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Abstract

Background: Computer-based analysis of digitalized histological images has been gaining increasing attention, due
to their extensive use in research and routine practice. The article aims to contribute towards the description and
retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs
are considered as a powerful and versatile representation formalism and have obtained a growing consideration
especially by the image processing and computer vision community.

Methods: The article describes a novel method for determining similarity between histological images through
graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based)
graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph
matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a
given image from large databases.

Results: The results obtained and evaluation performed demonstrate the effectiveness and superiority of
graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity
has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite
criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis
function.

Conclusion: The proposed method is suitable for the retrieval of similar histological images, as suggested by the
experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval
(CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval
of different types of complex images.
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Background

Histology may greatly benefit from development of suit-
able automatic analysis methods. Histological image
analysis can contribute towards diagnosis and treatment
planning, study and research work. Sometimes, it is
required to find the similarity between histological images
or their regions. Given a database of reference images and
a query image, one or several images from the database
need to be retrieved which are similar to the query.
Content-based image retrieval (CBIR) can can address this
problem, particularly using graph-based approach.

Pathologists make use of staining intensity, morpho-
logical changes and notably spatial relationships of tis-
sue components during histopathological examinations.
Designing a system which retrieves sample regions
being structurally similar to a region in question can
contribute towards automated detection of malignant
changes. Besides research and education, clinical pathol-
ogy is expected to benefit from such a system where
visually interesting regions containing similar tissue struc-
tures can be selected and retrieved from existing large
databases for further studies. Therefore, the work has
been performed keeping in mind the generic nature of
medical images as well as the specific nature of the histo-
logical data to be analysed, by exploiting the representa-
tional power of graphs to describe such complex images
efficiently.

Tagare et al. have presented a content-based retrieval
approach for medical image database in [1], where it has
been strongly emphasised that medical image information
contains spatial data and a large part of image informa-
tion is geometric. The state-of-the-art general-purpose
CBIR techniques using low-level features based on tex-
ture, colours and shape are insufficient for histological
images since these methods do not incorporate high-
level structural information and neighbourhood relation-
ships between image regions. Therefore, an appropriate
improvement in this direction can be the use of structural
methods adopting graphs, being explored in this paper.

Graphs have recently drawn increasing attention of the
scientific community as effective structural descriptors
due to their ability to represent relational information.
They can be employed for providing efficient descriptions
of images by associating nodes with specified attributes
to image components and edges with appropriate weights
to relationships between these components. This property
can be exploited to obtain graph-based representations of
the database and the query images, and then to search
for structurally similar images by means of inexact graph
matching, which involves calculation of a matching cost.
The closest matches can then be obtained and displayed
in decreasing order of similarity (i.e. increasing cost of
matching). Hence, the aim of this work is to provide an
algorithm for automatic content-based retrieval of similar
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images from large histological databases, which, at such
scale, would not be feasible to perform only by visual
analysis of humans.

In order to analyse histological images for diagnos-
tic purpose, a semi-automatic method using low-level
features of tissue images has been proposed in [2] for
automatic selection of ROIs for further diagnosis. Kayser
et al. [3] discuss the information recognition algorithms
that can be used for field of view detection in vir-
tual microscopy, by measuring diagnosis-relevant infor-
mation. They include graph representations of tissues
based on Voronoi diagrams. Some classification methods
have been developed as tools for diagnostic assistance in
histopathological examinations of lungs [4,5].

Graph theory has also been used by authors for infor-
mation representation in the field of histology. The most
common method is Delaunay triangulations (and their
corresponding Voronoi diagrams) where nuclear compo-
nents of the tissue are considered as graph nodes [6,7].
Minimum spanning trees can also be obtained from them.
Probabilistic graphs where nucleus forms nodes and edges
are assigned according to some probability distribution
have been proposed in [8]. However, all these graphs
exhibit low-level (pixel-based) information of the image,
unlike graphs introduced in this work as they contain
high-level (region-based) information related to structure
and spatial relationships between regions.

Overview of Content Based Image Retrieval

In Information Retrieval (IR) systems, the user specifies
a query either in the form of text, documents, images, or
sounds and the system is expected to return the items that
are semantically similar to the query in some sense. CBIR
is an information retrieval system that includes techniques
for retrieving digital images by their visual content. The
horizon of CBIR includes methods ranging from image
similarity functions to highly complex image annotation
systems [9].

At present, CBIR is an extremely active area of research.
Descriptions of a variety of CBIR approaches imple-
mented in the past are given in reviews [10] and [11]. CBIR
has been applied to medical domain and a comprehen-
sive review on medical CBIR systems is given by Miiller
et al. [12]. However, most of the recently developed
retrieval methods are dedicated to radiological images
[13]. Specifically for histological images, research in this
field has been comparatively less. An application with
histopathological images is described in [14], using a
property concept frame representation for morphological
characteristics based on fuzzy logic. However, it does not
emphasize on the spatial relationships between the vari-
ous tissue components, which are considered an impor-
tant aspect in our work, in order to describe the overall
topology of the breast tissues.
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In Diamond Project [15], the interactive search in large
distributed data repositories was addressed. Particularly,
the most relevant to medical domain are MassFind [16],
FatFind [17] and PathFind [18]. MassFind is an appli-
cation for diagnosing lesions in mammograms, which
focuses on performance of different distance metrics to
define similarity between ROI images. FatFind exploits
the property of perfect round shape of adipocytes in
cell microscopy images for their automatic counting, by
making use of low-level shape features of cells. PathFind
is a tool employing “discard-based search” for content-
based retrieval of WSIs. However, in all the applications,
less attention is given to high-level structural represen-
tation and retrieval algorithms specific to histological
images; but more emphasis is on development of design
and implementation strategies of the search methods,
to handle huge data collections in large-scale efficient
network-distributed frameworks.

The images used in CBIR systems for a particular appli-
cation form a Domain-Specific Collection. It is the term
given to a homogeneous collection of images “provid-
ing access to controlled users with very specific objectives”
[9]. For instance, satellite and biomedical image databases
form two such collections. Histological images of breast
tissues is also a domain-specific collection. The two main
steps in CBIR include:

1. Signature calculation: Mathematically describing
images based on the characteristics of their visual
content. The mathematical description is called
“signature” and may include intensity, colour, texture,
shape, size, location or their mixtures [19]. The
signature must be selected carefully, depending on the
context, as it describes the content within the image.

2. Similarity measure calculation: Assessing the sim-
ilarity between a pair of images (query and database)
and retrieving those database images having highest
similarity to the query submitted to the system.
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In the proposed method, signatures of the histological
images are attributes of nodes and edges obtained from
the graph-theoretic representation of the images as well
as the topology of the graph. The corresponding similarity
calculation is achieved by graph matching method and the
obtained matching costs employed for retrieving images
structurally close to the query image from the database.
There are two types of tasks included in CBIR: off-line and
on-line [20]:

1. The off-line task includes feature extraction from
and signature calculation of the database images, as
well as the storage of the computed signatures. At
this stage, there is no interaction with the user for
retrieval task.

2. The on-line task includes analysis of the query image
and its signature calculation. It also includes
similarity computation, search and retrieval of
similar database entries as well as interaction with
the user through a GUL

Graph Theory

A graph is a set containing a finite number of points, called
nodes (or vertices), which are connected by lines called
edges (or arcs). In this paper, a graph is considered as a
4-tuple G = (V,E,«, B), where

e V is the finite set of vertices.

e E C V x Visthe set of edges.

e «:V — Lisafunction assigning labels to the
vertices.

e [:E — Lisa function assigning labels to the edges.

Figure 1 gives an example of a basic graph.

Attributed Relational Graph

A graph G is said to be an Attributed Relational Graph
(ARG) when both the nodes and the edges are repre-
sented with attributes. The node attributes for node #;

and edges, respectively.

V={V1, V2, V3}
E={(V1.V2), (V2. V3). (V1. V3)}
o  Vi—l
V2—3
Vi—38
B: (Vi.V2)— 4
(Vi.V3)— 2

(V2,V3)— 1

Figure 1 A graph example. An example of a basic graph represented as a 4-tuple G(V, £, «, 8), with functions & and B defining the labels of nodes
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are denoted as a vector a; :[ul(»k)] ,(k = 1,2,3,..,K),
where K is the number of node attributes in the vector
aj, and the edge attributes (or weights) for edge e; by the
vector denoted as b; =[ b;m)] ,(m = 1,2,3,..,M), where
M is the number of edge attributes in the vector bj. In
Figure 2, ARG with node attribute vectors a;,i = 1,2,3
and edge attribute vectors bj,j = 1,2,3 is shown. Node
attributes represent quantities such as size, position, shape
and colour of an object whereas edge attributes define
relationships between nodes like the distance between
two points or dissimilarity between objects. ARGs act as
convenient structures for physical representation and are
frequently used in applications ranging from computer-
aided design to machine vision [21]. ARGs have been
employed in this work for representing the information
content of histological images.

Regional Adjacency Graph

Regional Adjacency Graph (RAG) is an ARG whose ver-
tices represent regions and edges represent connections
between adjacent regions. Node attributes are assigned
according to characteristics of the region corresponding
to each node and edge attributes (or weights) describe
the adjacency relationships. RAGs give a spatial view of
the images and are effective in applications for represent-
ing image information where neighbourhood relation-
ships can be taken into account. RAGs have been used
in [22] for segmentation of colour images. In this work,
segmented histological images are represented as RAGs.
Figure 3 shows a simple RAG example.

Graph Matching
Graph Matching is the process of comparing two graphs to
find an appropriate correspondence between their nodes

a1=[a® a® . a1 ®]

az= [@®,a® .. 2 ®] a3= [ ®, 2@ a3 ®]

Figure 2 Attributed Relational Graph. An example of an ARG with
node attribute vectors a;,i = 1, 2,3 and edge attribute vectors
bj,j =1,23.
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and edges. It refers to the process of finding a map-
ping F from the nodes of one graph G to the nodes
of another graph G’ that satisfies some constraints or
optimality criteria, ensuring that similar substructures
in one graph are mapped to similar substructures in
the other. Standard structural matching concepts include
the following:

1. Graph Isomorphism: It finds an exact structural
correspondence between two graphs. It is a bijective
mapping that preserves the number of nodes and
edges. It is illustrated in Figure 4.

2. Subgraph Isomorphism: If nodes along with their
corresponding edges are deleted from a graph G, a
subgraph G’ denoted by G’ C G is obtained. A
subgraph isomorphism from G to G” is an
isomorphism from a graph G” to a subgraph G’ of G.
It is shown in Figure 5.

3. Monomorphism: It is a more relaxed matching than
subgraph isomorphism as extra edges are also
allowed between nodes in the larger graph. Figure 6
illustrates monomorphism from graph G to graph G'.
Formally, it can be stated as: Let G and G’ be graphs.
A graph monomorphism between G(V, E, «, 8) and
G'(V',E/ &/, B') is an injective mapping
Friono : V — V' such that:

a(v) =o' EponeM) Vv e V. (1)
For any edge e = (1, v) € E, there is an edge
€ = (Fuono(®), Frono(v)) € E' such that
Ble) = B'(€).

4. Maximum Common Subgraph (MCS): An MCS of
two graphs, G and G/, is a graph G” that is a

Figure 3 Regional Adjacency Graph example. An RAG is
constructed over a simple image consisting of five regions.
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Graph G

Graph G'

f: (V1.V3), (V2, V1), (V3, V)

Figure 4 Graph isomorphism. An example of two isomorphic graphs G and G, each having three nodes and three edges.

subgraph of both G and G/, such that it has the
maximum number of nodes among all possible
subgraphs of G and G'. MCS of two graphs is usually
not unique. It can be used to measure the similarity
of objects as the larger the MCS, higher will be the
similarity. It is shown in Figure 7. A common
subgraph of G and G/, CS(G, G'), is a graph G” such
that there exist subgraph isomorphisms from G to
G and from G’ to G” or vice-versa. G” is a MCS of
G and G/, MCS(G, @), if it is the common subgraph
with maximum nodes.

Types of graph matching
The two main types of graph matching are [23]:

1. Exact matching: These methods find a strict
correspondence between two graphs if it exists.
Structurally, it ensures that the mapping between
nodes of the two graphs must be ‘edge-preserving’,
that means if two nodes in one graph are linked by an
edge, they are mapped to two nodes in the other
graph that are also linked by an edge. For ARGs, the

matching ensures that the attributes are also
identical in both graphs.

. Inexact matching: The algorithms do not find a

strict correspondence between two graphs but a
more relaxed one, as there maybe a match between
nodes where edges are not preserved. Further, for
ARGs, the attributes of nodes and edges may differ. In
this case, a cost (or distance) is calculated that takes
into account differences among the corresponding
attributes. The matching finds a mapping that
minimizes this cost. It is used where the constraints
imposed by exact matching are too strict for graphs
used, such as graphs not identical to each other. Two
types of inexact matching algorithms exist [24]:

(a) Optimal inexact matching: These algorithms
always find a solution that is the global
minimum of the matching cost, i.e. they will
find an exact solution if it exists. However,
they are usually more expensive than exact
ones as they require exponential time and
space due to the NP completeness of the

Graph G
Subgraph G'

G. The subgraph G'is isomorphic to G".

Graph G"

fsub: (V1.V'3),(V2V1), (V3. V2)

Figure 5 Subgraph isomorphism. An example of subgraph isomorphism between graphs G and G”, with highlighted graph G’ being a subraph of
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Graph G

Graph G'

Fraomo * (VIV'3), (V2V1), (V3.V'2)

Figure 6 Graph monomorphism. An example of graph monomorphism between graphs G and G'.

problem. Due to this reason, they are suitable
for graphs with a small number of nodes and
edges.

(b) Approximate or sub-optimal matching:
These algorithms only ensure to find a local
minimum of the matching cost. Not always
ensured, but often the local minimum found
is close to the global minimum. However,
even if an exact solution exists, they may not
be able to find it.

The basic A* Search Algorithm

Dijkstra’s algorithm [25] starts with the source node and
traverses the nodes in a graph such that shortest path
from the source, found so far, is prolongated first. Thus, by
reaching the goal node the shortest path is guaranteed to

YA\
\/

Graph G'

MCS G"

Figure 7 Maximum Common Subgraph. An example showing a

MCS G" of graphs G and G'.

be found. On the other hand, the Greedy Best-First-Search
algorithm [26] selects the node closest to the goal by using
a heuristical estimate of the distance of a node from the
goal node irrespective to distance to source and thus finds
a path to the goal in shortest time, which is not neces-
sarily the shortest path. A* algorithm [27] was developed
to combine formal approaches like Dijkstra’s algorithm
and heuristic approaches like Greedy Best-First-Search
algorithm.

Path Scoring

A* finds the least-cost path in the graph from source node
to goal node. To calculate the cost, it uses the following
formula [27]:

S(n) =g(n) + h(n) (2)

where:

® g(n) is the distance from source node to node #.

e /i(n) is the heuristic function that is used as an
estimate of the minimum cost from current node # to
the goal node. It is important to choose a good
heuristic function. The more accurate the heuristic
the faster the goal node is reached and through
shorter path.

e f(n) this is the current approximated cost of the
shortest path to the goal node going through node n.

A* computes the sum f(n) of g(n) and h(n) as it moves
from the source to the goal and selects the node with the
lowest f(n) in each iteration. Let /#*(n) be the true mini-
mal cost from 7 to goal. The behaviour of the algorithm
depends on the heuristic /() as [28]:

e If h(n) = 0, then A* turns into Dijkstra’s algorithm as
only g(n) plays a role. It is guaranteed to find a
shortest path.
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o If h(n) < h*(n), then A* is guaranteed to find a
shortest path. The lower k() is, the more nodes are
expanded, making it slower.

e If h(n) = h*(n), then optimal path will be found and
no other nodes will be expanded, making it very fast.
Hence for a given perfect heuristic, A* will behave
perfectly.

e Ifh(n) > h*(n), then A* is not guaranteed to find the
shortest path, but it can be even faster than the
optimal /(n) = h*(n) case.

o If h(n) > g(n), then A* turns into Greedy
Best-First-Search algorithm as only /4(#) plays a role.

Implementation

A* algorithm can be implemented by maintaining of two
lists: the Open List and the Closed List. The Open List
contains nodes that are candidates for examining. It is
generally maintained as a priority queue, as the node with
highest priority is the one with least f(#) cost. Initially, it
contains just one element: the source node. The Closed
List contains those nodes that have already been traversed
and form the optimal path. At each step of the algorithm,
the node #n with the lowest f(n) value is examined from
the Open List. If # is the goal, then algorithm stops. Oth-
erwise, it is removed from Open List and added to Closed
List, and the f(n), g(n) and h(n) values of its child nodes
are updated accordingly. These nodes are then inserted
into the Open List queue and are synchronised accord-
ing to priorities of other existing elements. The process
continues till the goal node is reached, or no more nodes
are available in Open List (a case of no solution). The
algorithm is shown in stepwise manner in Figure 8.

Properties
The properties of A* search algorithm are given as:

1. Completeness: A* is complete, as it takes an input,
evaluates the paths possible from source to goal, and
returns a solution if it exists. Hence, if there is a
solution, it will be found.

2. Admissibility: For optimal performance A* must be
admissible, i.e., #(#n) should be a lower bound on the
true minimal cost #*(n) (h(n) < h*(n)Vn ). Then it
would find an optimal path from source to goal if it
exists.

3. Complexity: The time complexity depends on the
value of i(n). When h(n) is very small (in the worst
case), the number of nodes traversed is exponential
to the length of the shortest path. However, when the
search space is a tree, which holds true in the case
considered here, goal is a single node, and /(n) meets
the condition that the error of 4(n) does not grow
faster than the logarithm of /#* (n),

lh(n) — h*(n)| = O(log(h*(n))) (3)
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then the number of nodes traversed become
polynomial [26].

Methods
A block diagram of the method employed is given in
Figure 9. The main steps are explained as:

1. Image acquisition: H&E-stained breast biopsies are
used in this study. Specimens are digitized and the
whole-slide images (WSIs) are rescaled to about 100x
effective magnification for further experimentation.

2. Image segmentation: In this step the images are
prepared for graph-based description. It involves
segmentation of the images as well as removal of
artefacts and obtaining connected components in
each segmented image.

3. Graph-Theoretic representation: The segmented
images are then represented using ARGs which
involve the description of nodes and edges.

4. Graph matching: The graph representing query
image is then compared to a database of graphs
already generated in order to retrieve most similar
images based on the distance between the graphs. A
graph matching algorithm based on the A* search is
used.

5. Display of the closest matches: The images from
the database are arranged in order of decreasing
similarity based on cost of graph matching and the
top results are displayed to the user.

Image segmentation

It includes a group of methods employed before graph-
based image analysis. To acquire a region-based signature,
a key step is to segment images. Hence, the original breast
biopsy images are first segmented using a supervised
approach which has been performed in two stages:

1. Soft pixel classification: Likelihood of belonging to
a tissue of particular type is calculated for each image
pixel based on texton-based texture descriptions.The
segmentation decision is made for every point (local
area) on MAP (Maximum A Posteriori) principle
based on texture descriptions of all allowed tissue
classes previously learned.

2. Region segmentation: Grouping of pixels and hard
label assigment is performed based on spatial label
coherence and similarity to texture models already
obtained in the previous stage. Such optimal grouping
is performed using Graph-cut [29] algorithm.

The maximum size of the pixel area for decision mak-
ing is tissue type related. In these experiments 16x 16
pixels for epithelial, 32 x 32 pixels for connective, 48 x
48 for lobular and 64 x 64 for fat tissues were used.
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Output: Least cost path from szarz to end.
Steps:
Initialise

open_list = { start }

closed list={}

g(start) =0

h(start) = heuristic_function (start,end)

fistart) = g(start)+h(start)

while open_list is not empty

fm==end

return
remove m from open _list
add m to closed_list
for each nin child(m)

if nin closed_list

continue
cost= g(m)+ distance(m,n)

if n in open_list and cost < g (1)

Input: A graph G(V,E) with source node starz and goal node end.

m = Node on top of open_list, with least f

* Listof nodes to be traversed*

*List of already traversed nodes*®

*Cost from source node to a node*
*Estimated cost from node to goal node*

* Total cost from source to goal node*

remove » from open_list as new path is better
if nin closed_list and cost < g(n)
remove n from closed_list

if 72 not in open_list and » not in closed_list

add » to open_list

g(n) = cost

Jtv) = g(n)+h(n)
return failure

h(n) = heuristic_function (n.end)

Figure 8 A* search algorithm. Pseudocode of the A* search algorithm operating with open and closed lists of nodes.

Here, the effective pixel size for these images (i.e. how
large the physical area of the tissue which corresponds to
one pixel) was roughly 1.0 micrometer x 1.0 micrometer.
The segmentation algorithm is not described in further
details here and is a subject to a separate publication.
Segmentation results were just provided for this study.
The segmentation is done into four tissue types: lobules,
fibrous connective tissue, epithelial lining cells, lumens-
&-fat (centres of ducts and adipose tissue).

The multilabel (L=4 here) segmented image is decom-
posed into binary images, one image for each label. Then

morphological operations closing and opening are per-
formed twice each on each binary image. These opera-
tions aim to remove small artefacts, fill in the potential
gaps between tissue fragments and smooth the contours
of the shapes. The size of structuring element chosen
depends on the magnification of the WSIs used in the
study. Then connected components are identified in each
binary image. A connected component analysis ensures
that only connected pixels are assigned the same label and
form a region. It is required for distinguishing the regions
within the image.
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Graph Based

Representation

Online

Database images most
similar to query image
retrieved

Offline

Database images |:> Graph Based

Representations

Figure 9 Block diagram of the proposed method. Schematic overview of the proposed CBIR method.

Graph-theoretic Representation

Each of the images in the database as well as the query
image have been described by corresponding graphs.
Namely, ARGs have been constructed, where each node
corresponds to one connected region in the image and
edge is obtained between neighbouring regions which
share a common boundary. The procedure involves
describing nodes and edges with attributes explained
below.

Node Description

Describing the nodes includes identifying the nodes and
then assigning attributes to them. Each node has a
unique identifier number that is used to simply recog-
nise it in subsequent algorithm. Also, though a node
denotes a region, for representational purpose, its posi-
tion is assumed to be at the centroid of the region.
The actual information about the region that each node
carries is:

e Area: It is defined as the total number of pixels inside
the region corresponding to the node. The areas are
found for each region, and regions with area of less
than a predefined threshold are ignored and not
considered as separate nodes.

e Perimeter: The attribute gives the length of the
boundary of a region. It is computed by summing of
distances between each adjacent pair of pixels along
the border of the specified region.

e Label: It defines the class of tissue for the region.

Initially, other features were also considered for node
attributes, however, they were not retained for the final
implementation, since they were found unsuitable or
inefficient for this particular application. Actually PCA
would be the right way for selecting the appropriate
attributes, however, in order to reduce the computa-
tional complexity, we have performed a heuristic selec-
tion of attributes. The features not retained for node
description are:

e Convex area: It is the number of pixels in the convex
hull of a region.

e Eccentricity: For an ellipse, eccentricity is defined as
the ratio between the distance between its foci and its
major axis length. It has a value between 0 and 1. For
a region, it is the eccentricity of the ellipse which has
the same second-moments as that of the region.

e Euler number: It is defined as the difference
between the number of objects in a region and the
number of holes inside those objects.

¢ Orientation: It can be defined as the angle between
the x-axis and the major axis of the ellipse which has
the same second-moments as the region. Its value is
between -90° to 90°.

e Solidity: It is the fraction of pixels in the convex hull
that are also in the region and computed as ratio
between the area of a region and its convex area.

Edge Description

The process of describing edges involves identifying the
edges and assigning weights to them. The edge informa-
tion (weights) is obtained as:

e Distance between centroids: It is taken as the
Euclidean distance between the centroids of two
regions.

e Common boundary length: It is the number of
pixels lying on the common border between two
neighbouring regions. It has been calculated by
considering the 4-connectivity of each pixel. The
algorithm counts those 4-connected neighbours of a
pixel which have a different label than the pixel itself.

Same as with nodes, other characteristics can also be
included in edge attributes. However, it was found that
the properties given above are suitable for represent-
ing a histological image. Area is important for match-
ing of similarly-sized regions, whereas perimeter conveys
approximate shape information. The distance between
centers determines how far the nodes are placed with
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respect to each other, and common boundary length
denotes upto what extent two regions are adjacent to each
other. Thus, these properties are most useful for deter-
mining the structure and neighbourhood relationships
for histological image analysis. One example of such a
graph-representation is given in Figure 10.

Normalisation

The graph attributes obtained in the above steps are
expressed in different units. Thus, this data need to be
converted to relative units so that they becomes compa-
rable in subsequent procedures. A global normalisation is
performed. For each feature (except label of nodes), first
the global maximum and minimum values are obtained
from all the graphs in the database. Then the features are
normalised to [0,1] range using the global maximum and
minimum values for each one.

A*-based graph matching method

Given a query image, its ARG is matched to each ARG in
the database and the cost of matching is assigned to each
pair of graphs. The graph matching problem has been for-
mulated as an A* based tree search problem. Functions for
the cost g(n), heuristic /(n) and total cost f(n) have been
designed using the information present in the correspond-
ing image ARGs. The heuristic /4(n) is designed to be a
consistent lower bound estimate of the exact cost, hence,
admissibility criterion is satisfied that leads to the optimal
solution.

To describe the process of matching, two ARGs are
defined first: A Test ARG G(V,E,«a, B) and Model ARG
G'(V',E/ o', B"). N is the number of nodes in G and N’ is
number of nodes in G’such that N < N’. Also, W is the
number of edges in G and W’ is the number of edges in
G'. For each node #;(i € 1,2...N) in G, the set of attributes
is given as a;:

ai:zzgl),agz) a?k) ..... uEK),

ke {1,2..K} (4)
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where K is the total number of attributes associated with
each node n;. Hence, for all nodes N, the set a is the set of
all vectors aj given by:

a = aj,ay,as,.....aN (5)

Similarly, for each edge ¢;(j € 1,2..W) in G, the set of
attributes is given as b;:

bi=b", 6. b b m e (1,2...M) 6)

where M is the total number of attributes associated with
each edge e;. Hence, for all edges W, the set b is the set of
all vectors bj given by:

b = by, by, b3, ....bw (7)

For the proposed method, K and M both have value
2, where k=1 for area and k=2 for perimeter in node
attributes, and m=1 for distance between centroids and
m=2 for common boundary length in edge attributes.
Note that for node attributes, area has been assigned
double the weight of perimeter, as it is considered more
important feature during the matching of nodes.

The task is to find the best mapping between G and G’
and the minimum matching cost for attaining it. A graph
monomorphism is being sought between G and G’ as
explained in Section Graph Matching. To begin with, the
simplest case can be to assign the number of unmatched
nodes as the heuristic function that denotes estimate of
cost of a path from a node to goal, and the number of
matched nodes as the cost function that denotes the cost
from start to a node. For a partial mapping till node # in
G(n < N), these functions will be defined as:

gn) =n (8)

h(n) =N —n )

The dissimilarity of the nodes (and correspondent
edges) must also be incorporated in these formulations.
A pairwise distance between feature vectors of nodes
already matched needs to be included in equation 8,

Segmented image

Figure 10 Example of graph representation of histological image. An example of graph-theoretic representation of a histological image. A
shows a part of original histological image, B shows the segmented version of the image in A and C presents the graph obtained for the image (the

obtained graph is overlaid on the image B).

Graph representation
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and the term containing attributes for unmatched nodes
should be included in equation 9. It gives:

gy = si+n (10)
i=1
=Y i+
i=1
N
hom) =Y al” + (N - n) 11)

i=n
N

=Y @" +1)
i=n

where, §; in equation 10 describes the distance between
the attributes of already matched nodes and edges, and
azl(l) in equation 11 refers to areas of the nodes in G not
matched yet. Note that only the area attribute is used
at this point as computing §; will not be possible for
unmatched nodes and the most important attribute that
needs to be considered in the heuristic function is area.
Now, let us consider two incremental functions ga (n)
and /(1) which denote the contribution of a node #, to
the cost function g(n), if it has been already traversed, and
its contribution to the heuristic /%(#) if it has not been
already traversed. These functions can be defined as:

ga(m) =gn) —gn—1) (12)
ha(n) = h(n) — h(n+1) (13)
From the equations 10 and 11, it follows that:
gan(n) =4, +1 (14)
ha(n) =a'l +1 (15)

The constant 1 in these equations must be re-scaled,
otherwise it will have a greater impact and may mask the
effect of attributes of ARGs. For this reason, a constant ¢
is introduced, which has been determined experimentally.
After this the equations become:

galm) =8, +c (16)
ha(n) =a'l +¢ (17)

In order to yield optimum results, the admissibility cri-
terion must be satisfied, i.e. the estimated cost of a path
from a node to goal must be a lower bound of the actual
cost of a path from the node to goal. This can be ensured if
the estimated cost contributed by #, represented by & (1)
is lower than (or equal to) the actual cost contributed by n,
represented by ga (n). As §,, > 0 and a,(ql) €[0,1], remem-
ber that all attributes have been normalized to the range
[0, 1] aforehand, in order to ensure that sa (1) < ga(n) a
constant 1 is added to the distance §,. It now yields:

gr(m) =@n+1)+c (18)
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The problem that may arise here is that as 1 becomes
very large compared to distances §;, the effect of distance
may be masked, hence, a new constant, y, is introduced. It
is an experimentally determined parameter and distance
becomes:

dp=1y -0y (19)

Rewriting the equations 10 and 11 for the nodes tra-
versed up to node n, g(n) and h(n) take the form:

n

g(n):Z(d,-—l—l)-i—n-c

i=1

(20)

N
hmy =Y al’ + (N =n)-c

i=n

(21)

The equation 20 can be used for g(n), however, for
histological images, it is important that larger nodes are
given higher importance in matching. This is because
smaller nodes may represent less important regions or
artefacts, but the larger nodes will always represent sig-
nificant regions. A mismatch between larger nodes should
be penalised by a higher cost as compared to mismatch
between smaller nodes. Hence, a weight has been intro-
duced:

n
gmy =) widi+1)+n-c (22)
i=1

The weights w; are proposed as:

w; = max(ap(l), a;(l)) (23)

where 7, € G and 1, € G’ are matching nodes and a,V

and a;(l) denote the first attributes corresponding to fea-
ture vectors ap and a:l. They describe the area of the two
regions being matched.

The distances §; in equation 10 between each pair of
nodes are calculated as:

8 = Ad1i + (1 — 1)dy; (24)

where, §8;; is the distance between corresponding nodal
attributes and §; is the distance between their corre-
sponding edge attributes. A €[0, 1] balances the mutual
relevance of the two distances. In the method, equal rel-
evance has been considered. The distance between nodes
and edges has been formulated as an Exponential distance,
in order to further intensify the mismatch between corre-
sponding attributes, as compared to a linear technique or
Euclidean distance. The nodal distance for node attributes
is defined as:

K
s (k)
b= w4l _ K, ke (1,2.K)
k=1

(25)
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Edge distance for edge weights is defined as:

M
m s (m)
sp= Y "N M, me(L2.M)  (26)

m=1
The total cost f(n) of the partial mapping till node # is
given by:

f(n) = g(n) + h(n) (27)

The graph matching is implemented through a tree-
based search using A* algorithm which always extends the
partial mapping of nodes towards an optimum. The tree
is the representation of Open List realized using a prior-
ity queue, containing partial mappings in increasing order
of their costs. It is constructed by first allowing each test
node to be mapped to each available model node, if the
match is permissible, the pairs forming the first level of the
tree. The cost of each pair is computed, and the pair with
the lowest total cost f () is expanded. Each leaf of the tree
now represents a combination of matched nodes or partial
mapping from nodes of test graph to those of model graph.
The Closed List consists of the latest and most favourable
partial mapping constructed. The tree is expanded until
best optimum mapping of maximum nodes is found. An
example of the tree-based search method employed is
illustrated in Figure 11.

The main problem with optimal graph matching is its
high computational complexity. The complexity of the
described search is exponential in the worst case, how-
ever, practically, it depends on the data to be handled as
only nodes of same label can be matched. It considerably
reduces the search space and complexity is scaled down.
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Results and Discussions

Dataset

The data used for this work consists of histological images
provided by The Charité Hospital, Berlin. These are
biopsy images of the breast tissue. The samples have been
stained with the H&E dye. The WSI images are produced
by a Zeiss MIRAX SCAN WSI scanner. We used selected
archived slides from daily clinical workload that were not
older than 6 months at the time of digitalization. The glass
slides have been produced in AP-laboratory of the Insti-
tute of Pathology at Charité hospital. They have not been
modified in any way. We have evaluated the method on 3
WSI images of FEA-suspected breast biopsies divided into
sub-images representing possible retrieval results. Our
aim was to demonstrate the potential of the graph-based
approach, leaving the in-depth performance evaluation
for future research. One of the reasons for this is the
relatively high computational complexities of the segmen-
tation, the description and the retrieval algorithm, which
are subject for future change and improvements too.

The images have been pre-segmented to four cate-
gories describing different types of tissue. They are then
divided for one approach (described in Section Experi-
mental Approaches and Results) into smaller sub-images
to obtain the database for different image sizes of 64 x 64,
128x 128,256 x256 and 512x512. Query image is selected
by giving a choice of four sizes, and the selection is resized
to the size selected by the user. The number of images
used in the database, depending on the size of query
image is:

® 64 x 64: 70869 images
e 128 x 128: 27596 images

Graph G

Graph G’

L1y 12)

1.2),2,1) (1,2),(2,3) (1,2),2:4) (1,2),3.1) (1,2),3.3) (1,2),3.4)

(1,2),2,3),3:1)  (1,2),(2,3),34)
Path with least total cost f{n),
giving optimal mapping

13) 1,4 2.1 22) 2.3) 29

B1) (32 B3 G4

GA,(1,1) (:4),(1.2) 3:4,(1,3) (3,4),(2,1) (3:4)(2,2) 3,4)(2,3)

Figure 11 Example of tree-based graph matching process. An example of the search tree traversed by the A* algorithm during the matching of

two graphs Gand G'.
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® 256 x 256: 9132 images
® 512 x 512: 2485 images

Graph representations of the images stated above were
obtained and stored for future reference.

Experimental Approaches and Results
Two types of configurations were used for experiments.
These are as follows:

Subgraph isomorphism approach

The approach aims to find the subgraph isomorphism
between a smaller query graph and the graphs obtained
for the whole size images. The user submits a query image
of any size by selecting a rectangular section of the whole
histological image presented to him. The group of pre-
segmented regions present in the selection is identified.
Each of the regions is then extended to its original size and
shape. An RAG is then constructed whose attributes are
computed from the properties and spatial information of
the extended regions. The matching process returns those
subgraphs of the graphs obtained from the database of
entire WSIs, which are closest to the graph obtained for
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the query. An example graph, generated for an entire his-
tological image, is shown in Figure 12. The selection of the
query image, the obtained RAG and three nearest match-
ing results are shown in Figure 13. Here, a query consisting
of lobular cells surrounded by epithelium and adjacent to
a layer of fat tissue is selected. The closest matches show
similar structural groups of lobules, fat cells and epithelial
cells.

Inexact graph matching approach

In this approach, an inexact matching between a pair of
graphs generated for a query image and a database image
of the same size is determined. For this, first the database
images are divided into smaller sub-images, query image
is selected of a predefined size, and then the graphs of each
sub-image is compared with the graph of the query image.
The sub-images with closest similarity are retrieved. Note
that in contrast to the previous method the regions of
the query image are not extended to their original size.
An example of this approach with results shown for a
query size of 512 x 512 is shown in Figure 14. The query
image has a duct with a lumen (center) with an outer
lining of epithelial tissues and having lobules and connec-
tive tissue in the background. The retrieved results show

/%\a
>
/I‘

correspondent segmented histological image.

Figure 12 Graph-based representation of histological image. Graph obtained for one histological image from our database, overlaid on the
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Selected Query Regions
—— )

Match 1

) L

Match 2

Graph for selected regions

B

Match 3

Figure 13 Result example for first, subgraph isomorphism approach. It is an example of the result obtained for subgraph isomorphism
approach. The query selected, obtained RAG and three nearest matching results obtained are shown. In A the selected query image inside the
whole image is depicted by blue rectangle. B shows the extended regions, selected by the query, and the corresponding graph formed for the
selection. C, D and E give the first three results retrieved by the graph matching algorithm (both segmented and coloured).

similar regions. First result is not exact but depicts similar
physiological structures and spatial relationships between
them. Moreover, although the first and the third match
basically show the same histological structure, due to the
splitting of the whole histological image into sub-images
they appear as different images in our database. They
both have been selected due to the high similarity to the
query image.

Observations
It can be observed in both approaches that:

For subgraph isomorphism approach
The method yields regions from the whole images which
are closest matches to the region in the query image.

e Advantage: As expected, the first match gives an
exact match, as the graph generated is a subgraph
from the graph of one of the whole images. The
results obtained as subsequent matches show
similarity in the structure and spatial relationships
between regions, as those in query image. Hence, it
can be used to locate region groups with desired type,
shape and neighbourhood relationships.

e Limitation: It does not take into account the size of
query image. It considers all the regions which are
present in the query image, including those regions
which are only partially included in the query, and
may have a large part outside the query. As a result,
the matches obtained have the size corresponding to
entire regions rather than the size of query. Hence,
there is no control on the size of retrieved results.

For inexact graph matching approach

In this method, sub-images which are structurally similar
to the query image, and of same size as query image, are
retrieved. It works similar to a practical CBIR system.

e Advantages: The user can select a size for his query
and the retrieved images are of same size as query.
Hence the user can enjoy control on the size of
results. The matches obtained are observed to show
spatial and structural similarity to the query selected.

¢ Limitations: Selection of query image may not be in
accordance as the division of images into sub-images,
and this may lead to truncation effect, as some
important structures maybe truncated due to this
division. Further, the original images have to be first
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Match 1

Figure 14 Result example for second, inexact graph matching approach. It shows an example of the result obtained for the inexact graph
matching approach. A shows the query image selected from the whole image. The selection rectangle was fixed to 512x512 pixels. B depicts the
graph formed for the query image. C, D and E give the first three results retrieved by the graph matching algorithm (both segmented and coloured).

cropped to a size which is divisible by the size of sub- ~ Performance evaluation

image, and this can also lead to loss of information Evaluation is a crucial aspect for CBIR related areas. In
along borders. In order to reduce this information this work, subjective evaluation has been performed as
loss, the division of WSI images has been done by no known objective method was found appropriate. It
allowing an overlap between successive sub-images. is important to note that the evaluation has been per-
However, if we increase the overlap, there is an formed only by a single observer, and the rates obtained
increase in redundancy of results, as they may be are dependent on subjectivity and interpretation. It is a
retrieved from same areas. As a result there is a trade-  well known fact that precision and recall are the most pop-
off between redundancy and loss of information due ular measures used for evaluation of CBIR systems. They

to truncation, and overlap selected has to balance this.  are defined as:

Table 1 Precision at different scope lengths for histogram based method

Precision at different scopes for histogram based method

P,/ Window size 64 x 64 128 x 128 256 x 256 512 x 512 Average Pg
P1o 23 45 55 23 37
P2o 21 35 46 13 29
P30 16 33 43 18 28
Pag 14 28 41 21 26

Pso 12 26 39 20 24
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Figure 15 P vs. s plots for histogram based method. The precision vs. scope length plots for different window sizes for the histogram based
approach are given in this figure. This evaluation refers to the second, inexact graph matching approach.

40 50

1. Precision: The percentage of retrieved images that
are relevant to the query:

Number of relevant images retrieved

Precision = x 100

Total number of images retrieved
(28)

2. Recall: The percentage of all the relevant images in
the search database which are retrieved, defined by:

Number of relevant images retrieved

Recall = x 100

Total number of relevant images
(29)

There is no ground-truth available for the histological
images, and assessment is performed purely by subjec-
tive analysis. Therefore, it is not possible to determine the
total number of relevant images in a database, with respect
to query due to which calculation of recall can not be
performed. To demonstrate effectiveness of the method,
precision is measured at scope lengths 10, 20, 30, 40 and

50. The scope length is the number of retrieved images.
Precision for different scope lengths is calculated as:

S
Y i1 Score;

P, = x 100 (30)

where P is precision (in %), s is scope length and score is
a value from {0,0.25,0.5,0.75,1}. The score values express
the similarity of the retrieved images to the query image
in terms of structure and spatial relationships. Higher
score is assigned for higher resemblance. The evaluation
is subjective and coarse, so quantitative results (precision
values) have been rounded down to integers. Resulted
plots are plotted between the precision vs. different scope
lengths.

The proposed method has been compared with a com-
mon, histogram-based retrieval system. The histograms
for segmented sub-images have been found using 4 bins.
Then the distances between the histograms of query
image and sub-images have been calculated. Similar as for

Table 2 Precision at different scope lengths for graph-theoretic method

Precision at different scopes for graph-theoretic method

Ps/ Window size 64 x 64 128 x 128 256 x 256 512 x 512 Average P
P1o 80 55 63 70 67
P 63 44 53 40 50
P30 58 39 50 36 46
Pao 53 33 38 33 39
Pso 46 29 35 29 35
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Figure 16 P vs. s plots for graph-theoretic method. The precision vs. scope length plots for different window sizes for the graph-theoretic
approach are given in this figure. This evaluation refers to the second, inexact graph matching approach.

the graph-based approach, exponential distance has been
used. Finally, the results were compared for both methods.

For the histogram-based technique, the table of pre-
cision for different scope lengths at different window
sizes (or query sizes) is given in Table 1, with cor-
responding line plots illustrated in Figure 15. The
table of precision for scope lengths at the same query
sizes and the line plots for graph-theoretic method are
shown in Table 2 and Figure 16, respectively. Next,
a comparison is established between the average pre-
cision of both methods, calculated across all win-
dow sizes. The relative improvement of graph-based
technique over histogram-based technique is given in
Table 3, with corresponding line plots visualised in
Figure 17.

The tables and graphs obtained justify our choices of the
parameters used and methods employed for the system
proposed. It can be concluded that:

e The results obtained using graph-theoretic technique
are better than simple histogram based method, as it
takes into account the structural characteristics of
the image and neighbourhood relationships between
regions, which are completely neglected in the
histogram-based method.

e As scope length increases, the precision declines for
proposed method, which shows that it gives the most
relevant results earlier in the list of retrieved results.
This is a desirable property of any CBIR system that
the results initially obtained are the most useful.
However, it is evident that it does not hold for all
cases of histogram-based method.

e The results so obtained by the proposed method are
not as high as reported for general CBIR applications
(about 90% precision or more). The highest precision
reported for image size 64 x 64 and scope length 10
is 80%. The reason behind this is the complexity and

Table 3 Average precision for both, the histogram and the graph-theoretic methods

Average precision for both CBIR methods

Scope length Average P; for Method 1 Average P; for Method 2 Improvement (%)
10 37 67 81
20 29 50 72
30 28 46 64
40 26 39 50
50 24 35 46

Method 1 denotes the histogram based method and Method 2 denotes the graph-theoretic method.
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Figure 17 Average P; vs. s plots for both, the histogram and the graph-theoretic, methods. The average precision vs. scope length plots,
across all window sizes, for both, the histogram (Method 1) and the graph-theoretic (Method 2) methods are given in this figure.

subjectivity associated with histological images. The
evaluation was biased strongly with the subjective
scoring as even when the histological image shows
the same tissue composition, several factors have to
be kept in mind before assigning a score. The
closeness to query image depends on the type of
tissue regions, size and shape of regions as well as the
neighbourhood relationships between them. Due to
this relative scores have been used, however, more
thorough evaluation should be performed especially
by employing medical professionals.

e The performance depends on the characteristics of
the query image, i.e. the number of tiled images
available in the database that lie close to the position
of the query window.

Execution Time Requirements

It can be said that optimizing the execution time has
not been a primary concern of the research. The execu-
tion time required for the whole process depends on the
following factors:

1. Complexity of the images: The time required for
graph generation and graph matching is highly
dependent on the complexity of database and query
images, i.e. the number of nodes and edges.

2. Size of database and query images: Given the
same overall complexity, for a larger sized query,
more time is required, specially for matching.
Nevertheless, for less complex larger images, the
method gives quicker results when compared to
more complex, but smaller images.

The approximate time required for the execution of the
main procedures for graphs of different number of nodes
are mentioned in Table 4. For other supporting methods,
the time requirement is negligible, hence, not mentioned.
It can be observed that, the method requires lesser exe-
cution time for smaller number of nodes. With reference
to histological images used, it can be said that queries up
to size 256 x 256 can be used with less significant time
requirements. With larger query images, execution time
can become a greater concern.

Conclusions

In this work we have developed a novel method for deter-
mining similarity between histological images through
graph-theoretic description and matching useful for
the purpose of content-based retrieval. A higher order

Table 4 Time requirement for graph based CBIR system

Time requirement for graph based CBIR system

Number of nodes Graph Generation Time Graph Matching Time

<5 <Is < 0.1 s (MATLAB)
5-10 1-2s 0.1-1 s (MATLAB)
10-20 2-3s 15-30 s (MATLAB)
20-50 3-20s 15-30 5 (C++)
50-100 20-40s 60-300 s (C++)
>100 >40s >300s

The task of graph matching was performed using MATLAB for simpler graphs,
and C++ for complex graphs, obtaining better execution times. The experiments
were performed on AMD Phenom (tm) X4 945 Processor at 3.00 GHz with 4

GB RAM.
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(region-based) graph-theoretic representation of histo-
logical images has been proposed and a tree-search based
optimal matching algorithm has been employed. The pro-
posed method facilitates the automatic retrieval of images
structurally similar to a given image. Such a system can be
used for several applications in the biological and medical
field.

The method has been applied specifically for histologi-
cal images. The reason behind the conception of the idea
is the fact that the state-of-the art CBIR methods that
differentiate images mostly in terms of low-level colour,
shape and texture features do not perform well with his-
tological images, as only these features are inadequate to
capture the spatial content and neighbourhood relation-
ships of histological images. The structural characteristics
are very important to differentiate between morpholog-
ical components in a particular tissue, and the method
developed utilizes this fact to obtain similar tissue areas,
of particular interest to the user.

It can be seen that the results obtained are satisfactory
for histological images, as shown for the human breast
in our study. The performance evaluation suggests that
the technique developed is effective and superior to the
simpler histogram-based technique. The execution time
depends on the size and complexity of the query image
selected by the user.

Future work on this system may include the incorpo-
ration of other appropriate attributes like Euler number,
solidity etc. for nodes and the differences between proper-
ties like compactness for adjacent nodes as edge attributes
in the graph-based representation of images. Addition-
ally, the procedure for graph matching can be optimised
from an application-oriented point of view so that the
execution time for matching large sized graphs is further
reduced.

Moreover, in the current study, the focus is on breast
tissue biopsy images. The method can be generalised to
other types of histological images or can be studied for
new categories of images in which structure and spatial
relationships are of major importance.
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