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Abstract

This paper presents a region-based active contour method for the segmentation of intensity

inhomogeneous images using an energy functional based on local and global fitted images.

A square image fitted model is defined by using both local and global fitted differences.

Moreover, local and global signed pressure force functions are introduced in the solution of

the energy functional to stabilize the gradient descent flow. In the final gradient descent solu-

tion, the local fitted term helps extract regions with intensity inhomogeneity, whereas the

global fitted term targets homogeneous regions. A Gaussian kernel is applied to regularize

the contour at each step, which not only smoothes it but also avoids the computationally

expensive re-initialization. Intensity inhomogeneous images contain undesired smooth

intensity variations (bias field) that alter the results of intensity-based segmentation meth-

ods. The bias field is approximated with a Gaussian distribution and the bias of intensity

inhomogeneous regions is corrected by dividing the original image by the approximated

bias field. In this paper, a two-phase model is first derived and then extended to a four-

phase model to segment brain magnetic resonance (MR) images into the desired regions of

interest. Experimental results with both synthetic and real brain MR images are used for a

quantitative and qualitative comparison with state-of-the-art active contour methods to show

the advantages of the proposed segmentation technique in practical terms.

Introduction

Image segmentation is an important stage in image processing and computer vision [1]. Inten-

sity inhomogeneity is one of the well-known problems in image segmentation, which arises

from the imperfections of the image acquisition process or due to external interferences. It

manifests as a smooth intensity variation across the image that complicates the segmentation

of the objects contained in it. For instance, in medical image analysis, segmentation and regis-

tration stages are highly sensitive to spurious variations of image intensity. Therefore, the com-

plexity of intensity inhomogeneity can lead to false results and assumptions that can be critical
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for decision making by both doctors and radiologists. This is why numerous methods for

intensity inhomogeneity correction have been proposed in the past [2].

Thus, intensity inhomogeneity correction is often a pre-processing stage necessary for

achieving better image segmentation. In turn, correct segmentation makes intensity inhomo-

geneity correction rather trivial. Actually, both intensity inhomogeneity correction and seg-

mentation can be viewed as two intertwined processes. In segmentation-based intensity

inhomogeneity correction methods, both processes are merged such that they benefit from

each other.

The techniques that aim to avoid intensity inhomogeneity in the image acquisition process

are known as prospective methods. They are only capable of correcting intensity inhomogeneity

caused by the imaging device, not being able to segment the objects affected by intensity inho-

mogeneity. On the other hand, techniques that can correct an image and also segment the

objects affected by intensity inhomogeneity are called retrospective methods. Retrospective

methods are further classified according to the image segmentation method they apply into:

filtering methods [3, 4], surface fitting methods [5, 6], histogram-based methods [7, 8], and

active contours [9–15]. Segmentation-based methods [10–12] are the most versatile, since they

unify segmentation and bias correction in a single framework. In these methods, segmentation

and bias correction are applied in conjunction to benefit from each other.

Active contours are retrospective methods suitable for both image segmentation and bias

correction [10–12, 16–18]. The first active contour method was proposed in [19] in order to

segment an image by evolving a curve towards the boundary of an object contained in the

image. An energy functional is first defined by using image statistics, curvature and gradient

information. The curve is evolved by minimizing that energy functional. Active contour meth-

ods can be categorized into edge-based [19–21] and region-based [22–36] methods.

Edge-based active contour methods typically use image gradient information to define an

inflating balloon force that is used in the curve evolution process [20]. However, in case of

intense noise or weak edges, edge-based active contours can hardly converge to the right con-

tours. Therefore, edge-based methods are not suitable for that kind of images.

Alternatively, region-based active contour methods use statistical and curvature informa-

tion from the image in the formulation of the energy functional. They can be further character-

ized into global [22–26] and local [27–34] methods. Mumford and Shah [22] devised a global

region-based active contour method by assuming image homogeneity. Thus, traditional active

contour methods based on [22], such as the active contours without edges (ACWE) method

[23], cannot segment images with intensity inhomogeneity. These methods usually compute

intensity averages over the whole image. Therefore, they cannot deal with small changes

between distinct regions nor segment objects with weak or blurred boundaries. On the other

hand, local-based methods [27, 28] are able to distinguish small changes between the back-

ground and the foreground. Therefore, they are suitable for intensity inhomogeneous images.

A region-based active contour model able to process image information in local regions

was proposed by Li et al. in [27, 28]. The major contribution of that work was the introduction

of a local binary fitting (LBF) energy with a kernel function that enables the extraction of accu-

rate local image information. Therefore, that model can be used to segment images with inten-

sity inhomogeneity, which overcomes the limitation of piecewise constant models [23].

Fig 1(a) shows that a traditional region based active contour method (such as ACWE) is

unable to segment an image with an intensity inhomogeneous object. However, a local active

contour method (such as LBF) is able to properly segment such object as shown in Fig 1(b).

Taking Fig 1 as a reference, it can be concluded that active contour methods which use local

statistical information of an image are able to produce fairly acceptable segmentation results in

the context of intensity inhomogeneity.

LGFI models based active contour for intensity inhomogeneous image segmentation
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A region-based active contour model with a variational level-set formulation for image seg-

mentation was presented in [29]. It uses local intensity means for computing the level-set

curve. Local image intensities are described by local Gaussian distributions (LGD) to guide the

motion of the contour toward the object boundaries. Therefore, it can be used to segment

images in the presence of intensity inhomogeneity and noise. In particular, the model is able

to distinguish regions with different intensity variances.

A local active contour model for segmenting images with intensity inhomogeneity was pro-

posed by Zhang et al. in [30]. Local image information is used to define a local image fitting

(LIF) energy functional, which can be interpreted as a constraint on the differences between

the fitting image [27, 28] and the original image. Furthermore, a new method is used to regu-

larize the level-set function by using Gaussian kernel filtering after each iteration. In addition,

re-initialization of the level-set curve is not required.

In [25], a region-based active contour method is formulated by using a global signed pres-
sure force (SPF) function in the energy function. The global SPF function is defined by using

global intensity means from the ACWE model [23]. A Gaussian kernel is used to regularize the

level-set and prevent re-initialization.

Alternatively, a region-based active contour method is formulated in [31] in the context of

intensity inhomogeneity by utilizing local intensity means. It uses an SPF function based on a

local fitted image in its energy formulation in order to segment images with intensity inhomo-

geneity. A Gaussian kernel is used to smooth the level-set function after every step. Therefore,

this method does not require re-initialization.

A variational level-set approach for bias correction and segmentation (VLSBCS) for images

corrupted with intensity inhomogeneity was proposed by Li et al. in [9, 10]. The computed

bias field is intrinsically ensured to be smooth by the data term in the variational formulation,

without any additional effect to maintain the smoothness of the bias field.

A local statistical active contour model (LSACM) for image segmentation in the presence of

intensity inhomogeneity was proposed by Zhang et al. in [11, 12]. The inhomogeneous objects

are modelled as Gaussian distributions of different means and variances, and a moving win-

dow is used to map the original image into a new domain in which the intensity distributions

of inhomogeneous objects are still Gaussian but better separated. The means of the Gaussian

Fig 1. Intensity inhomogeneous image segmentatation using (a) ACWE and (b) LBF methods.

https://doi.org/10.1371/journal.pone.0174813.g001
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distributions in the transformed domain can be adaptively estimated by multiplying the bias

field with the original signal within the window. A statistical energy functional is then defined

for each local region, which combines the bias field, the level-set function, and the constant

approximating the true signal of the corresponding object.

The present paper proposes a new region-based active contour method that incorporates

both local and global fitted images in the energy functional. The local term helps segment

objects with intensity inhomogeneity, whereas the global term accelerates the evolution of the

contour over smooth homogeneous regions. The new energy functional is formulated with the

assumption that the local fitted image from [30] can be divided into two different local and

global components. In the gradient descent solution of the proposed energy functional, both

local and global signed pressure force (SPF) functions are introduced. The local SPF function

is formulated by using local image differences and deals with inhomogeneous regions. In turn,

the global SPF function is formulated by using the global image difference in order to segment

homogeneous regions while reducing the convergence time of the level-set curve. The replace-

ment of the local and global image differences by their respective SPF functions makes the gra-

dient descent solution more stable. Finally, a Gaussian kernel is used to regularize the level-set

curve, which also avoids the computationally expensive re-initialization. In this paper, the pro-

posed two-phase model is also extended to a four-phase model in order to successfully segment

a brain MR image into three regions: white matter (WM), grey matter (GM) and cerebrospinal

fluid (CSF) regions, which is not possible with a two-phase model. Experiments with both syn-

thetic and real images demonstrate that the proposed method yields better segmentation

results and offers bias-corrected images with more detail than state-of-the-art methods.

This paper is organized as follows. The theoretical foundations are discussed in section 2.

The proposed method is described in section 3. Experimental results and comparisons are

shown in section 4 using both synthetic and real brain magnetic resonance images as a practi-

cal application scope. Quantitative analysis is presented in section 5 using a public database of

brain anatomical models [37]. Finally, conclusions and further research lines are given in sec-

tion 6.

Theoretical foundations

Mumford-Shah energy model

In the image segmentation problem, Mumford and Shah proposed an active contour method

to find an optimum piecewise smooth approximation function u of an image. Let I: O! R2,

where u varies within each sub-region Oi of the image domain smoothly, and rapidly or dis-

continuously across the boundaries of Oi in order to approximate a closed curve C� O along

the object boundary. They proposed the following energy functional:

E
MS
¼ l

Z

O

jIðxÞ � uðxÞj2 dxþ v
Z

OnC

jruðxÞj2 dxþ mLðCÞ; x 2 O ð1Þ

where L(C) is the length of the curve C, and μ and v� 0 are fixed parameters. The unknown

contour C and the non-convexity of the above energy functional make it difficult to minimize

it. Some alternative methods were later proposed to simplify or modify the above functional,

as described below.

Chan-Vese model

Chan and Vese [23] proposed an active contour method based on the Mumford and Shah

model [22]. Let I: O! R2 be an input image, ϕ: O! R2 a level set, and C a closed curve

LGFI models based active contour for intensity inhomogeneous image segmentation
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corresponding to the zero level set: C = {x 2 O|ϕ(x) = 0}. The following energy functional is

defined:

ECV ¼ l1

Z

O

jIðxÞ � m1j
2H�ð�Þdxþ l2

Z

O

jIðxÞ � m2j
2
ð1 � H�ð�ÞÞdx

þm

Z

O

jrH�ð�Þj
2dxþ v

Z

O

H�ð�Þdx
ð2Þ

where μ� 0, v� 0, (λ1, λ2)>0 are fixed parameters and H�(ϕ) is the regularized version of the

Heaviside function:

H�ð�Þ ¼
1

2
þ

1

p
arctan

�

�

� �

ð3Þ

Parameter � controls the smoothness of the Heaviside function. For �! 0, the Heaviside

function is the ideal unit step function. Parameter μ scales the Euclidian length of the curve C
in (Eq 2), which is used to regularize the contour. In turn, parameter v scales the area term in

(Eq 2), which is used to compute the area of the region inside C. Constants m1 and m2 approxi-

mate the image intensities inside and outside contour C, respectively. By minimizing the above

energy functional with respect to ϕ through steepest gradient descent [38], the following gradi-

ent descent flow is obtained:

@�

@t
¼

�

� l1ðIðxÞ � m1Þ
2
þ l2ðIðxÞ � m2Þ

2

þm div
r�

jr�j

� �

� v
�

d�ð�Þ;

ð4Þ

where δ�(ϕ) is the regularized Dirac function:

d�ð�Þ ¼
�

pð�
2
þ �2Þ

ð5Þ

In addition to specifying the smoothness of the Heaviside function (3), parameter � also

controls the width of the Dirac function. For �! 0, the Dirac function is the ideal unit impulse.

By minimizing (Eq 2) with respect to m1 and m2 while keeping ϕ constant, m1 and m2 are

defined as:

m1 ¼

R

O

IðxÞH�ð�Þdx
R

O

H�ð�Þdx
;

m2 ¼

R

O

IðxÞð1 � H�ð�ÞÞdx
R

O

ð1 � H�ð�ÞÞdx

ð6Þ

The data fitting term − λ1(I − m1)2 + λ2(I − m2)2 in (Eq 4) plays a key role in the curve evo-

lution. Parameters λ1 and λ2 weight the first and the second term, respectively. In most cases,

λ1 = λ2 and v = 0 when the image is smooth and the signal-to-noise ratio is low. Parameter μ is

a scale factor. If it is low enough, small objects are likely to be extracted. Alternatively, if it is

high, big objects can be detected [23]. Obviously, m1 and m2 in (Eq 6) are related to the global

properties of the image contents inside and outside curve C, respectively. However, such a

LGFI models based active contour for intensity inhomogeneous image segmentation
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global image segmentation is not accurate if the image intensity inside and/or outside the

curve is inhomogeneous.

Local Binary Fitted (LBF) model

Li et al. [27, 28] proposed the LBF model by embedding local image information in the energy

functional. LBF is able to segment images with intensity inhomogeneity. The basic idea is to

introduce a Gaussian kernel function to define the LBF energy functional as follows:

ELBF ¼ l1

Z

O

Ksðx � yÞjIðyÞ � f1ðxÞj
2H�ð�Þdydx

þl2

Z

O

Ksðx � yÞjIðyÞ � f2ðxÞj
2
ð1 � H�ð�ÞÞdydx;

ð7Þ

where (λ1, λ2)> 0 are fixed parameters, I: O! R2 is an input image, Kσ is a Gaussian kernel

with standard deviation σ, and f1 and f2 are two smooth functions that approximate the local

image intensities inside and outside curve C, respectively.

In LBF, C� O can be represented by the zero level-set of a Lipschitz function ϕ: O� R.

Minimizing the energy functional ELBF with respect to ϕ, the gradient descent flow is defined

as follows:

@�

@t
¼ � ðl1e1 � l2e2Þd�ð�Þ; ð8Þ

where e1 and e2 are defined as follows:

e1ðxÞ ¼
Z

O

Ksðx � yÞjIðyÞ � f1ðxÞj
2dy;

e2ðxÞ ¼
Z

O

Ksðx � yÞjIðyÞ � f2ðxÞj
2dy

ð9Þ

In (Eq 8), parameters λ1 and λ2 weight the two integrals over the regions inside and outside

curve C, respectively, which are defined in (Eq 9). In most cases, λ1 = λ2. Functions f1 and f2
are the local intensity means inside and outside curve C, which are computed in a local neigh-

bourhood:

f1ðxÞ ¼
Ks � ½IðxÞH�ð�Þ�

Ks � H�ð�Þ
;

f2ðxÞ ¼
Ks � ½IðxÞð1 � H�ð�ÞÞ�

Ks � ð1 � H�ð�ÞÞ

ð10Þ

Functions f1 and f2 in (Eq 10) represent weighted averages of image intensities in a Gaussian

window inside and outside the curve, respectively. In that way, the LBF model can handle

images with intensity inhomogeneity.

The standard deviation σ of the Gaussian kernel plays an import role in practical applica-

tions. It behaves as a scale parameter that controls the region-scalability from the small neigh-

bourhood to the whole image domain [28]. It must be properly chosen according to the

images. A too small σ may cause an undesirable result, whereas a too large σ will yield a high

computational cost.

LGFI models based active contour for intensity inhomogeneous image segmentation
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In order to guarantee a stable evolution of the level-set function, the distance regularized

term defined in [21] is incorporated into (Eq 8). Moreover, the Euclidean length term is used

to regularize the zero contour of ϕ. Finally, the total variational formulation is as follows:

@�

@t
¼ g r2� � div

r�

jr�j

� �� �

þ m div
r�

jr�j

� �

� ðl1e1 � l2e2Þ

� �

d�ð�Þ;

ð11Þ

where γ is a scaling parameter of the distance regularized energy penalization term that con-

trols the energy leakage and μ is a scaling parameter of the Euclidian length of the curve.

Local Image Fitted (LIF) model

In [30], a local image fitting energy functional is proposed in which the difference between the

fitted image and the original image is minimized as follows:

ELIF ¼
1

2

Z

O

jIðxÞ � ILFIðxÞj
2dx; ð12Þ

where ILFI is the local fitted image defined as:

ILFIðxÞ ¼ f1ðxÞM1 þ f2ðxÞM2; ð13Þ

where M1 = H�(ϕ), M2 = (1 − H�(ϕ)), and f1 and f2 are local intensity means in the given image

(Eq 10). H�(ϕ) is the regularized version of the Heaviside function (3). Using the calculus of

variations and steepest gradient descent [38], ELIF in (Eq 12) is minimized with respect to ϕ to

yield the corresponding gradient descent flow:

@�

@t
¼ ðIðxÞ � ILFIðxÞÞ f1ðxÞ � f2ðxÞð Þd�ð�Þ; ð14Þ

where δ�(ϕ) is the regularized Dirac function (11).

Variational Level-Set approach for Bias Correction and Segmentation

(VLSBCS)

In [9, 10], a variational level-set method for the segmentation and bias correction of images

corrupted with intensity inhomogeneity is formulated. In this method, the computed bias field

is ensured to be smooth exclusively through the data term defined in the energy functional for-

mulation. This method is based on an image model commonly used to describe images with

intensity inhomogeneity:

IðxÞ ¼ bðxÞJðxÞ þ nðxÞ; ð15Þ

where I(x) is the input image with intensity inhomogeneity, J(x) is the image to be restored

without intensity inhomogeneity, b(x) is the bias field, which represents the modulation of the

restored image with the intensity inhomogeneity, and n(x) is noise. The model assumes that the

restored image J(x) is constant within each object in the image, i.e., JðxÞ �
PN

i¼1

ciMi for x 2 Oi,

with x 2 fOig
N
i¼1

being a sub-region of O.

In traditional active contour methods, the image domain O is assumed to be divided into N
disjoint regions, Oi, i = 1, 2, . . .., N, based on the input image I(x). However, due to the

LGFI models based active contour for intensity inhomogeneous image segmentation
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intensity inhomogeneity caused by the bias field b(x), the measured intensities are not separa-

ble by using traditional intensity-based segmentation methods.

In [9, 10], a K-means clustering method based on the minimization of the following objec-

tive function is proposed:

E ffi
Z XN

i¼1

Z

Oi

Ksðx � yÞjIðyÞ � bðxÞcij
2dy

0

B
@

1

C
Adx; ð16Þ

where b(x) is the approximated bias field and ci is the computed intensity mean in the presence

of intensity inhomogeneity for each of the phases of the two-phase active contour method

(i = 1, 2). Term b(x)ci can be considered to be the approximation of the means mi of the clus-

ters corresponding to each of the phases of the two-phase active contour method: mi� b(x)ci.
Directly minimizing the above energy functional with the partition fOig

N
i¼1

as a variable is

not feasible. Therefore, multiple level-set functions are used to represent a partition fOig
N
i¼1

. In

the simplest case of N = 2, the image domain is partitioned into two regions {O1, O2}. These

regions are separated by the zero-level contour of a function ϕ, that is, O1ffi {ϕ> 0} and

O2ffi {ϕ< 0}. Using the Heaviside function H�, the energy E in (Eq 16) becomes:

E ¼
Z XN

i¼1

Z

O

Ksðx � yÞjIðyÞ � bðxÞcij
2Mið�Þdy

0

@

1

Adx; ð17Þ

where Mi is the characteristic function of a given image based on the regularized Heaviside

function (3). When the image domain is partitioned in two regions {O1, O2}, Mi is defined as

M1 = H�(ϕ) and M2 = (1 − H�(ϕ)). By taking the Gateaux derivative (the first order functional

derivative) [38] of the energy E, the following expressions for b(x) and ci are obtained:

bðxÞ ¼

X2

i¼1

Ks � IðxÞciMið�Þ½ �

X2

i¼1

Ks � c2
i Mið�Þ

� �
; ð18Þ

ci ¼
R
Ks � IðxÞbðxÞMið�Þ½ �dx
R
Ks � b2ðxÞMið�Þ½ �dx

; ð19Þ

For N = 4, the image is partitioned into four regions (O1, O2, O3, O4) using two level sets ϕ1

and ϕ2. Then, Mi is defined as M1(F) = H�(ϕ1)H�(ϕ2), M2(F) = H�(ϕ1) (1 − H�(ϕ2)), M3(F) =

(1 − H�(ϕ1))H�(ϕ2) and M4(F) = (1 − H�(ϕ1)) (1 − H�(ϕ2)).

Local Statistical Active Contour Model (LSACM)

In order to segment and correct bias in an intensity inhomogeneous image a local statistical

active contour model is devised in [11, 12], in which the inhomogeneous objects are modelled

as Gaussian distributions of different means and variances. The means of the Gaussian distri-

butions are adaptively estimated by multiplying the bias field by the original signal within a

Gaussian window. Let I: O! R2 be the input image, F: O! R2 a level set function, which

yields a closed curve C = {x 2O|F(x) = 0}, b(x) is the approximated bias field, ciand σiare inten-

sity means and variances, respectively. F is a function of one level set ϕ for a two-phase seg-

mentation and F is a function of two level sets (ϕ1, ϕ2) for four-phase segmentation. Based on

LGFI models based active contour for intensity inhomogeneous image segmentation
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the above assumptions, an energy functional is defined as:

EðFÞ ¼
Z

O

Kbðx; yÞ logðsiÞ þ ðIðyÞ � bðxÞciÞ
2
=2s2

i

� �
MiðFÞdx; N ¼ 2 or N ¼ 4 ð20Þ

where Kβ(x, y) is a Gaussian kernel with a standard deviation β. For N = 2, the energy func-

tional in (Eq 20) acts as a two-phase active contour method (with one level set). The two char-

acteristic terms are: M1(F) = H�(ϕ) and M2(F) = 1 − H�(ϕ)). In turn, for N = 4, the energy

functional in (Eq 20) acts as a four-phase active contour method (with two level sets ϕ1and

ϕ2). The four characteristic terms are defined as: M1(F) = H�(ϕ1)H�(ϕ2), M2(F) = H�(ϕ1)

(1 − H�(ϕ2)), M3(F) = (1 − H�(ϕ1))H�(ϕ2) and M4(F) = (1 − H�(ϕ1))H�(ϕ2) H�(ϕ2)). In (Eq 20),

bias correction b(x), intensity means ci and variance σi are defined as:

bðxÞ ¼

XN

i¼1

Kb � ðIMiðFðxÞÞÞ �
ci
s2
i

XN

i¼1

Kb �MiðFðxÞÞ �
c2i
s2
i

ð21Þ

ci ¼
R
ðKb � bÞIðxÞMið�ðxÞÞdxR
ðKb � b2ÞMið�ðxÞÞdx;

ð22Þ

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
Kbðx; yÞðIðxÞ � bðxÞciÞ

2Mið�ðxÞÞdydxR
Kbðx; yÞMið�ðxÞÞdydx

s

ð23Þ

Proposed method

The generally accepted assumption on intensity inhomogeneity is that it manifests itself as a

smooth spatially varying function that alters image intensities that otherwise would be con-

stant for a same object regardless its position in an image. In its simplest form, the model

assumes that intensity inhomogeneity is multiplicative or additive, that is, the intensity inho-

mogeneity field multiplies or adds to the image intensities. Most frequently, the multiplicative

model has been used as it is consistent with the inhomogeneous sensitivity of the reception

coil of magnetic resonance imaging devices. Therefore, a multiplicative model has been con-

sidered for the bias field estimation. Let I: O! R2 be the input image with intensity inhomo-

geneity, J(x) the restored image without intensity inhomogeneity, b(x) the bias field

approximated with a Gaussian distribution, and n(x) additive noise (Eq 15).

J(x) is assumed to be constituted by k piecewise constant image components. I(x) can thus

be represented as:

IðxÞ ¼ bðxÞfc1M1 þ c2M2 þ ::::::þ ckMkg; ð24Þ

where ci are intensity means computed for the piecewise regions fOig
N
i¼1

and Mi is the charac-

teristic function of each region.

In order to segment intensity inhomogeneous images, the following energy functional is

defined:

Eg;LGFI ¼ ELGFIð�Þ þ mLgð�Þ þ vAgð�Þ; ð25Þ

where ELGFI (ϕ) is a term based on a local and global fitted image, which will be explained later

in this section. μ� 0 and v� 0 are fixed parameters. Lg(ϕ) and Ag(ϕ) are length and area

LGFI models based active contour for intensity inhomogeneous image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0174813 April 4, 2017 9 / 34

https://doi.org/10.1371/journal.pone.0174813


terms, respectively [21]:

Lgð�Þ ¼

Z

O

gðIÞd�ð�Þjr�jdx; ð26Þ

Agð�Þ ¼

Z

O

gðIÞH�ð� �Þdx; ð27Þ

The energy functional Ag(ϕ) is introduced to speed up the curve evolution. It is the area of the

region O
�

�
¼ fðx; yÞj�ðx; yÞ < 0g [21]. Ag(ϕ) can be viewed as the weighted area of O

�

�
. In (Eq

27), g(I) is a positive monotonously decreasing edge indicator function ranging in [0, 1]:

gðIÞ ¼
1

1þ jrKs�Ij
2

ð28Þ

ELGFI is defined according to the following reformulation of (Eq 12):

ELGFI ¼

Z

O

ðIðxÞ � IbLFIðxÞÞðIðxÞ � IGFIðxÞÞdx; ð29Þ

Two-phase active contours formulation

In (Eq 29), let IbLFI(x) be a two-phase bias local fitted image and IGFI(x) a global fitted image,

using a level set ϕ, which are defined as:

IbLFIðxÞ ¼ bðxÞðc1M1 þ c2M2Þ; ð30Þ

IGFIðxÞ ¼ m1M1 þm2M2; ð31Þ

where c1and c2are local intensity means and m1and m2are global intensity means of the given

image as defined in Eqs (19) and (6), respectively. M1 = H�(ϕ) and M2 = (1 − H�(ϕ)), where

H�(ϕ) is the regularized Heaviside function (3). Models based on global intensity means are

not sufficient to solve intensity inhomogeneity segmentation problems. In turn, models based

on local intensity means have a very high time complexity. Using both local and global fitted

images, the proposed method is able to tackle the intensity inhomogeneity problem with a

reduced time complexity.

As discussed earlier, an energy functional only based on a global fitted image cannot seg-

ment images with intensity inhomogeneity since global intensity means are computed under

the assumption that the input image is homogeneous. Therefore, the bias field b(x) from (Eq

18) is only introduced in the local fitted image difference.

By using calculus of variations and steepest gradient descent [38], ELGFI in (Eq 29) is mini-

mized with respect to ϕ, leading to the corresponding gradient descent flow (refer to the

appendix for a detailed derivation):

@�

@t
¼ ððIðxÞ � IbLFIðxÞÞðm1 � m2Þ

þbðxÞðIðxÞ � IGFIðxÞÞðc1 � c2ÞÞd�ð�Þ;
ð32Þ

where b(x) is the bias field defined in (Eq 18), and {m1, m2} and {c1, c2} are global and local

intensity means defined in Eqs (6) and (19), respectively. The above gradient descent flow is

LGFI models based active contour for intensity inhomogeneous image segmentation
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not stable around object boundaries. Moreover, it does not yield proper segmentation when

the boundaries between inhomogeneous objects and the background are undistinguishable.

(I − IbLFI) (m1 − m2) and (I − IGFI) (f1 − f2) generate large values that cross a maximum thresh-

old resulting in an unstable contour. Therefore, (I − IbLFI) and (I − IGFI) are replaced by local

and global signed pressure force (SPF) functions, which normalize values to [-1,1] to obtain a

smooth version of the gradient descent flow:

@�

@t
¼ l1LSPFðm1 � m2Þ þ l2bGSPFðc1 � c2Þð Þd�ð�Þ; ð33Þ

where the proposed local and global SPF functions are defined as:

LSPFðIÞ ¼
IðxÞ � IbLFIðxÞ

max jIðxÞ � IbLFIðxÞjð Þ
; IðxÞ 6¼ 0

0; IðxÞ ¼ 0

8
><

>:
ð34Þ

GSPFðIÞ ¼
IðxÞ � IGFIðxÞ

max jIðxÞ � IGFIðxÞjð Þ
; IðxÞ 6¼ 0

0; IðxÞ ¼ 0

8
><

>:
ð35Þ

By using the calculus of variations and steepest gradient descent, the solution of Eg,LGFI
from (Eq 25) using Eqs (26) and (27) is:

@�

@t
¼

�

l1LSPFðm1 � m2Þ þ l2bGSPFðc1 � c2Þ

þm div g
r�

jr�j

� �

þ vg
�

d�ð�Þ

ð36Þ

The two scaling parameters λ1and λ2in Eqs (33) and (36) are used to tune the model to differ-

ent types of images.

Four-phase active contours formulation

In (Eq 29), let IbLFI(x) be a four-phase bias local fitted image and IGFI(x) a global fitted image,

using two level sets F(ϕ1, ϕ2), which are defined as:

IbLFIðxÞ ¼ bðxÞðc1M1 þ c2M2 þ c3M3 þ c4M4Þ; ð37Þ

IGFIðxÞ ¼ m1M1 þm2M2 þm3M3 þm4M4 ð38Þ

where M1(F) = H�(ϕ1)H�(ϕ2), M2(F) = H�(ϕ1) (1 − H�(ϕ2)), M3(F) = (1 − H�(ϕ1))H�(ϕ2) and

M4(F) = (1 − H�(ϕ1)) (1 − H�(ϕ2)), which are the characteristic terms that partition a given

image into four segments. b(x) is the bias term defined for the four-phase energy functional.

c1, c2, c3 and c4are local intensity means from VLSBCS [9, 10] and m1, m2, m3and m4are global

intensity means from the multiphase level set framework (MLSF) [24], which is a multiphase

extension of the two-phase energy functional defined by Chan-Vese [23].

By substituting the four-phase fitted equations in (Eq 29) using steepest gradient descent

[38] the following solutions are obtained for ϕ1 and ϕ2 (for detailed formulation see

LGFI models based active contour for intensity inhomogeneous image segmentation
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appendix B):

@�1

@t
¼ ½bðI � IGFIÞððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

þðI � IbLFIÞððm1 � m3ÞH�ð�2Þ þ ðm2 � m4Þð1 � H�ð�2ÞÞ�d�ð�1Þð39Þ

@�2

@t
¼ ½bðI � IGFIÞððc1 � c2ÞH�ð�1Þ þ ðc3 � c4Þð1 � H�ð�1ÞÞÞ

þðI � IbLFIÞððm1 � m2ÞH�ð�1Þ þ ðm3 � m4Þð1 � H�ð�1ÞÞ�d�ð�2Þ

ð40Þ

Four-phase local and global SPF functions can be obtained by substituting IbLFI and IGFI
from Eqs (37) and (38) in Eqs (34) and (35), respectively. By replacing the four-phase local and

global fitted differences with their respective SPF functions, Eqs (39) and (40) are updated as

follows:

@�1

@t
¼ ½l1bGSPFððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

þl2LSPFððm1 � m3ÞH�ð�2Þ þ ðm2 � m4Þð1 � H�ð�2ÞÞ�d�ð�1Þ

ð41Þ

@�2

@t
¼ ½l1bGSPFððc1 � c2ÞH�ð�1Þ þ ðc3 � c4Þð1 � H�ð�1ÞÞÞ

þl2LSPFððm1 � m2ÞH�ð�1Þ þ ðm3 � m4Þð1 � H�ð�1ÞÞ�d�ð�2Þ

ð42Þ

The SPF functions defined in Eqs (34) and (35) are used to normalize the local and global

image differences in the range [-1, 1] inside and outside the region of interest. SPF functions

have been formulated in numerous ways (e.g., [25, 26, 31, 36]), some of them incorporating

global intensity means and others using local intensity means. The new SPF functions pro-

posed in this work are based on both global and local intensity-based fitted images. Fig 2

shows the signs of an SPF function based on a global fitted image inside and outside the region

of interest. In turn, Fig 3 shows the sign of an SPF function based on a local fitted image inside

and outside the region of interest.

Since the local SPF function uses local intensity means, it is able to distinguish small

changes at the boundaries of intensity inhomogeneous objects. Since the local intensity means

are computed in a local neighbourhood, the positive and negative values are distributed close

to the inner and outer boundaries of the image contours. In the rest of the image, the SPF func-

tion becomes zero. In Fig 3, white shows negative values of the local SPF function, black shows

positive values of the local SPF function, and blue represents the region where the local SPF

function becomes zero.

In contrast, the global SPF function is unable to segment intensity inhomogeneous regions,

since global intensity means are computed all over the image. It has positive and negative val-

ues inside and outside the region of interest, and is zero at its boundary, as shown in Fig 2.

In level-set methods, it is essential to initialize the level-set function ϕ as a signed distance

function (SDF) ϕ0. If the initial level-set function is significantly different from the SDF, re-ini-

tialization schemes are unable to re-initialize the function to the SDF. In the proposed formu-

lation, not only is the re-initialization procedure completely eliminated, but the level-set

function ϕ no longer needs to be initialized as an SDF. The initial level set function ϕ0 is

LGFI models based active contour for intensity inhomogeneous image segmentation
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Fig 3. Signs of a local SPF function. It is positive along the outer boundary, negative along the inner

boundary and zero elsewhere.

https://doi.org/10.1371/journal.pone.0174813.g003

Fig 2. Signs of a global SPF function. It is positive outside the object and negative within it.

https://doi.org/10.1371/journal.pone.0174813.g002
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defined as:

�ðx; t ¼ 0Þ ¼

� r; x 2 O0 � @O0

0; x 2 @O0

r; x 2 O � O0

8
><

>:
ð43Þ

where ρ is a positive constant, O0 is the inner region of the initial contour, O is the image

domain and @O0 refers to the initial contour. The stages of the proposed method can be sum-

marized as:

1. Initialize the level-set function ϕ to ϕ0 using (Eq 43) and the bias field to b(x) = 0.

2. Compute the edge indicator function g(I) using (Eq 28).

3. Compute the local intensity means, c1, c2, and the global means, m1, m2, using Eqs (19) and

(6), respectively. Compute the bias field b(x) from (Eq 18).

4. Calculate LSPF(I) and GSPF(I) using Eqs (34) and (35), respectively.

5. Solve the partial differential equation (PDE) of ϕ using (Eq 36).

6. Regularize the level-set function ϕ at time t by applying a Gaussian kernel Gχ, i.e. ϕ = Gχ�ϕ,

where χ is the standard deviation of the regularizing Gaussian kernel.

7. Check whether the regularized level-set function is stationary. If not, iterate from step (c).

The steps described above correspond to the two-phase segmentation algorithm. However,

for the four-phase algorithm, these steps are replaced with the variables corresponding to two

level sets using their respective definitions and solutions.

Results and comparisons

The proposed method was implemented using MATLAB and run on a 3.4 GHz Intel Core-i7

with 16 GB of RAM, testing it on both synthetic images and real brain magnetic resonance

(MR) images of 250 × 250 pixels with 256 grey levels (8bpp). The parameters used for all exper-

iments in this section are shown in Table 1.

Fig 4 shows the result of the proposed segmentation method and the comparison with the dif-

ferent state-of-the-art methods that have been tested. In this experiment, we used an image with

a single homogeneous object and then progressively changed its intensity distribution to a point

at which it is even difficult to manually segment it, thus making the object inhomogeneous.

The first column shows the five input images with the initial contour, whereas the segmen-

tation results are shown using LIF [30] in the second column, LBF [27, 28] in the third column,

LGD [29] in the fourth column, VLSBCS [9, 10] in the fifth column, LSACM [11, 12] in the

Table 1. Parameters for the experiments in result and comparison section.

Force term

scaling

constants

Length term

scaling constants

Area term scaling

constants

Gaussian kernel

tuning constant

Penalizing term

scaling constants

Constant for initial

level-set

Constant for Heaviside

and Dirac Functions

Time step

λ1 λ2 μ v σ or σ1 χ or σ2 γ ρ � Δt

LBF 1 1 0.001 × 2552 - 4 - 1 1 1.5 0.1

LIF - - - - 3 1 - 2 1.5 1

LGD 1 1 0.001 ×2552 30 5 - 1/μ 2 1.5 0.1

VLSBCS 1 1 0.001 ×2552 - 3 - 1 1 1 0.1

LSACM 1 1 - 20 3 - 0.1 1 1.5 1

Proposed 1 5 1 0.25 3 0.5 - 1 1.5 0.1

https://doi.org/10.1371/journal.pone.0174813.t001
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sixth column and the proposed method in the last column, respectively. Visual inspection

clearly shows that both the proposed method and LBF provide the best segmentation results.

LIF also yields acceptable segmentation results, although the final contour in this method is

not quite smooth along the object boundaries. Segmentation results of both LSACM and LGD

show that they are not able to strictly find the object boundary. Moreover, the contour in LGD

is also stuck in the background, which is undesirable. VLSBCS properly segmented the first

two images, but its segmentation results are not acceptable for the last three images. In LGD,

σ was set to 10 for all experiments in Fig 4, since with a small value of σ, this method is unable

to segment the objects in all images. For all the examples in Fig 4, the parameters of all meth-

ods were kept constant. The only change is the initial position of the level set.

Fig 5 shows the experiments conducted with synthetic images with different types of region

properties. The first column shows the input images with their respective initial contours. In

the first row, both the object and the background are homogeneous. In the second row, the

background is homogeneous while the object is inhomogeneous. In the third row, the back-

ground is inhomogeneous while the object is homogeneous. In the fourth row, both the back-

ground and the object are inhomogeneous. In the last row, the background is homogeneous

and there are different inhomogeneous regions with one of the regions having an extra inho-

mogeneous region within it.

The second column shows the segmentation results with LIF [30]. Notice that it is not able

to accurately segment the last image. Although this method is able the segment the objects in

Fig 4. Intensity inhomogeneous image segmentation and comparison with state-of-the-art methods by using images with intensity varying

objects.

https://doi.org/10.1371/journal.pone.0174813.g004
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the first four images, the results are not acceptable because the contour is not quite smooth

along the boundaries of the objects. The segmentation results with LBF [27, 28] are shown in

the third column. This method is only able to properly segment the first image, while the seg-

mentation results are not acceptable for the other images. The fourth column shows the seg-

mentation results using LGD [29]. This method is able to properly segment the first image. As

for the second image, the contour is not quite smooth along the boundary of the object.

Although it is able to segment the objects in the third and fourth images, some undesirable

contour is stuck in the background. Furthermore, this method is not able to segment the

nested inhomogeneous object in the fifth image.

The fifth column shows the segmentation results using VLSBCS [9, 10]. This method is able

to properly segment the first, second and fourth images. It can segment the object in third

image. However, some undesirable contour is stuck in the background. Moreover, this method

is not able to properly segment the fifth image. The sixth column shows the results with

LSACM [11, 12]. This method is able to properly segment the third and fourth images.

Although it is able to segment the objects in the first and second images, the final contour is not

smooth and does not properly follow the object boundaries. Moreover, this method is unable to

segment the nested inhomogeneous object in the fifth image. The last column shows the seg-

mentation results using the proposed method, which is able to properly segment all images.

Table 2 shows a time complexity analysis in terms of CPU time and iterations. The pro-

posed method yields the lowest time complexity for the examples shown in rows 1, 2 and 4, 5.

It took 1.58 and 2.19 seconds for the examples shown in the first two rows, respectively. In

Fig 5. Segmentation results using images with different homogeneity and inhomogeneity possibilities.

https://doi.org/10.1371/journal.pone.0174813.g005
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turn, it took 5.09 and 5.78 seconds for the examples shown in rows 4 and 5, respectively. On

the other hand, VLSBCS yields the lowest time complexity for the example shown in row 3. It

took 2.27 seconds while the proposed method took 4.17 seconds to obtain the final contour.

Although VLSBCS yields the lowest time complexity for this example it is unable to properly

segment the object as shown in Fig 4.

In Fig 6, the segmentation and bias correction results using the proposed method (third

row) are compared with the ones computed with VLSBCS [9, 10] (first row) and LSACM [11,

12] (second row) using real brain MR images as a practical application. The first column

shows the input image with the initial contour. The second column shows the final contours

for each method. The third column shows the estimated bias field. Finally, the last column

shows the bias-corrected image. The proposed method can segment more detailed regions

than the other methods, as highlighted by the green arrows in the second column. Moreover,

the bias-corrected image using the proposed method has more details than the ones computed

with the other methods, as highlighted by the red circles in the fourth column. The corrected

image obtained using the proposed method also has more details in the nose area.

In Fig 7, the segmentation results and bias correction using the proposed method (third

row) are compared with the ones computed with VLSBCS [9, 10] (first row) and LSACM [11,

12] (second row) using real brain MR images. The first column shows the input image with

the initial contour. The second column shows the final contours. The third column shows the

computed bias field. Finally, the last column shows the bias-corrected image. The results show

that the proposed method can segment more detailed regions than the other methods, as

highlighted by the green arrows in the second column. Moreover, the bias-corrected image

using the proposed method has more details than the ones computed with the other methods,

as highlighted by the red circles in the fourth column.

Fig 8 shows the effect of the position of the initial level set on the segmentation for all the

tested methods. The first column shows the input image with different initial level sets, whereas

the segmentation results with LIF [30] are shown in the second column, with LBF [27, 28] in

the third column, with LGD [29] in the fourth column, with VLSBCS [9, 10] in the fifth column,

with LSACM [11, 12] in the sixth column and with the proposed method in the last column.

These results show that the proposed method is not affected by the position of the initial level

set and yields the segmentation with the best accuracy. In contrast, the segmentation results of

all the tested state-of-the-art methods are affected by the position of the initial level set.

Table 2. Iterations and CPU time for the examples shown in Fig 4.

Methods Fig 4

Row 1 Row 2 Row 3 Row 4 Row 5

LIF Iterations 400 450 600 2000 2000

CPU time (s) 5.45 5.97 7.56 57.38 55.91

LBF Iterations 500 1000 1500 2000 2000

CPU time (s) 7.72 14.38 26.36 32.63 32.44

LGD Iterations 500 500 500 500 500

CPU time (s) 34.03 32.77 33.69 32.06 34.12

VLSBCS Iterations 20 30 30 100 100

CPU time (s) 1.71 2.21 2.27 5.87 6.31

LSACM Iterations 40 40 50 60 80

CPU time (s) 24.69 25.55 32.05 38.69 50.72

Proposed Iterations 20 30 70 90 100

CPU time (s) 1.58 2.19 4.12 5.09 5.78

https://doi.org/10.1371/journal.pone.0174813.t002
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Table 3 shows the number of iterations and CPU time for all the tested methods when

applied to the example in Fig 8. The proposed method yields the best performance in the

examples shown in rows 2 and 4. It took 2.48 and 1.42 seconds to obtain the final contours for

rows 2 and 4, which is significantly lower than the time required by the other methods. In

turn, LGD has the best performance for the example in row 1. Thus, LGD took 3.3 seconds

while the proposed method took 5.15 seconds to obtain the final contour. In turn, LIF yields

the best performance for the example shown in row 3. LIF took 3.86 seconds while the pro-

posed method took 16.06 seconds to obtain the final contour.

Fig 9 shows the segmentation result on a synthetic image, which contains three different

regions with intensity inhomogeneity, both without noise and after applying additive Gaussian

noise. Fig 9(b) and 9(d) show that proposed method is able to properly segment intensity inho-

mogeneous objects without and with noise, respectively. Fig 9(e) shows the central row

Fig 6. Segmentation and bias correction using Li et al. [9, 10] (first row), Zhang et al. [11, 12] (second row) and the proposed method (third

row).

https://doi.org/10.1371/journal.pone.0174813.g006
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intensity profile of the input synthetic image with both clean and noisy data along with the

final contour. It shows that the resultant contour followed the object boundaries perfectly.

Fig 10 shows some segmentation results by applying the proposed method to different

intensity inhomogeneous noisy images. Although noise affected the crispness of edges in the

input data, the proposed method is able to yield acceptable segmentation results.

Quantitative analysis

The segmentation of brain MR images into disjoint regions based on white matter (WM), grey

matter (GM) and cerebrospinal fluid (CSF) is a well-known problem in brain image analysis.

Due to the geometric complexity of the human brain cortex, manual slice-by-slice segmenta-

tion is cumbersome and time consuming [1]. Thus, numerous methods have been devised to

Fig 7. Segmentation and bias correction using Li et al. [9, 10] (first row), Zhang et al. [11, 12] (second row) and the proposed method (third

row).

https://doi.org/10.1371/journal.pone.0174813.g007
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solve such problems. Active contours are quite popular in this context. Because of the complex

intensity inhomogeneous regions, brain MR images are hard to be successfully segmented

with high accuracy [39]. Therefore, this is a good test bench to test the proposed method in a

practical application and compare it with other state-of-the-art methods.

Two-phase active contours

This section shows segmentation results for all tested two-phase active contour methods using

2D brain MR images from a public database of 20 brain anatomical models [37]. All images

have 250 × 250 pixels and 8 bits per pixel.

Fig 8. Effect of position of initial contour on the final segmentation results.

https://doi.org/10.1371/journal.pone.0174813.g008

Table 3. Iterations and CPU time for the examples shown in Fig 8.

Methods Fig 8

Row1 Row2 Row3 Row4

LIF Iterations 250 250 250 200

CPU time (s) 4.16 4.18 3.86 3.29

LBF Iterations 400 400 400 250

CPU time (s) 8.69 8.18 8.09 5.56

LGD Iterations 200 1500 1000 100

CPU time (s) 3.3 22.91 15.65 2.14

VLSBCS Iterations 100 100 100 100

CPU time (s) 5.64 7.27 6.47 6.72

LSACM Iterations 250 250 250 600

CPU time (s) 14.31 14.53 13.98 33.47

Proposed Iterations 80 30 300 10

CPU time (s) 5.15 2.48 16.06 1.42

https://doi.org/10.1371/journal.pone.0174813.t003
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Active contour methods behave differently for different types of images. Because the images

used in this section have different characteristics compared to the ones used in results and

comparison section, the parameters had to be tuned in order to obtain the best possible seg-

mentation results. The parameters used for all experiments in this section are shown in

Table 4.

In order to partition a brain MR image into WM and GM regions, the segmentation result

is split into two regions based on two phases: ϕ> 0 and ϕ< 0. The WM and GM regions repre-

sent the brain region, which is the region of interest, while the regions outside the brain (e.g.,

skull, fat and vacuum) can be taken as irrelevant regions. Therefore, we manually extracted the

brain area to segment the WM and GM regions, removing the other irrelevant regions out of

Fig 9. Segmentation results on synthetic images with intensityinhomogeneity with and without noise. (a) Original image with initial contour, (b)

Segmentation result using original image without noise, (c) Noisy image with initial contour, (d) Segmentation result using noisy image, (e) Profile

selection of the middle rows of the original image (blue line), noisy image (green line) and level set of proposed method (red line).

https://doi.org/10.1371/journal.pone.0174813.g009
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the brain. Fig 11 shows the WM and GM regions computed from the two phases of the pro-

posed method and the comparison with the ground truth (GT). In the first row of Fig 11, the

first image shows the input image with the initial contour. The second image shows the final

contour using the proposed method. The third image shows a manually defined brain mask.

The main purpose of the brain mask is to extract the brain region in order to carefully analyse

and compare the segmented WM and GM regions with their respective ground truths. The

last image in the first row shows the final contour after scaling with the brain mask. Let ϕ(x, y)

be the final computed contour shown in the second column of the first row, and m(x, y) the

manually defined brain mask shown in the third column of the first row. The scaled final con-

tour ξ(x, y), which is shown in the last column of the first row, is computed as ξ(x, y) = ϕ(x, y)

m(x, y). In the second row of Fig 11, the first image shows the WM region computed from the

positive phase (ξ> 0) of the final contour scaled with the brain mask. The second image shows

the GM region computed using the negative phase (ξ< 0) of the scaled final contour. In the

Fig 10. Segmentation results on different intensity inhomogeneous noisy images.

https://doi.org/10.1371/journal.pone.0174813.g010

Table 4. Parameters for the experiments in quantitative analysis section.

Force

term

scaling

constants

Length term

scaling constant

Area term

scaling constant

Gaussian kernel

tuning constant

Penalizing term

scaling constant

Constant for

initial level-set

Constant for Heaviside

and Dirac Functions

Time step

λ1 λ2 μ v σ or σ1 χ or σ2 γ ρ � Δt

LBF 1 1 0.001 × 2552 - 3 - 1 1 1.5 0.1

LIF - - - - 2 0.5 - 2 1.5 1

LGD 1 1 0.001 × 2552 30 3 - 1/μ 2 1.5 0.1

VLSBCS 1 1 0.001 × 2552 - 3 - 1 1 1 0.1

LSACM 1 1 - 20 3 - 0.1 1 1.5 1

Proposed 5 1 1 0.25 3 0.5 - 1 1.5 1

https://doi.org/10.1371/journal.pone.0174813.t004
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second row, the third and fourth images show the ground truths of the WM and GM regions,

respectively.

Fig 12 shows the accuracy analysis of the region of interest in the brain MR images. A total

of 100 2D slices from 20 brain anatomical models [37] were used. Five 2D slices from every

patient were considered. The WM and GM regions for all methods were computed as depicted

in Fig 11. The segmentation accuracy corresponding to the WM and GM regions presented in

Fig 12 was obtained as:

Accuracy ¼
jA \ Bj
jA [ Bj

� 100; ð44Þ

Where A is the computed WM or GM region after brain scaling and B is the ground truth for

that region. Different methods can behave differently based on the type of images. Therefore,

five slices from each patient were used and average accuracies for those slices were computed

to obtain a representative value for each case. Fig 12 and Table 5 show that the proposed

method yields the best segmentation accuracy in most cases for both the WM and GM

regions.

Four-phase active contours

A two-phase method is limited to segmenting images into two regions, which is its big weak-

ness in its application to brain MR image segmentation. In the last subsection, all of the two-

phase tested methods are evaluated for WM and GM region segmentation. However, the

Fig 11. WM and GM regions computed with the proposed method and their respective ground truths.

https://doi.org/10.1371/journal.pone.0174813.g011
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Fig 12. Segmentation accuracy analysis of (a) WM and (b) GM regions using two-phase active

contours.

https://doi.org/10.1371/journal.pone.0174813.g012
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segmented GM region was a combination of GM and CSF regions, resulting into a high

amount of false positives. In this subsection, the four-phase model of the proposed active con-

tour method is evaluated along with the state-of-the-art four-phase active contour methods

with respect to the segmentation accuracy of WM, GM and CSF regions. All methods are

tested using the same brain MR image database mentioned in the previous subsection with the

same image size and intensity. The parameters used for the proposed method are: λ1 = 2, λ2 =

2, μ = 5, σ = 3, χ = 0.45, ρ = 1 � = 1.5 and Δt = 1.

In brain MR images, WM, GM and CSF regions represent the brain, which is the region of

interest. The regions outside the brain (e.g., skull, fat and vacuum) can be assumed to be irrele-

vant regions. In order to remove those unwanted regions, it is necessary to strip the skull from

the brain MR image using a manually drawn brain mask. A brain mask is used as shown in Fig

11, although it is used for the four-phase method. Let ϕ1(x, y) and ϕ2(x, y) be the final com-

puted contours for two level sets, m(x, y) be the manually defined brain mask and ξ1(x, y) and

ξ2(x, y) scaled final contours with the brain mask which are computed as: ξ1(x, y) = ϕ1(x, y)m
(x, y) and ξ2(x, y) = ϕ2(x, y)m(x, y). By using the proposed method, the four regions are com-

puted as follows: R1 = (ξ1> 0) \ (ξ2> 0), R2 = (ξ1> 0) \ (ξ2< 0), R3 = (ξ1< 0) \ (ξ2> 0) and

R4 = (ξ1< 0) \ (ξ2< 0). In brain MR images, R1, R2 and R3regions usually refer to WM, GM

and CSF regions, respectively, and R4is an empty region, which is discarded.

Fig 13 shows the accuracy analysis of the regions of interest (i.e., WM, GM and CSF

regions) in the brain MR images. A total of 100 2D slices from 20 brain anatomical models

[37] were used. Five 2D slices (namely 150, 175, 200, 225 and 250) from every patient were

considered. The WM, GM and CSF regions are segmented using MLSF, VLSBCS, LSACM

and the proposed methods. The accuracy of WM, GM and CSF regions for the mentioned

four-phase active contour methods are computed using (44). In (44), A is the computed WM,

GM or CSF region and B is the respective ground truth.

Fig 13 and Table 6 show that the proposed method yields the best segmentation results for

GM and CSF regions. In turn, MLSF method yields the best segmentation results for the WM

region with an accuracy of 92.52%. The proposed method yields an accuracy of 91.02% for the

WM region, which is 1.5% less than the one with the MLSF method. LSACM and VLSBCS

methods yield unsatisfactory segmentation results compared to both the proposed and the

MLSF method. Table 6 also shows the CPU time comparison between the evaluated methods.

It shows that MLSF is the quickest among the compared four-phase active contour methods. It

took an average of 15.12 seconds to get the final segmentation result. In turn, the proposed

method took an average of 19.01 seconds to fully converge, which is approximately 4 seconds

more than the MLSF method.

Comparison with brain MR image segmentation softwares

In this section, the segmentation results of the proposed method are compared with three

alternative open source brain MR image segmentation softwares: SPM [40, 41], LSF [42, 43]

and BrainSuite [44, 45] using the Brain Web database. In order to compare the segmentation

results, the brain region was extracted by stripping the skull using a brain mask. Fig 14 shows a

skull stripped brain region and the visual comparison of the segmented regions with their

Table 5. Segmentation accuracy of WM and GM regions using the two-phase active contour methods.

Regions LBF LIF VLSBCS LSACM Proposed

WM 73.34 57.65 87.32 53.82 95.69

GM 63.97 67.64 66.04 71.63 75.78

https://doi.org/10.1371/journal.pone.0174813.t005
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Fig 13. Segmentation accuracy analysis of (a) WM (b) GM and (c) CSF regions using four-phase active

contours.

https://doi.org/10.1371/journal.pone.0174813.g013
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respective ground truth. It shows that all the compared methods yield similar segmentation

results from a qualitative point of view.

Table 7 shows the segmentation accuracy of the evaluated methods using two similarity

metrics. Both the mean and standard deviation of the evaluated metrics are considered for all

three brain regions, i.e., WM, GM and CSF. These similarity metrics are the Jaccard index [46]

Table 6. Segmentation accuracy of WM, GM and CSF regions using the four-phase active contour

methods.

Methods WM GM CSF CPU time (s)

MLSF 92.52 85.84 64.71 15.12

VLSBCS 84.88 73.22 56.73 18.33

LSACM 83.62 75.43 59.66 91.30

Proposed 91.02 91.00 79.73 19.01

https://doi.org/10.1371/journal.pone.0174813.t006

Fig 14. Visual comparison of the segmentation results of the proposed method with alternative brain MR image segmentation softwares. (a)

Skull stripped brain image, (b) Ground truth (c) SPM, (d) FSL, (e) BrainSuite and (f) Proposed method.

https://doi.org/10.1371/journal.pone.0174813.g014
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and the Dice coefficient [47], which are frequently used when the ground truth of the regions

of interest is available. These similarity metrics are defined as:

JðS;GÞ ¼
jS \ Gj
jS [ Gj

;

DðS;GÞ ¼
2jS \ Gj
jSj þ jGj

ð45Þ

where S is the segmented region and G its respective ground truth.

Table 7 shows that the proposed method yields the best segmentation accuracy using both

similarity measures for all three brain regions, i.e., WM, GM and CSF. For the GM region, if

we consider the mean error (standard deviation) then the Dice coefficient computed using

SPM is 0.95, which is the same as the proposed method. However, SPM yields a Jaccard index

of 0.91, which is 0.01 more than the Jaccard index computed by the proposed method.

Conclusion

This paper proposes a new region-based active contour method for image segmentation and

bias correction by using an energy functional based on both local and global fitted images. In

order to minimize that energy functional, the square image fitted difference is formulated by

using The energy functionalboth local and global fitted differences. In the gradient descent

solution, both the local and global image differences are replaced by local and global signed

pressure force (SPF) functions. Finally, a Gaussian kernel is applied to regularize the curve at

each step and avoid the computationally expensive re-initialization.

The main contribution of this paper is the formulation of a new energy functional from the

LIF method [30] and the modification of the attained gradient descent solution with new SPF

functions based on local and global fitted images to make the solution more stable. Qualitative

and quantitative analysis show that the proposed method yields significantly better segmenta-

tion results and correction of homogeneous regions than alternative state-of-the-art methods.

MR images have been used as a practical test bench.

One of the drawbacks of a local fitted region-based active contour method is its high time

complexity. In future work, we aim to formulate a new region-based active contour method by

Table 7. Segmentation accuracy of WM, GM and CSF regions for the proposed method and the evaluated brain segmentation softwares.

Regions Brain segmentation softwares Dice coefficient Jaccard index

WM SPM 0.95±0.02 0.90±0.03

FSL 0.93±0.02 0.86±0.03

BrainSuite 0.91±0.06 0.84±0.09

Proposed 0.96±0.01 0.92±0.02

GM SPM 0.93±0.02 0.87±0.04

FSL 0.92±0.02 0.85±0.04

BrainSuite 0.80±0.16 0.68±0.20

Proposed 0.94±0.01 0.88±0.02

CSF SPM 0.76±0.02 0.61±0.02

FSL 0.74±0.06 0.60±0.02

BrainSuite 0.46±0.16 0.31±0.08

Proposed 0.88±0.01 0.80±0.02

https://doi.org/10.1371/journal.pone.0174813.t007
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modifying the proposed energy functional in a way to reduce time complexity. In order to do

that, we plan to integrate a phase-shift approach similar to the one proposed in [48].

Appendix

A. Derivation of the gradient descent flow of the two-phase model In (Eq 25), the variation

η is added to the level-set function ϕ such that � ¼ ~� þ �Z. Keeping c1, c2, m1, m2 and b(x)

fixed, differentiating with respect to ϕ and letting �! 0, we have:

@ELGFI

@φ
¼ lim

�!0

d
d�

�
1

2

Z

O

ðI � bðc1H�ð
~�Þ þ c2ð1 � H�ð

~�ÞÞÞÞ

ðI � ðm1H�ð
~�Þ þm2ð1 � H�ð

~�ÞÞÞÞdx
�

¼
1

2
lim
�!0

�

�

Z

O

½ðI � bðc1H�ð
~�Þ þ c2ð1 � H�ð

~�ÞÞÞÞðm1 � m2Þ

� bðI � ðm1H�ð
~�Þ þm2ð1 � H�ð

~�ÞÞÞÞðc1 � c2Þ�d�ð~�ÞZdx
�

¼
1

2
lim
�!0

�

�

Z

O

½ðI � bðc1H�ð�Þ þ c2ð1 � H�ð�ÞÞÞÞðm1 � m2Þ

� bðI � ðm1H�ð�Þ þm2ð1 � H�ð�ÞÞÞÞðc1 � c2Þ�d�ð�ÞZdx
�

The following Euler Lagrange equation is obtained:

� ½ðI � bðc1H�ð�Þ þ c2ð1 � H�ð�ÞÞÞÞðm1 � m2Þ

þbðI � ðm1H�ð�Þ þm2ð1 � H�ð�ÞÞÞÞðc1 � c2Þ�d�ð�Þ ¼ 0

By applying steepest gradient descent [38], the final gradient descent flow is obtained:

@�

@t
¼ ½ðI � bðc1H�ð�Þ þ c2ð1 � H�ð�ÞÞÞÞðm1 � m2Þ

þbðI � ðm1H�ð�Þ þm2ð1 � H�ð�ÞÞÞÞðc1 � c2Þ�d�ð�Þ

¼ ððI � IbLFIÞðm1 � m2Þ þ bðI � IGFIÞðc1 � c2ÞÞd�ð�Þ

B. Derivation of the gradient descent flow of the four-phase model By using the defini-

tions of Eqs (33) and (34) in (Eq 25), and adding the variations η1 and η2 to the level set func-

tions ϕ1 and ϕ2, respectively, such that ~�1 ¼ �1 þ �Z1 and ~�2 ¼ �2 þ �Z2. Keeping c1, c2, c3, c4,
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m1, m2, m3, m4 and ϕ2 fixed, differentiating with respect to ϕ1and letting �! 0, we have:

@ELGFI
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� bðI � ðm1H�ð�1ÞH�ð�2Þ þm2H�ð�1Þð1 � H�ð�2ÞÞ

þm3ð1 � H�ð�1ÞÞH�ð�2Þ þm4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞ

ððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

� ðI � bðc1H�ð�1ÞH�ð�2Þ þ c2H�ð�1Þð1 � H�ð�2ÞÞ

þc3ð1 � H�ð�1ÞÞH�ð�2Þ þ c4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞ

ððm1 � m3ÞH�ð�2Þ þ ðm2 � m4Þð1 � H�ð�2ÞÞÞd�ð�1ÞZ1dx
�

The following Euler Lagrange equation is obtained:

� ½bðI � ðm1H�ð�1ÞH�ð�2Þ þm2H�ð�1Þð1 � H�ð�2ÞÞ þm3ð1 � H�ð�1ÞÞH�ð�2Þ

þm4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

þðI � bðc1H�ð�1ÞH�ð�2Þ þ c2H�ð�1Þð1 � H�ð�2ÞÞ þ c3ð1 � H�ð�1ÞÞH�ð�2Þ

þc4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞððm1 � m3ÞH�ð�2Þ

þðm2 � m4Þð1 � H�ð�2ÞÞ�d�ð�1Þ ¼ 0
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By using the steepest gradient descent method [38], the final gradient descent flow obtained

for ϕ1is:

@�1

@t
¼ ½bðI � ðm1H�ð�1ÞH�ð�2Þ þm2H�ð�1Þð1 � H�ð�2ÞÞ þm3ð1 � H�ð�1ÞÞH�ð�2Þ

þm4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

þðI � bðc1H�ð�1ÞH�ð�2Þ þ c2H�ð�1Þð1 � H�ð�2ÞÞ þ c3ð1 � H�ð�1ÞÞH�ð�2Þ

þc4ð1 � H�ð�1ÞÞð1 � H�ð�2ÞÞÞÞððm1 � m3ÞH�ð�2Þ

þðm2 � m4Þð1 � H�ð�2ÞÞ�d�ð�1Þ

¼ ½bðI � IGFIÞððc1 � c3ÞH�ð�2Þ þ ðc2 � c4Þð1 � H�ð�2ÞÞÞ

þðI � IbLFIÞððm1 � m3ÞH�ð�2Þ þ ðm2 � m4Þð1 � H�ð�2ÞÞ�d�ð�1Þ

Similarly, keeping c1, c2, c3, c4, m1, m2, m3, m4and ϕ1fixed, differentiating with respect to

ϕ2and by the steepest gradient descent method [38], the following gradient descent flow for

ϕ2is obtained:

@�2

@t
¼ ½bðI � IGFIÞððc1 � c2ÞH�ð�1Þ þ ðc3 � c4Þð1 � H�ð�1ÞÞÞ

þðI � IbLFIÞððm1 � m2ÞH�ð�1Þ þ ðm3 � m4Þð1 � H�ð�1ÞÞ�d�ð�2Þ
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