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Abstract

Environmental conditions, including anthropogenic disturbance, can significantly alter host and parasite communities. Yet,
our current knowledge is based mainly on endoparasites, while ectoparasites remain little studied. We studied the indirect
effects of anthropogenic disturbance (human population density) and climate (temperature, precipitation and elevation) on
abundance of highly host-specific bat flies in four Neotropical bat species across 43 localities in Venezuela. We formulated a
set of 11 a priori hypotheses that included a combination of the two effectors and host species. Statistically, each of these
hypotheses was represented by a zero-inflated negative binomial mixture model, allowing us to control for excess zeros in
the data. The best model was selected using Akaike’s information criteria. Fly abundance was affected by anthropogenic
disturbance in Artibeus planirostris, Carollia perspicillata and Pteronotus parnellii, but not Desmodus rotundus. Climate
affected fly abundance in all bat species, suggesting mediation of these effects via the host or by direct effects on flies. We
conclude that human disturbance may play a role in shaping bat-bat fly interactions. Different processes could determine fly
abundance in the different bat species.
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Introduction

All organisms, including parasites, are influenced by the

environment in which they occur. Although parasites are

enormously diverse and ubiquitous in distribution, our under-

standing of environmental effects on host-parasite dynamics in

wildlife is limited mainly to aquatic environments (e.g., [1,2]).

Recent research in terrestrial habitats has mainly investigated the

extent of anthropogenic disturbance on endoparasites (e.g., [3,4]),

whereas ectoparasites have been largely neglected (but see [5]). It

is imperative to investigate the effects of the environment (e.g.,

climate and anthropogenic disturbance) on ectoparasites in

terrestrial habitats because ectoparasites exert important selective

pressures on the evolution of their hosts [6] by affecting host fitness

and population dynamics [6,7].

One fundamental metric of parasite pressure is parasite

abundance (number of parasites infecting an individual host).

Environmental effects on parasite abundance can be direct,

operating on the parasites themselves. For example, parasite

abundance increases where local conditions promote parasite

development [8] but decreases where environmental contaminants

are harmful for the parasite [9]. Environmental effects can also be

indirect, affecting parasite abundance through their effect on the

host. For instance, parasite abundance increases where conditions

act to increase host density [10] or suppress host immunity [11].

However, the processes that determine parasite transmission and

establishment are governed by multiple factors that operate

simultaneously and whose effects are usually difficult to separate

[12].

Anthropogenic disturbance may influence parasite abundance

via effects on local host species richness and abundance (e.g., the

‘‘dilution’’ effect [5,13,14]). However, the dilution effect is

expected to pertain only to generalist parasites because they select

from a range of host species, while specialist parasites are limited in

their choice among host species [13]. Therefore, in highly host-

specific parasites, environmental effects on parasite abundance are

not expected to be a consequence of changes in local host species

richness but rather a result of changes in the local densities of the

hosts themselves. In addition, the distribution of highly host-

specific parasites should follow that of their hosts. Therefore,

variation in parasite abundance can be mainly attributed to

indirect environmental effects on hosts. Yet, abundance of

ectoparasites, which are also exposed to the off-host environment,

can also be influenced directly by external factors such as

temperature and precipitation [15,16].

We used Neotropical bats and their parasitic bat flies (Diptera:

Streblidae) to investigate the effects of climate and disturbance on

fly abundance. Neotropical bats occupy both natural (undisturbed)

and human-disturbed habitats and some species have a vast

distribution, spanning numerous geographical regions [17]. Bat

flies are highly host-specific, with most species parasitizing one or

two host species [18]. Flies are obligate ectoparasites of bats and

have an indirect transmission cycle. Female bat flies leave a host to

deposit larvae in the bat’s roost. Larvae immediately pupate and
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undergo metamorphosis over ca. three weeks. Females and, later,

the newly eclosed flies, must then locate an appropriate host

species, often in roosts shared by multiple bat species [18].

The association between Neotropical bats and bat flies is

strongly influenced by the roosting habits of the host [19,20].

Durable roosts accommodate more bat individuals, and do so

more predictably, increasing the likelihood of bats being present

for colonization by newly eclosed flies. Therefore, bats using

exposed, ephemeral roosts such as leaves typically have lower fly

abundance than those that roost in more protected, durable roosts

such as caves or tree holes. Roost use, in turn, can be affected by

anthropogenic activity [21,22]. For example, foliage- or tree hole-

roosting bats may encounter fewer suitable roosts in fragmented

forests with fewer old, hollow trees, forcing them to congregate in

the remaining roosts, thus promoting parasite transmission [3].

Alternatively, bats can take advantage of human-made structures

and use them as roosting sites [23]. Apart from the effects of roost

availability on local host abundance, variation in local climatic

conditions can further affect variation in local host abundances

through effects on food availability [24,25].

Our goal was to analyze the effects of climate and anthropo-

genic disturbance on fly abundance. We hypothesized that fly

abundance would be indirectly influenced by climatic conditions

and anthropogenic disturbance through their effect on local bat

abundances or directly through climatic effects on flies themselves.

Because it is difficult to predict the magnitude and direction of

climatic effects on fly abundance, we did not generate specific

predictions. However, this is not the case with anthropogenic

disturbance such as clear-cutting that affects roost availability. We

therefore predicted that fly abundance of tree-roosting bats will

increase in more disturbed areas due to increased bat aggregations

in remaining available roosts.

Methods

The dataset
The largest-ever coordinated survey of Neotropical mammals

and their ectoparasites was carried out in Venezuela by

researchers from several organizations between 1965–1968 [26].

Over 30,000 mammals and their ectoparasites were sampled

across Venezuela in the framework of the Smithsonian Venezue-

lan Project (SVP). Of these, 24,138 individual bats (Chiroptera)

were surveyed for streblid bat flies (Diptera: Streblidae). Bat flies

were collected from ether-fumigated bats and kept in 70% ethanol.

To avoid cross-host contamination of ectoparasites, bats were held

in individual paper bags until processing. Details on field sampling

and bat and ectoparasite identification are available in Wenzel

[27]. Each infracommunity (assemblage of flies recovered from an

individual bat) received the unique SVP number of its host. Bat

and fly sampling resulted in a comprehensive dataset of bat-fly

associations. Each record in this dataset represents a fly species

collected from an individual bat host such that multiple records

appear when 2 or more fly species were collected from the same

individual bat. Additional information for each record includes the

number of flies of a particular species, and the name of the

sampling locality.

Geographical information on sampling localities is taken from

Handley [26]. In total, bats were captured at 43 of the primary

localities mentioned in Handley [26] gazetteer (Supporting

Information, Table S1 and Fig. S1). Some of these primary

localities had secondary localities (i.e., sub-localities referenced to

the primary localities without further description or specific

coordinates) associated with them. The gazetteer contains detailed

information including a description of the local habitat, geograph-

ical coordinates and a list of SVP numbers collected. We

complemented the bat-fly dataset with geographical information

(name and coordinates of primary capture localities) by matching

the SVP numbers given in the bat-fly dataset with those of the

gazetteer using an ad hoc computer script (written in R by D.

Toubiana and S. Pilosof) to minimize potential errors. Coordinates

and SVP numbers were available for primary localities only, so we

ignored information on secondary localities. Then, we excluded all

records in which a bat or fly were not identified to species. The

resulting dataset contained information on 137 bat species, some

not or only sporadically parasitized. We then selected the four

most common and broadly distributed species that differed in

roosting habits. These were Artibeus planirostris, Carollia perspicillata,

Desmodus rotundus and Pteronotus parnellii. Artibeus planirostris roosts

mainly in foliage and tree holes; C. perspicillata roosts mainly in tree

holes, but also uses more protected roosts such as rocks, old

buildings and tunnels; D. rotundus uses caves, tree holes, under-

neath bridges, but very rarely abandoned buildings; P. parnellii

mainly uses caves, but occasionally also tunnels and old buildings

[19,28].

Because the dataset contained records of bat-fly associations

that could be rare, equivocal or attributed to contamination [29],

we used Dick’s [29] definition of primary bat-fly associations, and

included only those bat-fly associations in which a bat species

harbored $5% of the total individuals of a given fly species.

Finally, we used only primary localities where $10 individual bats

were captured per species.

Explanatory variables
In our analyses, we used bat species, seven climatic variables

(mean annual temperature, mean annual precipitation, mean

temperature of the warmest quarter, mean temperature of the

coldest quarter, mean precipitation of the wettest quarter, mean

precipitation of the driest quarter, and elevation; Table S1) and

one variable describing anthropogenic disturbance (an estimate of

human population density) as independent variables. The selected

climatic variables may potentially influence bat-fly associations

through indirect effects on distribution, foraging success and/or

roosting habits of bats [25] or on fly development. We derived

these climatic variables at each locality from Geographic

Information System (GIS) layers available at WorldClim (www.

worldclim.org). These climatic variables are based on data

collected at meteorological stations between 1950–2000 at a

,1 km pixel resolution and are available only as averages for these

50 years [30]. Human population density correlates positively with

anthropogenic disturbance [31]. We obtained human population

density estimates (HPE) for 1960 at each locality from the Latin

America and Caribbean Population Distribution Database [32,33]

provided by the United Nations Environmental Programme

(http://na.unep.net/siouxfalls/datasets/datalist.php). This data-

base is a GIS layer which specifies the number of inhabitants in

each grid cell (,5 km spatial resolution), based on hundreds of

surveys and sources.

Extracting climatic and anthropogenic variables at the exact

coordinates of each locality from Handley [26] may entail

potential problems because (1) slight errors in the provided

coordinates might exist since they were derived from cartographic

sources; (2) some bats were sampled at secondary localities, albeit

in proximity to the primary localities; (3) bats are highly mobile

and might thus be exposed to environmental conditions in areas

other than their immediate site of capture. To overcome these

problems, we first corrected the coordinates of the primary

localities where bats were captured: When the coordinates pointed

to a location at sea, we set the primary locality at the closest shore.

Anthropogenic Disturbance and Bat Fly Parasitism
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We then calculated the mean of each variable within a 5 km

radius buffer drawn around each primary locality.

Because climatic variables can be correlated with each other

and reflect different scales (e.g., temperature vs. precipitation), we

replaced them with the scores of principal components extracted

by principal component analysis (PCA). The first two principal

components explained 90% of the total variation (eigenvalues of

4.08 and 2.23, respectively; loadings of the variables related to

temperature and precipitation were all positive). Factors related to

temperature and elevation had a contribution of 88% to the first

principal component (PC1), whereas factors related to precipita-

tion had a contribution of 89% to the variation in the second

component (PC2). We therefore had four explanatory variables,

namely host species, PC1 (reflecting temperature-related vari-

ables), PC2 (reflecting precipitation-related variables), and HPE.

Data analysis
Our aim was to test the importance of climate and anthropo-

genic disturbance in determining fly abundance across individual

bats within bat species. Because each of these factors represents a

different, a priori biological hypothesis, we applied the general

statistical framework of model selection [34]. We used a series of

generalized linear models and selected the best model using

Akaike’s information criterion (AIC) [34,35] and calculated model

probabilities, wi [34]. Model probabilities give a measure of the

plausibility, on a percentage scale, that a certain model is the best

model; this avoids arbitrary cut-off points in identifying the best

model based on D AIC (i.e., difference in AIC between the current

and best model; [34]).

AIC values and model probabilities do not provide information

on the goodness-of-fit of each model (i.e., how far it is from the

‘‘full reality’’; [34]). Because the best model in a set of candidate

models is not necessarily a ‘‘good model’’, we also calculated

pseudo-R2 values (hereafter regarded as R2) following Nagelkerke

[36] for each model as a measure of model fit. The value of R2 is

based on maximum-likelihood estimations of the null model (i.e.,

intercept-only model) and the model in question. This gave us a

second measure to evaluate the importance of each explanatory

variable because the ratio of the likelihoods reflects the improve-

ment of the model in question over the intercept (null) model.

Furthermore, R2 values are normalized to 0# R2 #1, allowing for

intuitive comparison among models. Nonetheless, the sensitivity of

R2 to distinguish among models is low, whereas that of AIC is high

[34]. Therefore, we regarded R2 as a heuristic.

Parasite count data usually contain excessive counts of zero

[37,38]. To account for the large number of zeros, we modeled

numbers of flies on each host species using zero-inflated negative

binomial mixture models (ZINB). Detailed discussion of the logic,

mathematics, methodology and interpretation of ZINB models

can be found in [39,40,41,42]. For a detailed description of our

statistical procedures, see Protocol S1 (Supporting Information).

In brief, there are two sources of zeros in ecological data. ‘‘False

zeros’’ are generated by, for example, observer errors or temporal

absence of a species (e.g., a fly species) during a survey, while it

may occur at other times. If a fly species is available but does not

occur on a given host species or in a given sampling locality

because this habitat is unsuitable for this species, then the zero

count is a ‘‘true zero’’. In a mixture model, the complete

distribution of the estimated counts is represented by two separate

components: a zero component modeling the probability of excess

zeros and a count component accounting for the true zeros and

non-zero counts [39,41,42]. Mixture models allow specifying

factors that may affect the probability of obtaining a false zero

(e.g., the probability of detecting a fly may change among host

species). Alternatively, all zero counts may have the same

probability of being false zeros [39,40,41,42].

Our models incorporated dummy variables to account for the

different levels of host species. Model parameters (i.e., the

estimated model coefficients) of each dummy variable are

calculated relative to a reference level which is chosen arbitrarily

among the factor levels, while the coefficient of the reference level

(intercept of the model) is calculated relatively to zero [43]. For

continuous variables, the slope of the linear fit of a certain level is

added to that of the reference level. We were interested in the

difference of the count component parameters from zero.

Consequently, we ran the best model four times, sequentially

selecting each host species as the reference level for each run as

suggested by [43]. A ZINB has a natural log link function, and

thus negative parameter values do not result in negative counts

(see Protocol S1).

Our model set for fly abundance included 11 models (Table 1)

reflecting the effect of host species, climate (PC1 and PC2),

anthropogenic disturbance (HPE) and possible combinations of

these variables. Models included interactions with bat species

(asking, for example, whether the effect of HPE on fly abundance

depends on bat species) because different species may respond

differently to environmental conditions. We limited our models to

second-order interactions. In each of the 11 models, we used the

host species as an explanatory variable of the zero component,

hypothesizing that the probability of obtaining a false zero would

be affected by host identity. In addition, our model set included a

null model, a global model (i.e., a model that contains all possible

parameters) and models representing the effects of each of our

explanatory variables alone, including a host species model

(Table 1). The null model is used for comparing a certain

parameterized model to an intercept-only model (i.e., null). For

instance, in a situation where a null model is better than a model

that contains the explanatory variable host species, it can be

concluded that host species is not an important explanatory

variable in affecting the response variable. Therefore, we did not

incorporate host species in the null model. We present detailed

results only for the best model.

We used ArcGIS Desktop (ESRI, version 9.3) for all spatial

analyses, and the R software environment [44] for all statistical

analyses. We used the princomp function for PCA analysis and the

zeroinfl function in the ‘‘pscl’’ package [40,45] for ZINB

modeling.

Results

The mean values of the explanatory variables at the 5 km buffer

are presented in Table S1 of the Supporting Information. Artibeus

planirostris (n = 1569) was captured in 30 primary localities, C.

perspicillata (n = 3404) in 35 localities, D. rotundus (n = 769) in 21

localities and P. parnellii (n = 345) in 10 localities.

The explanatory variable in each of models 8–10 (Table 1)

explained 6–7% of the variation in fly abundance. However, the

host species model (model 6, Table 1) explained 21% and was

ranked the highest among models with one explanatory variable.

The best model (model 1, Table 1) had a 100% probability of

being the a priori hypothesis supported by the data. This model

included the combined effects of climate, disturbance and host

(Table 1).

According to the parameter estimates of the best model

(model 1, Table 1), the odds for a false zero were significantly

affected by host species identity. The estimated odds of observing

an excess zero were 0.19 in A. planirostris, 0.56 in C. perspicillata,

0.28 in D. rotundus and 0.18 in P. parnellii (see Protocol S1 for details

Anthropogenic Disturbance and Bat Fly Parasitism
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on calculation). Fly abundance was affected by temperature (PC1)

and precipitation (PC2), although the direction and magnitude of

these effects varied among species (Table 2). HPE had a significant

effect on fly abundance in A. planirostris, C. perspicillata and P.

parnellii (Table 2). To fully understand the magnitude of these

effects it is fundamental to observe the values of the model

parameters, because these parameters represent the intercept of

each species and the slopes of the variables in question. The

intercept values demonstrated that the mean values of fly

abundance, taking into account the lack of any environmental

effect, were significantly larger in D. rotundus and P. parnellii than in

A. planirostris and C. perspicillata (on average 8 and 6 vs. 0.76 and

1.2, respectively). To demonstrate the size of the effect of HPE on

fly abundance in A. planirostris, C. perspicillata and P. parnellii, we

used the parameter values from Table 2 (see Protocol S1 for details

on calculation) to predict the value of fly abundance as a function

of HPE, within the range tested by the model (Fig. 1). It is evident

from Fig. 1 that within the range of HPE in which each species

occurs, average fly abundance declined by 25% in A. planirostris

(from 0.64 to 0.16), increased by 46% in C. perspicillata (from 0.8 to

1.72), and decreased by 43% in P. parnellii (from 5.1 to 2.2).

The best model contained interactions between each explana-

tory variable and host species and the variation explained by the

host species itself was high (model 6, Table 1). Therefore, we argue

that the best model indicates that ectoparasite abundance is a host-

specific trait. To circumvent this caveat we ran separate sets of

models for each host species (Table S2). In each of these runs we

assumed zero counts to have the same probability of being false

zeros (Table S2), because the effect of species was controlled for.

Models containing HPE had a greater model probability in A.

planirostris, C. perspicillata and P. parnellii, as indicated by model

weights (Table S2), corroborating the importance of this variable

in explaining fly abundance in these species.

Discussion

We examined the effects of anthropogenic disturbance and

climate on fly abundance in four widespread species of Neotrop-

ical bats parasitized by highly host-specific bat flies. In three of

four species, disturbance had a significant effect on fly abundance

and climate had some effect in all four hosts. In addition, our

analysis showed that fly abundance is greatly influenced by the

identity of the bat species, suggesting that in the bats we examined,

parasite abundance may be a host-species attribute. Individuals of

some host species are consistently more parasitized than individ-

uals of others [46]. The most likely reason behind this is among-

host difference in traits that constrain the range of parasite

abundance (see discussion in [47]). For example, host species may

differ in levels of immunocompetence or body size. In Neotropical

bats, fly abundance is not affected by body size [48], but is greatly

influenced by the roosting habits [19]. Within the constraints

imposed by roost use, the environment can cause variation in fly

abundance by, for example, affecting fly development or the

encounter rate between a bat and a fly.

The low variation explained by the explanatory variables indicated

that our data was ‘‘noisy’’. Nonetheless, both climate and disturbance

were important factors in determining fly abundance as indicated by

the model selection process. Moreover, the essence of our findings

remained the same within host species when the effects of host species

were eliminated by running separate analyses for each host. The best

model of our more general analysis (model 1, Table 1) represents the

biological hypothesis that fly abundance is affected by climate and

anthropogenic disturbance (albeit differently in different bat species).

Because bat flies are exposed to the environment during their life cycle,

fly abundance may be directly affected by local climatic conditions, as

for other ectoparasites (e.g., fleas, ticks and mites [15,16]). It is possible,

for instance, that temperature had a similar positive effect on fly

abundance in three of the four host species because the development of

bat flies is favored in warmer temperatures. Similarly, in A. planirostris

and C. perspicillata, which roost in relatively exposed roosts, precipitation

may directly affect the survival of fly pupae, which may explain the

negative effect of precipitation found in these two species. Nonetheless,

the climatic variables used were coarse and do not reflect the

microclimate in the roosts at time of capture. Therefore, it is more

plausible that our results point to indirect effects of climate on fly

abundance through its impact on the host [25]. Because data on local

host densities or host condition were not available, this hypothesis

needs to be tested.

The effects of disturbance on parasitism can be diverse and

depend on the underlying ecological processes. For example,

parasite transmission is promoted where disturbance increases host

contact-rates [10]. Habitat fragmentation can result in crowding of

a host, thereby increasing host contact rates [4,49]. On the other

hand, the same disturbance can limit parasite transmission if it

results in a decrease in host population density, for example, due to

increased host mortality or longer movement bouts between

patches which reduce within-host contact rate [50]. Obviously,

these environmental effects interact with the life history traits of

the organism. In our case, the roosting habits of the bat species

should play a crucial role in mediating the effects of disturbance on

fly abundance [19]. Carollia perspicillata, for instance, uses roost sites

which are altered by human activity (e.g., trees) [28]. In the

Neotropics, anthropogenic disturbance can lead to an increase in

the local densities of some bats [22,51]. An increase in the local

abundance of C. perspicillata, a species that is strongly associated

with disturbed forests [22,52], might promote bat congregation

and facilitate horizontal fly transmission. In support of this, we

found a significant effect of disturbance on fly abundance.

Table 1. Comparison of models used to test the effect of host
species, climate and disturbance on fly abundance in four
species of bats in the Smithsonian Venezuela Project data set.

Model
ranks Model structure K R2 AIC D AIC wi

1a Host*PC1 + Host*PC2 +
Host*HPE

21 0.25 17180 0 99.96

2 Host*PC1 + Host*PC2 17 0.247 17196 16 0.04

3 Host*PC2 13 0.229 17328 148 0

4 Host*PC1 13 0.225 17356 176 0

5 Host*HPE 13 0.222 17378 198 0

6b Host 9 0.211 17451 271 0

7 PC1 + PC2 8 0.079 18337 1157 0

8 PC1 7 0.077 18349 1169 0

9 PC2 7 0.063 18435 1255 0

10 HPE 7 0.06 18453 1273 0

11c 1 3 0 18806 1626 0

Models are ranked from the most supported (best model) to the least
supported according to Akaike information criteria (AIC). D AIC – difference in
AIC between the current and best model; wi – model probabilities. K – number
of parameters in the model. Note that the number of parameters includes k,
which is the dispersion parameter of the negative binomial distribution (see
Protocol S1 for details). Host – host species; PC1 and PC2 – principal
components of the seven environmental variables; HPE – Human population
density estimate (see Methods for details).
aGlobal model; b host-species model; c Null model.
doi:10.1371/journal.pone.0041487.t001
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In contrast to C. perspicillata, fly abundance in A. planirostris

decreased significantly with level of disturbance, contrary to our

prediction. This could be the result of a decrease in population

density of A. planirostris in disturbed areas. Alternatively, a

combination of an increase in local host abundances with a

physiologically-limited fly reproduction could result in a ‘‘dilution

effect’’ whereby fly abundance is diluted among hosts [14]. The

differences in trends between A. planirostris and C. perspicillata

indicate that different regulatory mechanisms could determine fly

abundance in different bat species as was demonstrated for fleas

parasitizing small mammals [7]. Contrary to our findings,

Cottontail et al. [3] showed that the prevalence of hemoparasites

in A. planirostris was higher in fragmented habitats than in non-

fragmented ones in Panama, probably due to increased host

density in the fragmented habitats. This indicates that processes

that affect parasite acquisition may also vary geographically within

host species [53,54].

Results for P. parnellii and D. rotundus are more difficult to

explain. The decrease in fly abundance of P. parnellii with

disturbance may be related, at least partly, to the use of man-

made roosts (e.g., buildings) by this species [28]. As these become

available, the densities of bat per roost may decrease, thus

lowering the rate of horizontal transmission of flies across

individuals. However, in the system we investigated, most

disturbed sites were not located in urban areas but rather in

natural (undisturbed primary forest) or rural areas (i.e., clear-cut

forests and small villages) [26] that provide little opportunity for

bats to use man-made structures. Similarly to A. planirostris and C.

perspicillata, D. rotundus also roosts in trees but fly abundance in D.

rotundus was not affected by disturbance. This could be a result of

stable population densities, or contrasting processes that operate

simultaneously and result in a null effect on fly abundance.

Parasite abundance is only one measurement of parasite

diversity and insight can be gained by assessing the composition

of fly infracommunities, which can vary across space [55].

Although bat flies are highly host-specific, several bat fly species

can parasitize a single bat host. For instance, C. perspicillata is

parasitized by six different fly species. We calculated the total fly

abundance of the infracommunity. However, it will be intriguing

to examine if climate and anthropogenic disturbance alter the

relative abundance of each fly species as well as the fly species

composition in the infracommunity.

How host-parasite interactions are mediated by anthropogenic

disturbance is intriguing. One common notion is that highly complex

and context-dependent set of interactions between hosts, parasites and

environment, makes it difficult to propose clear-cut predictions on how

anthropogenic disturbance will affect host-parasite dynamics and

Figure 1. Predicted fly abundance. Fly abundance predicted across the range of human population estimate (HPE) in which (a) Artibeus
planirostris (b) Carollia perspicillata and (c) Pteronotus parnellii occurred in the Smithsonian Venezuela Project data set. HPE was estimated as the
mean number of inhabitants at a 5 km radius, as extracted from a GIS layer which specifies the number of inhabitants in ,5 km spatial resolution
(see Methods for details). Dashed lines represent the standard error of the mean and are not presented below zero.
doi:10.1371/journal.pone.0041487.g001

Table 2. Parameter values for the best model (model 1 in
Table 1) describing the effects of disturbance and climate on
fly abundance per bat host species.

Parameter SE z P value

COUNT COMPONENT

Aj (Intercept) 20.271 0.082 23.29 0.001

Cp (Intercept) 0.217 0.061 3.55 ,0.001

Dr (Intercept) 2.084 0.070 29.81 ,0.001

Pp (Intercept) 1.793 0.104 17.33 ,0.001

Aj HPE 0.000 0.000 22.31 0.02

Cp HPE 0.004 0.002 2.38 0.017

Dr HPE 0.001 0.002 0.82 0.4149

Pp HPE 20.007 0.003 22.32 0.02

Aj PC1 20.049 0.028 21.75 0.08

Cp PC1 0.168 0.019 8.87 ,0.001

Dr PC1 0.131 0.033 4.02 ,0.001

Pp PC1 0.280 0.046 6.11 ,0.001

Aj PC2 20.141 0.035 24.03 ,0.001

Cp PC2 20.266 0.028 29.43 ,0.001

Dr PC2 0.218 0.052 4.21 ,0.001

Pp PC2 0.005 0.057 0.09 0.93

ZERO COMPONENT

Ap (Intercept) 21.637 0.385 24.26 ,0.001

Cp (Intercept) 20.582 0.141 24.12 ,0.001

Dr (Intercept) 21.279 0.161 27.92 ,0.001

Pp (Intercept) 21.735 0.323 25.37 ,0.001

Real values (i.e., not relative to reference level) of the parameters are presented.
Ap – Artibeus planirostris; Cp – Carollia perspicillata; Dr – Desmodus rotundus; Pp
– Pteronotus parnellii. PC1 and PC2 – principal components of the seven
environmental variables; HPE – Human population density estimate (see
Methods for details); SE – standard error of parameter estimation. Results in
bold significantly differ from zero.
doi:10.1371/journal.pone.0041487.t002
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associations [56]. Our findings suggest that human disturbance may

play a significant role in shaping bat-bat fly interactions at least in some

bat species, although the mechanisms behind the indirect effects of the

environment on patterns of bat fly parasitism remain unclear. Detailed

studies that consider local conditions experienced by bats and their flies

are needed to characterize the underlying mechanisms that cause the

observed patterns.
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