reaction (RT-PCR) and agarose gel electrophoresis assay
using specific primers for RORα, RORβ, RORγ, and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). RT-PCR without primers served as the negative control (NC); (b) Immunofluorescence
staining was performed with polyclonal anti-RORα antibody (green), and nuclei were labelled with
4-6-diamidino-2-phenylindole (DAPI, blue). Scale bar: 50 µm.

2.2. RORα Is Upregulated during Odontoblastic Differentiation of rDPCs In Vitro

To explore whether RORα is involved in odontoblastic differentiation, we first de-
termined the expression pattern of RORα in rDPCs during odontoblastic differentiation.
rDPCs were cultured in an osteogenic/odontogenic induction medium (OS) for 3 or 7 days
and then the mRNA and protein levels of RORα and odontoblastic markers were detected
by quantitative RT-PCR (qRT-PCR) and western blotting, respectively. After 3- and 7-day
induction, the mRNA levels of odontoblast-related genes, including dentin sialophospho-
protein (DSPP), dentin matrix protein 1 (DMP1), and alkaline phosphatase (ALP), were
remarkably elevated (Figure 2a). Consistently, the protein level of DSPP was increased on
day 7, and the protein level of DMP1 was upregulated on days 3 and 7 (Figure 2b). These



Molecules 2021, 26, 1098 4 of 18

data indicated that DPCs were successfully induced to differentiate into odontoblasts. In-
terestingly, RORα was significantly upregulated at the mRNA and protein levels following
odontoblastic induction on both days 3 and 7 (p < 0.05), which implied that RORα may be
involved in odontoblastic differentiation (Figure 2a,b).
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Figure 2. The expression pattern of retinoid acid receptor-related orphan receptor α (RORα) and
odontogenic markers in rat dental papilla cells (rDPCs) during odontoblastic differentiation. rDPCs
were cultured in maintained medium (control) or odontogenic induction medium (OS) for 3 and 7
days (3d and 7d), respectively. (a) The mRNA levels of RORα, dentin sialophosphoprotein (DSPP),
dentin matrix protein 1 (DMP1), and alkaline phosphatase (ALP) were quantified by quantitative
reverse transcription polymerase chain reaction (qRT-PCR). Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as the normalisation control; (b) The protein levels of RORα, DSPP, and
DMP1 were determined by western blotting and normalised to the protein level of β-actin. All data
are presented as the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Control group.

2.3. RORα Is Increased during Odontoblastic Differentiation In Vivo

To further verify that RORα was increased during odontoblastic differentiation, we
detected the protein expression pattern of RORα during odontoblastic differentiation in
the first lower molar of 1-day postnatal Sprague-Dawley rats. Immunochemical analysis
showed all stages of the differentiation of DPCs into odontoblasts (Figure 3a). RORα
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was detected in undifferentiated DPCs; however, this expression was weak (Figure 3b).
In preodontoblasts, the RORα expression levels began to increase (Figure 3c). With the
progression of odontoblastic differentiation, RORα was strongly expressed in immature
odontoblasts (Figure 3d), and the intense expression of RORα was maintained in mature
odontoblasts (Figure 3e). These results suggested that RORα participated in odontoblastic
differentiation and dentin formation. In addition, RORα was observed in preameloblasts
and ameloblasts (Figure 3d,e).
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Figure 3. The expression pattern of retinoid acid receptor-related orphan receptor α (RORα) dur-
ing odontoblastic differentiation in vivo. (a) Immunochemistry analysis showed the changes in
expression levels of RORα during odontoblastic differentiation in the first lower molar of 1-day
postnatal Sprague-Dawley rats; (b) RORα was weakly expressed in undifferentiated DPCs; (c) The
expression of RORα began to increase in preodontoblasts; RORα was strongly expressed in immature
odontoblasts (d), and the intense expression of RORα was maintained in mature odontoblasts (e).
Red arrows mark RORα-positive cells. AB, ameloblasts; DP, dental papilla; DPC, dental papilla
cells; EO, enamel organ; IEE, inner enamel epithelium; iOB, immature odontoblasts; mOB, mature
odontoblasts; pAB, preameloblasts; PD, predentin; pOB, preodontoblasts. Scale bar: (a) 200 µm; (b–e)
20 µm.
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2.4. Overexpression of RORα Promotes Odontoblastic Differentiation in rDPCs

To determine the functional role of RORα in the regulation of odontoblastic differen-
tiation, we overexpressed RORα in rDPCs by transfecting them with pcDNA3.1-RORα.
Cells transfected with pcDNA3.1-NC were used as the negative control. The efficiency of
RORα overexpression was confirmed by qRT–PCR and western blotting, which demon-
strated a marked upregulation of RORα at both the mRNA and protein levels in the RORα
overexpression group when compared with the negative control (Figure 4a).

Molecules 2021, 26, 1098 8 of 20 
 

 

 
Figure 4. Effect of retinoid acid receptor-related orphan receptor α (RORα) overexpression on odontoblastic differentiation 
of rat dental papilla cells (rDPCs). rDPCs were transfected with pcDNA3.1-RORα (RORα group) or pcDNA3.1-NC 
(negative control group) for 24 h and then cultured in control or odontogenic induction (OS) medium for 3 or 7 days. (a) 
The transfection efficiency of RORα overexpression was assessed by quantitative reverse transcription polymerase chain 
reaction (qRT-PCR) and western blotting. (b) The mRNA levels of dentin sialophosphoprotein (DSPP), dentin matrix 
protein 1 (DMP1), and alkaline phosphatase (ALP) were detected by qRT-PCR after 3-day induction. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as the normalisation control; (c) The protein levels of DSPP and DMP1 
were measured by western blotting after 7-day induction. β-actin was used as the internal control; (d) ALP activity in 
cellular lysates was determined after 7-day odontogenic induction. (e) The formation of mineralized nodules was 
visualized by alizarin red staining at 7 days after induction. Scale bar: 100 μm. All data are presented as the mean ± SD (n 
= 3). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. pcDNA3.1-NC or Control-NC group, # p < 0.05, ### p < 0.001 vs. OS-NC group. 

2.5. Knockdown of RORα Inhibits Odontoblastic Differentiation in rDPCs 
To confirm the effect of RORα on odontoblastic differentiation, we knocked down 

RORα using small interfering RNA (si RORα) in rDPCs. Cells in the negative control 
group were transfected with si NC. After transient transfection, both the mRNA and 
protein levels of RORα were efficiently downregulated when compared with those of the 

Figure 4. Effect of retinoid acid receptor-related orphan receptor α (RORα) overexpression on odontoblastic differentiation
of rat dental papilla cells (rDPCs). rDPCs were transfected with pcDNA3.1-RORα (RORα group) or pcDNA3.1-NC
(negative control group) for 24 h and then cultured in control or odontogenic induction (OS) medium for 3 or 7 days. (a)
The transfection efficiency of RORα overexpression was assessed by quantitative reverse transcription polymerase chain
reaction (qRT-PCR) and western blotting. (b) The mRNA levels of dentin sialophosphoprotein (DSPP), dentin matrix protein
1 (DMP1), and alkaline phosphatase (ALP) were detected by qRT-PCR after 3-day induction. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as the normalisation control; (c) The protein levels of DSPP and DMP1 were measured
by western blotting after 7-day induction. β-actin was used as the internal control; (d) ALP activity in cellular lysates was
determined after 7-day odontogenic induction. (e) The formation of mineralized nodules was visualized by alizarin red
staining at 7 days after induction. Scale bar: 100 µm. All data are presented as the mean ± SD (n = 3). * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. pcDNA3.1-NC or Control-NC group, # p < 0.05, ### p < 0.001 vs. OS-NC group.
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Next, we assessed the effect of RORα overexpression on odontoblast-related genes.
Twenty-four hours after transfection, rDPCs were cultured in maintained medium or OS
medium for the specified time. qRT-PCR showed that after 3-day induction, the mRNA
levels of DSPP, DMP1, and alkaline phosphatase (ALP) were significantly increased in
the OS group (p < 0.001) (Figure 4b). When compared with the negative control group,
the transcriptional levels of DSPP, DMP1, and ALP were significantly higher in the RORα
overexpression group during odontogenic induction (p < 0.001), whereas only DSPP and
ALP were upregulated in the maintained medium group (p < 0.01) (Figure 4b). Consistently,
the protein levels of DSPP and DMP1 were increased after 7 days of odontogenic induction
and were further upregulated by RORα overexpression (Figure 4c). Moreover, ALP activity
was upregulated in the OS group on day 7, and ALP activity was much higher in the RORα
overexpression group than in the negative control group (Figure 4d). To detect the effect
of RORα overexpression on matrix mineralisation, alizarin red staining was performed.
As demonstrated in Figure 4e, calcified nodules were only observed in the OS group after
7 days of odontogenic induction, and RORα overexpression led to a 1.5-fold increase in the
formation of mineralized nodules. Thus, RORα played a positive role in the odontoblastic
differentiation of DPCs.

2.5. Knockdown of RORα Inhibits Odontoblastic Differentiation in rDPCs

To confirm the effect of RORα on odontoblastic differentiation, we knocked down
RORα using small interfering RNA (si RORα) in rDPCs. Cells in the negative control group
were transfected with si NC. After transient transfection, both the mRNA and protein
levels of RORα were efficiently downregulated when compared with those of the negative
control group (Figure 5a). si RORα-2 yielded the highest knockdown efficiency (>70%);
therefore, it was selected for subsequent experiments.

As shown in Figure 5b, the mRNA levels of DSPP, DMP1, and ALP were upregulated
after 3 days of odontogenic induction (p < 0.001), whereas in the OS group, their tran-
scriptional levels were significantly attenuated in response to RORα knockdown (p < 0.05).
Similarly, under odontogenic induction, the protein levels of DSPP and DMP1 were in-
creased on day 7, but they were downregulated in the RORα knockdown group when
compared with the negative control group (Figure 5c). ALP activity was notably upregu-
lated in the OS group after 7-day induction; however, there was a notable decrease in ALP
activity in the RORα knockdown group (Figure 5d). Moreover, as indicated by alizarin
red staining, inhibition of RORα also greatly suppressed mineralized nodules formation
after 7 days of odontogenic induction (Figure 5e). However, when rDPCs were cultured in
maintained medium without odontogenic induction, the results did not differ between the
si RORα and si NC groups (p > 0.05). Accordingly, RORα acted as a positive regulator of
the odontoblastic differentiation of DPCs.

2.6. Melatonin Promotes Odontoblastic Differentiation of rDPCs in an RORα-Dependent Manner

Previous studies of our group have suggested that under odontogenic induction,
melatonin promotes the odontoblastic differentiation of rDPCs and matrix mineralisation in
a dose-dependent manner, with 10−8 mol/L melatonin displaying the optimal stimulative
effect [31,32]. Thus, OS medium supplemented with 10−8 mol/L melatonin was used for
our subsequent studies. To determine whether RORα mediates the pro-odontogenic effect
of melatonin on rDPCs, we first examined whether melatonin induces RORα expression.
We treated rDPCs with OS medium in the presence or absence of 10−8 mol/L melatonin for
7 days. As shown in Figure 6a,b, the mRNA and protein levels of RORα were significantly
increased in the melatonin-treated group (p < 0.001), along with the apparent upregulation
of DSPP, DMP1, and ALP (p < 0.05).
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Next, we performed another set of loss-of-function experiments in rDPCs using siRNA
to knock down RORα expression, followed by incubation in OS medium with 10−8 mol/L
melatonin for 7 days. Compared with the negative control group, the mRNA levels of DSPP,
DMP1, and ALP were notably downregulated in the RORα knockdown group (Figure 6c).
In addition, as demonstrated in Figure 6d, inhibition of RORα markedly attenuated the pro-
tein levels of DSPP and DMP1. Consistent with the reduced odontoblast-related markers,
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ALP activity analysis showed that silencing RORα significantly blunted the effects of mela-
tonin on ALP activity (p < 0.001) (Figure 6e). Furthermore, after odontogenic induction with
OS medium containing melatonin, alizarin red staining revealed calcium nodule deposition.
However, RORα knockdown led to a 2.5-fold decrease in the mineralized nodule formation
(Figure 6f). These data indicated that RORα knockdown attenuated melatonin-induced
odontoblastic differentiation of DPCs, implying that melatonin promoted odontoblastic
differentiation via the nuclear receptor RORα.

3. Discussion

In this study, we explored the role of the nuclear receptor RORα in odontoblastic
differentiation. First, we demonstrated that endogenous RORα was expressed in rDPCs and
was significantly upregulated during odontoblastic differentiation both in vitro and in vivo.
Second, RORα overexpression was shown to promote the odontoblastic differentiation of
rDPCs, whereas RORα knockdown inhibited it. Finally, our results revealed that RORα
mediated the pro-odontogenic effect of melatonin. Collectively, our findings provide
the first evidence that the nuclear receptor RORα is a novel positive regulator of the
odontoblastic differentiation of DPCs and is a critical mediator in melatonin-induced
odontoblastic differentiation.

Nuclear receptors, as DNA-binding transcription factors, can regulate the expression
of specific target genes at the transcriptional level. These genes play fundamental roles
in cell proliferation, differentiation, and embryonic development [52]. Multiple transcrip-
tion factors have been shown to be pivotal in odontogenesis. For example, runt-related
transcription factor 2 and osterix are considered vital transcriptional factors for odonto-
blastic/osteogenic differentiation [53,54], and other transcription factors, such as oestrogen
receptor α, ATF6, and TRPS1, also affect the differentiation of stem cells into odonto-
blasts [55–57]. RORs, belonging to the nuclear receptor superfamily, comprise three specific
isotypes: RORα, RORβ, and RORγ [33]. RORα is widely expressed in various tissues, in-
cluding the brain, liver, heart, lungs, kidney, skin, adipose, and bone marrow [36,40,46,49].
RORβ displays a relatively restricted expression pattern, being limited to the brain, pineal
gland, and retina [58,59]. In contrast, the expression of RORγ1 can be detected in a variety
of tissues, such as the liver, kidney, adipose tissue, and skeletal muscle; however, the
expression of RORγt (RORγ2) is extremely limited to the immune system [60,61]. Corre-
spondingly, these subtypes exhibit different regulatory effects on cellular differentiation
and tissue development. For example, RORα is implicated in the process of bone for-
mation and regulates the development of the cerebellum [36,47]. In a previous study,
RORβ-deficient mice exhibited retinal degeneration, indicating the role of RORβ in the
development of the retina [59]. RORγ is essential for the formation of lymphoid tissues
and regulates thymopoiesis [60,62]. However, to date, no studies have demonstrated the
role of RORs in tooth development. In this study, primary rDPCs derived from the tooth
germs of the first molars were selected because they are the precursors of odontoblasts
and can differentiate into odontoblast-like cells under odontogenic induction in vitro [6].
Therefore, DPCs represent a reasonable model system for investigating the expression and
function of RORs in the context of odontoblastic differentiation and tooth development.
This study was the first to detect that RORα was highly expressed in rDPCs and that it was
mainly located in the nuclei. In contrast, it was shown that the expression of RORβ was
lower and RORγ was not expressed. This expression pattern indicated that RORα might
be related to DPC differentiation.

Odontoblastic differentiation is a critical process of tooth development. During this
process, DPCs are first induced to become preodontoblasts, followed by their elongation
and polarisation to become immature odontoblasts, finally differentiating into mature
odontoblasts. Differentiated odontoblasts, including immature and mature odontoblasts,
synthesise and secrete extracellular matrix proteins to produce dentin [7]. The process of
differentiation from DPCs to secretory odontoblasts involves many molecules at each stage.
ALP is considered an early-stage marker of odontoblastic differentiation, which can facili-
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tate mineral deposition [63,64]. DSPP and DMP1, members of the small integrin-binding
ligand N-linked glycoprotein gene family, are highly expressed in mature odontoblasts
and are essential for mineralisation of the extracellular matrix, as well as dentin forma-
tion [53,65,66]. Therefore, we selected DSPP, DMP1, and ALP as the specific markers for
odontoblastic differentiation. In this study, after odontogenic induction for 3 or 7 days
in vitro, the expression levels of DSPP, DMP1 and ALP were found to be remarkably
upregulated, indicating that rDPCs were undergoing odontoblastic differentiation; these
results were consistent with those of our previous study [13]. Furthermore, we observed
that the expression of RORα significantly increased at both the mRNA and protein levels
during this process. Through immunochemical analysis, we found that RORα protein was
gradually upregulated along with the progression of odontoblastic differentiation in vivo
and was strongly expressed in differentiated odontoblasts. These observations were in
agreement with those of previous studies, which showed that RORα is upregulated in
human bone marrow mesenchymal stem cells during osteogenic differentiation [46,47].
More importantly, these observations suggested that RORα is positively correlated with
odontoblastic differentiation and tooth development.

Mounting evidence has shown the key role of RORα in both cellular differentia-
tion and bone metabolism. Previous functional studies have demonstrated that RORα
overexpression can improve the expression of osteogenic markers, including ALP, bone
sialoprotein (BSP), DMP1, osteocalcin, and collagen type I, and promote the formation
of mineralized nodules during osteogenesis, whereas RORα suppression inhibits these
responses [44,46,67]. Meanwhile, it has also been reported that RORα acts as a negative
regulator of adipocyte differentiation, which was indicated by the reduced expression of
adipogenic genes and decreased lipid accumulation [42,68]. Notably, RORα, as a tran-
scription factor, could directly bind to ROREs in the promoter regions of target genes to
regulate gene expression [34]. For instance, some studies revealed that RORα activates the
promoter activity of BSP and bone morphogenetic protein 2, which are vital for osteogenic
differentiation [47,67], whereas it suppresses the promoter activity of perilipin by com-
peting with peroxisome proliferator-activated receptor gamma (PPARγ), thus inhibiting
PPARγ-dependent adipogenesis [68]. It has also been demonstrated that there is a delicate
balance among transcription factors to determine the lineage differentiation of stem cells,
which is consistent with the different regulatory effects of RORα on osteogenesis and
adipogenesis [69]. In addition, RORα can inhibit bone resorption by suppressing TNFα-
induced inflammatory responses [44,45]. Furthermore, in vivo experiments showed that
RORα-knockout mice exhibit marked abnormalities in bone tissue, which are manifested
by thin long bones and reduced mineral content [47]. Although these findings strongly
indicate that RORα positively regulates osteogenic differentiation and bone development,
its specific functions in odontoblastic differentiation and tooth development have not been
investigated. Odontogenesis is similar to osteogenesis; for example, odontoblasts and os-
teoblasts share many similar properties, including the expression of relevant genes and the
production of calcified nodules in vitro. In this study, we observed the increased expression
of RORα in differentiated odontoblasts; thus, we hypothesised that RORα acts as a positive
regulator of odontoblastic differentiation. To test our hypothesis, we performed a series
of gain- and loss-of-function studies. We observed that overexpression of RORα could
stimulate the expression of DSPP and DMP1 at both the mRNA and protein levels and
enhance the mRNA level of ALP as well as ALP activity. Additionally, overexpression of
RORα could facilitate the formation of mineralized nodules after odontogenic induction. In
contrast, knockdown of RORα attenuated the upregulation of those genes in the presence
of OS medium. ALP activity and mineralisation was affected in a similar manner. Taken to-
gether, this is the first report showing that RORα promotes the odontoblastic differentiation
of rDPCs.

Initially, RORα was considered an orphan nuclear receptor without endogenous
ligands; however, after a series of studies, melatonin is now regarded as a moderate-
affinity ligand for RORα [70,71]. Although whether RORα is a true nuclear receptor of
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melatonin remains debatable [72], RORα mediates many important physiological and
pharmacological effects of melatonin, including circadian rhythm, oxidative stress, and
immune response [48,50,73]. Melatonin is a multifunctional molecule involved in various
biological processes [14–18,74]. Recently, melatonin has become an important research
area, with the primary focus on its potential in regenerative medicine [22]. Numerous
studies have shown that melatonin is implicated in the development and regeneration
of various tissues, including the bone, muscle, skin, hair, liver, kidney, bladder, and
nervous system [22–24,75,76]. However, research on the effects of melatonin on tooth
development and regeneration is limited. For example, it has been reported that melatonin
has effects on the biological and immunomodulatory properties of human dental pulp
stem cells, suggesting the potential clinical use of melatonin for attenuating inflammation
and promoting dental tissue regeneration in oral diseases [77]. In addition, we previously
demonstrated that physiological concentrations of melatonin, especially at 10−8 mol/L,
promotes the differentiation of DPCs into odontoblasts, although, the precise mechanism
remains unknown [31,32,78]. Melatonin mainly acts through membrane receptors (MT1
and MT2), nuclear receptors (RORα), cytosolic binding sites and mitochondria [19–21].
However, we previously found that luzindole, an MT1/MT2 receptor antagonist, cannot
inhibit melatonin-induced odontoblastic differentiation, excluding the possibility of a
membrane receptor-dependent mechanism [31]. Next, we focused on the potential role of
RORα. We observed that 10−8 mol/L melatonin enhanced the expression of DSPP, DMP1,
and ALP, which is consistent with the findings of previous studies [31,32]. Notably, this
process was accompanied by the upregulation of RORα. To further verify that melatonin
exerts its pro-odontogenic effect via the nuclear receptor RORα, we knocked down RORα in
rDPCs cultured in OS medium containing melatonin. Consequently, suppression of RORα
decreased the expression of DSPP, DMP1, and ALP and blunted the melatonin-induced ALP
activity and matrix mineralisation. Together, these data indicate that melatonin promotes
the odontoblastic differentiation of DPCs in an RORα-dependent manner. Meanwhile,
our laboratory noticed that the process of melatonin-induced differentiation of DPCs was
accompanied by changes in mitochondrial function and biogenesis [31,32]. Given that
RORα can affect mitochondrial function, fission and biogenesis, and can regulate the
transcription of mitochondria-related genes via direct binding to their ROREs [79–81],
further studies are still required to clarify whether RORα mediates the pro-odontogenic
effect of melatonin through mitochondria.

In conclusion, the present study provides the first evidence that the nuclear receptor
RORα is a positive regulator of odontoblastic differentiation and an important mediator of
melatonin-induced DPC differentiation into odontoblasts. These findings not only elucidate
the downstream mechanism of the pro-odontogenic effect of melatonin but also provide a
potential target for dental tissue regeneration.

4. Materials and Methods
4.1. Cell Isolation and Culture

All animal experiments were approved by the Ethics Committee of Zhongshan School
of Medicine, Sun Yat-sen University, China (No.2017-218). The dental papilla was gently
isolated from the first molar of 1-day postnatal Sprague-Dawley rats (purchased from Sun
Yat-sen University, Guangzhou, China) under a stereomicroscope (Stemi2000, Zeiss, Jena,
Germany) and minced into small pieces (approximately 1 mm3 in size). The tissue pieces
were then seeded on 10-cm culture dishes and maintained in α-minimal essential medium
(α-MEM; Gibco, Grand Island, NY, USA) containing 20% fetal bovine serum (FBS; Gibco,
Grand Island, NY, USA), 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco, Grand
Island, NY, USA) at 37 ◦C in 5% CO2 humidified air. Upon reaching 80–90% confluence,
cells were passaged using TrypLE (Gibco, Grand Island, NY, USA) and purified by a distinct
digestion method. Cells within 3–4 passages were used for subsequent experiments.

For odontoblastic differentiation, rDPCs were cultured in an osteogenic/odontogenic
induction medium (OS; α-MEM supplemented with 10% FBS, 1% antibiotics, 0.1 mM
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dexamethasone, 0.2 mM ascorbic acid, and 10 mM β-glycerophosphate; Sigma-Aldrich,
St. Louis, MO, USA). The induction medium was changed every 2 days. The cells were
harvested for qRT-PCR, western blotting, ALP activity assays, and alizarin red staining at
different time points.

4.2. Cell Transfection

To knockdown RORα expression, DPCs were seeded in 12-well plates at a density of
7.5 × 104 cells per well. Upon reaching 30–50% confluence, small interfering RNA (siRNA)
targeting rat RORα (si RORα, GenePharma, Suzhou, China) or negative control siRNA
(si NC, GenePharma, Suzhou, China) were transfected into DPCs at a final concentration
of 100 nM with RNAFit transfection reagent (Hanbio, Shanghai, China) for 8 h according
to the manufacturer’s protocol. To overexpress RORα expression, DPCs were seeded in
12-well plates at a density of 1.5 × 105 cells per well. The next day, when cells reached
60–80% confluence, they were transfected with 1 µg expression vector encoding rat RORα
(pcDNA3.1-RORα, GenePharma, Suzhou, China) or 1 µg empty vector (pcDNA3.1-NC,
GenePharma, Suzhou, China) per well using NeofectTM DNA transfection reagent (Neofect
Biotech, Beijing, China) according to the manufacturer’s instructions. Twenty-four hours
after transfection, the serum-free medium was replaced with maintained medium or
OS medium.

4.3. Immunofluorescence Staining

DPCs seeded on 35 mm glass bottom dishes were fixed with 100% cold methanol
(−20 ◦C) for 5 min at room temperature and were blocked in 5% bovine serum albumin
(BSA) for 1 h. Subsequently, DPCs were incubated with anti-RORα primary antibody
(1:200, Abcam, Cambridge, UK) at 4 ◦C overnight, followed by incubation with Dylight
488-conjugated secondary antibody (1:200, EarthOx, CA, USA) for 1 h at room temperature
in the dark. The nuclei were stained using 4-6-diamidino-2-phenylindole (DAPI; Roche,
Basel, Switzerland) for 5 min in the dark. The cells were then visualised under a laser
scanning confocal microscope (LSM 780; Zeiss, Jena, Germany).

4.4. Immunohistochemistry

The mandibles were dissected from 1-day postnatal Sprague-Dawley rats (purchased
from Sun Yat-sen University, Guangzhou, China), fixed in 10% buffered paraformaldehyde
for 48 h, and decalcified with 10% ethylenediaminetetraacetic acid (pH 7.4) for 5 days.
After dehydration and paraffin embedding, the tissues were cut into 5-µm sagittal sections.
Tissue sections were deparaffinized, rehydrated, and heat-retrieved in 0.01 mol/L citrate
buffer (pH 6.0) for 15 min at 100 ◦C followed by cooling at room temperature. Subsequently,
they were incubated in 3% hydrogen peroxide for 15 min at room temperature, blocked
with 5% BSA for 1 h, and then incubated with anti-RORα primary antibody (1:100, Abcam,
Cambridge, UK) at 4 ◦C overnight. After washing with PBS, the specimens were incubated
in Polymer Helper (Bioss, Beijing, China) and horseradish peroxidase (HRP)- anti-rabbit
IgG (Bioss, Beijing, China) at 37 ◦C for 20 min and then visualised using diaminobenzidine
in the dark and counterstained with haematoxylin. Finally, the slides were dehydrated,
transparentised with dimethylbenzene, and sealed using a mounting medium. The slides
were observed using a digital pathology slide scanner (Aperio AT2; Leica Biosystems,
Wetzlar, Germany).

4.5. RNA Isolation, Quantitative Real-Time Polymerase Chain Reaction and Agarose
Gel Electrophoresis

Total RNA was isolated from DPCs using an RNA-Quick purification kit (YISHAN
Biotechnology, Shanghai, China) according to the manufacturer’s instructions. For qRT-
PCR, first-strand cDNA was synthesised using PrimeScriptTM RT Master Mix Kit (TaKaRa,
Dalian, Japan) and then amplified with SYBR Green I Master Mix (Roche, Basel, Switzer-
land) in the LightCycler 480 Real-Time PCR System (Roche, Basel, Switzerland). The
relative mRNA expression of target genes was normalised to that of glyceraldehyde-3-
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phosphate dehydrogenase. For the agarose gel electrophoresis assay, amplified RT-PCR
products were synthesised using the HiScript II One Step RT-PCR Kit (Vazyme, Nanjing,
China) according to the manufacturer’s protocol, then separated on a 2% agarose gel and
visualised with a gel imaging system (BioDoc-It2 Imager; Analytik Jena US LLC, Jena,
Germany). The specific primers used in this study are listed in Table 1.

Table 1. Specific primers for polymerase chain reaction (PCR).

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

RORα CTACCAGAACAAGCAGAGA CGAACTCCACCACATACT
RORβ ATCCGCTAACAGGCACAGATG AGGAAAGAAAGAAAGGCGGCA
RORγ CTGGCTGCAAAGAAGACCCA CCCGTAGTGGATGCCAGATG
DSPP ACAGCGACAGCGACGATTC CCTCCTACGGCTATCGACTC
DMP1 CTGGTATCAGGTCGGAAGAATC CTCTCATTAGACTCGCTGTCAC
ALP GGAAGGAGGCAGGATTGA TCAGCAGTAACCACAGTCA

GAPDH TATGACTCTACCCACGGCAAGT ATACTCAGCACCAGCATCACC

4.6. Western Blotting

Total protein was extracted from the cells using a radio-immunoprecipitation assay
lysis buffer (RIPA) supplemented with protease and phosphatase inhibitors (Cwbio, Beijing,
China) and measured with a bicinchoninic acid (BCA) protein assay kit (Cwbio, Beijing,
China). Equal amount of protein lysates (20–30 µg/lane) were separated by 4–12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto polyvinylidene flu-
oride membranes (Millipore, Billerica, MA, USA). Then, the membranes were blocked with
5% non-fat milk for 2 h at room temperature. Subsequently, they were incubated overnight
at 4 ◦C with the following primary antibodies: polyclonal rabbit anti-RORα antibody
(1:2000, PA5-23268, Thermo Scientific, MA, USA), monoclonal mouse anti-DSPP antibody
(1:500, sc-73632, Santa Cruz, CA, USA), polyclonal rabbit anti-DMP1 antibody (1:1000,
NBP 1-45525, Novus Biologicals, Littleton, CO, USA), and monoclonal mouse anti-β-actin
(1:1000, AF0003, Beyotime, Shanghai, China). After washing with tris-buffered saline and
tween 20 (TBST), the membranes were incubated with the corresponding HRP-conjugated
secondary antibodies (1:2000, A0216, A0208, Beyotime, Shanghai, China) at room tempera-
ture for 1 h. The immunoreactive bands were detected using chemiluminescence detection
reagents (Millipore, Temecula, MA, USA) and visualised using an ImageQuant LAS 4000
mini system (GE Healthcare Life Sciences, Chicago, IL, USA). The intensities of the bands
were quantified using ImageJ 1.36b (NIH, Bethesda, MD, USA).

4.7. Alkaline Phosphatase Activity

DPCs were cultured in OS medium for 7 days. ALP activity in cellular lysates was
measured using an ALP activity detection kit (Beyotime, Shanghai, China) according to the
manufacturer’s instructions. The protein concentration was quantified using a BCA protein
assay kit (Cwbio, Beijing, China). One unit of ALP activity was defined as the amount that
liberated 1 mol p-nitrophenol per mg protein.

4.8. Alizarin Red Staining

DPCs were seeded into 12-well plates and cultured in OS medium for 7 days. After
fixation in 4% paraformaldehyde for 30 min, DPCs were stained with 1% alizarin red
staining solution (ARS; Cyagen, Suzhou, China) for 5 min at room temperature and
were then rinsed with distilled water. The matrix calcium deposition was scanned using
an inverted phase-contrast microscope (Axio 40; Zeiss, Jena, Germany). To quantify
the mineralized nodules, the stained cells were incubated in 0.1M hexadecylpyridinium
chloride monohydrate (Sigma-Aldrich, St. Louis, MO, USA) for 30 min. The absorbance of
the supernatant was then measured at a wavelength of 562 nm.
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4.9. Statistical Analysis

All data are presented as the mean ± standard deviation of triplicate independent
experiments. Two-group comparisons were assessed using Student’s two-tailed t-test.
Multiple group comparisons were conducted by one-way analysis of variance followed by
Fisher’s least significant difference post hoc test. Statistical analysis was performed using
SPSS 22.0 software (SPSS, Inc., Chicago, IL, USA) and p < 0.05 was considered statistically
significant.
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