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Background: Long noncoding RNAs (lncRNAs) act as epigenetic regulators in the
process of ferroptosis and iron metabolism. This study aimed to identify an iron
metabolism-related lncRNA signature to predict osteosarcoma (OS) survival and the
immune landscape.

Methods: RNA-sequencing data and clinical information were obtained from the TARGET
dataset. Univariate Cox regression and LASSO Cox analysis were used to develop an iron
metabolism-related lncRNA signature. Consensus clustering analysis was applied to
identify subtype-based prognosis-related lncRNAs. CIBERSORT was used to analyze
the difference in immune infiltration and the immune microenvironment in the two clusters.

Results: We identified 302 iron metabolism-related lncRNAs based on 515 iron
metabolism-related genes. The results of consensus clustering showed the differences
in immune infiltration and the immune microenvironment in the two clusters. Through
univariate Cox regression and LASSO Cox regression analysis, we constructed an iron
metabolism-related lncRNA signature that included seven iron metabolism-related
lncRNAs. The signature was verified to have good performance in predicting the
overall survival, immune-related functions, and immunotherapy response of OS
patients between the high- and low-risk groups.

Conclusion: We identified an iron metabolism-related lncRNA signature that had good
performance in predicting survival outcomes and showing the immune landscape for OS
patients. Furthermore, our study will provide valuable information to further develop
immunotherapies of OS.
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INTRODUCTION

Osteosarcoma (OS) is the most common primary solid
malignancy of the bone in children and adolescents, and the
overall incidence is ~4.8 per million worldwide (Lancia et al.,
2019; Pingping et al., 2019). The 5-year survival rate of patients
with nonmetastatic disease reaches 70–75%; however, the long-
term survival rate of metastatic OS is <25% (Anwar et al., 2020).
In addition, resistance to chemotherapy or radiation treatments is
a common problem for OS treatment (Strauss et al., 2010). Thus,
there is an urgent need to identify more efficient targets and novel
biomarkers for therapeutic treatment.

Iron is an indispensable element involved in many cellular
processes, such as DNA synthesis, ATP production, and
oxygen transport (Brown et al., 2020; Forciniti et al., 2020).
Iron metabolism is usually divided into distinct processes,
including iron acquisition, efflux, storage, and regulation,
which is regulated by a set of iron-dependent proteins
(Torti & Torti, 2013). Moreover, increasing evidence
suggests that dysregulated iron homeostasis and excess iron
are crucial risks for cancer development (Morales & Xue,
2021). Ferroptosis is an iron-dependent form of regulated
cell death caused by excess levels of reactive oxygen species
(ROS) and lipid peroxidation products (Stockwell et al., 2017;
Chen et al., 2021). Emerging evidence shows that triggering
ferroptosis has anticancer potential for cancer therapy (Liang
et al., 2019; Xu et al., 2019).

As a type of noncoding RNA with a length of more than 200
nucleotides, long noncoding RNA (lncRNA) plays important
roles in transcriptional regulation and epigenetic gene
regulation (Mercer et al., 2009; Kumar & Goyal, 2017). In
addition, accumulating evidence shows that lncRNAs act as
epigenetic regulators to promote the process of ferroptosis and
are involved in iron metabolism (Wu et al., 2020). For example,
the report showed that lncRNA RP11-89 promoted

tumorigenesis of bladder cancer and inhibited ferroptosis
through PROM2-activated iron export (Luo et al., 2021).
Another study suggested that lncRNA MT1DP improved the
sensitivity of erastin-induced ferroptosis and increased the
intracellular ferrous iron concentration in non-small-cell lung
cancer (NSCLC) (Gai et al., 2020). However, there is still a lack of
reports on the iron metabolism-related lncRNAs in
osteosarcoma. Hence, there is an urgent need to develop novel
iron metabolism-related lncRNA signatures for the diagnosis and
prognosis of OS.

In this study, we downloaded RNA-sequencing and clinical
data from Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) and obtained iron
metabolism-related gene sets from the Molecular Signatures
database v7.4 (MSigDB). Through univariate Cox regression
and consensus clustering analysis, we estimated immune
infiltration and clinical features in two prognosis-related
lncRNAs and molecular subtypes. Then, we applied least
absolute shrinkage and selection operator (LASSO) regression
analysis to construct an iron metabolism-related lncRNA
signature. Finally, we established nomograms to predict
prognosis and developed a treatment strategy for OS patients.
The workflow of the study is shown in Figure 1.

METHODS

Data Collection and Preprocessing
RNA-seq data and clinical information of OS patients were
downloaded from Therapeutically Applicable Research to
Generate Effective Treatments (TARGET; https://ocg.cancer.
gov/programs/target). Finally, we obtained 84 patients’ RNA-
seq data and clinical information. From the Molecular Signatures
database v7.4 (MSigDB) (Liberzon et al., 2015), we extracted 515
iron metabolism-related genes from 15 iron metabolism-related
gene sets.

Identification of Iron Metabolism-Related
lncRNAs and Prognosis-Related lncRNAs
The Perl programming language was used to obtain the
expression matrix of iron metabolism-related genes and
lncRNAs from the TARGET dataset. The 302 iron
metabolism-related lncRNAs were selected based on the
criteria that the absolute value of the correlation coefficient
was greater than 0.5 (|R|>0.5) and the p-value was less than
0.05 (p < 0.05). Through univariate Cox regression analysis, we
identified 30 iron metabolism-related lncRNAs whose expression
levels were significantly associated (p < 0.05) with the overall
survival of OS patients.

Consensus Clustering
ConsensusCluster usually generates a consensus matrix heatmap
and a log of selected features that distinguish each pair of clusters.
Based on 30 prognosis-related lncRNAs, we applied the
“ConsensusClusterPlus” software package (Wilkerson & Hayes,
2010) to perform consensus clustering analysis. Meanwhile, we

FIGURE 1 | Workflow of the current study.
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also obtained unbiased and unsupervised outcomes for
approximately 84 OS patients. According to two different
regulation patterns, we visualized the expression of
30 prognosis-related lncRNAs by using the R package
“pheatmap” (Kolde, 2015).

Estimation of the Immune
Microenvironment and Immune Infiltration
We estimated the parameters of the immune microenvironment
(stromal score, immune score, and ESTIMATE score) through
the “estimate” software package (Yoshihara et al., 2013) in Cluster
1 and Cluster 2. Moreover, we applied CIBERSORT (Newman
et al., 2019) to analyze the expression matrix of immune cell
subtypes between Cluster 1 and Cluster 2.

Construction and Evaluation of an Iron
Metabolism-Related lncRNA Signature
LASSO Cox analysis was used to obtain an optimal iron
metabolism-related lncRNA signature by using the R package
“glmnet” (Friedman et al., 2010). Based on the best lambda value
and coefficients, the risk score of each OS case could be obtained
by the following algorithm:

Risk Score � ∑
n

i�1
Coef ipEi,

where n, Coefi, and Ei represent the number of signature genes,
coefficient of a gene, and expression of a gene, respectively. The
Kaplan–Meier survival curve was used to assess the overall
survival of the high- and low-risk groups by using the R
package “survival” (Lorent et al., 2014). Principal component
analysis (PCA) was used to evaluate distribution patterns between
high- and low-risk groups based on an iron metabolism-related
lncRNA signature through the “ggplot2” software package
(Gómez-Rubio, 2017). Moreover, the receiver-operating
characteristic (ROC) curves were applied to evaluate the
diagnostic efficacy of each clinicopathological characteristic
and the prognostic signature through the “survivalROC”
software package (Heagerty et al., 2000). Finally, we applied
multivariate Cox regression analyses to evaluate the
independent prognostic value between the risk score and other
clinical variables, such as age, sex, and the prognosis stage by
using the “forestplot” package (Gordon & Lumley, 2016).

Nomogram Construction
A nomogram was constructed to analyze the probable 1-, 3-, and
5-year overall survival of the OS patients by using the R package
“rms” (Bandos et al., 2009). 3- and 5-year calibration curve
analyses were used to evaluate the suitability of our nomogram.

Gene Set Enrichment Analysis
The “ConsensusClusterPlus” software package was used for
enrichment. GSEA (http://www.broadinstitute.org/gsea/index.
jsp) was used to evaluate the differentially enriched genes
between the high- and low-risk groups. “c2. cp. kegg.v7.2.

symbols. gmt” and “c5. go. v7.4. symbols. gmt” were used as
the reference gene sets. The criterion of statistically significant
enrichment was | NES | > 1 and p-value < 0.05.

Statistical Analysis
R software (version 4.0.2; https://cran.r-project.org/bin/
windows/base/) and various R packages were used for all
statistical analyses and visualization in this study. Perl
(version 5.8.3; https://www.perl.org/get.html) was applied to
integrate RNA-seq data and clinical information for
screening prognosis-related genes. The criterion of statistical
significance was p-value < 0.05.

RESULTS

Identification of Iron Metabolism-Related
lncRNAs and Prognosis-Related lncRNAs
To identify iron metabolism-related lncRNAs, we first extracted
515 iron metabolism-related genes from 15 iron metabolism-
related gene sets (Supplementary Table S1). Moreover, we
obtained an expression matrix of 14,142 lncRNAs from RNA-
sequencing data. According to the criteria |R| >0.5 and p-value
<0.05, 302 lncRNAs were regarded as iron metabolism-related
lncRNAs. Then, we combined the expression of 302 iron
metabolism-related lncRNAs and clinical information to screen
prognosis-related lncRNAs (Table 1). Univariate Cox regression
analysis showed that 30 iron metabolism-related lncRNAs
significantly correlated with the overall survival of OS patients
(Figure 2A). Meanwhile, we found that the expression levels of
10 prognosis-related lncRNAs were negatively related to the
survival rate, while 20 other lncRNA prognosis-related lncRNAs
were positively associated with the survival rate.

Consensus Clustering by
Prognosis-Related lncRNAs
To gain insight into the function of iron metabolism-related
lncRNAs, we applied unsupervised consensus analysis to the
expression levels of 30 prognosis-related lncRNAs. The results

TABLE 1 | Clinical features of all patients.

Feature Group TARGET
dataset (n = 84)

Number
of patients (%)

Age <16 48 (57.1)
≥16 36 (42.9)

Gender Female 36 (42.9)
Male 48 (57.1)

Metastatic Metastatic 21 (25.0)
Non-metastatic 63 (75.0)

Histologic response Stage 1/2 18 (21.4)
Stage 3/4 16 (19.0)

Vital status Alive 55 (65.5)
Dead 29 (34.5)
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showed that k = 2 seemed to be a more accurate and stable
clustering. Meanwhile, Cluster 1 and Cluster 2 included 46 and 38
samples, respectively (Figure 2B). The results of k = 3–9 are
shown in Supplementary Figure S1. Subsequently, we explored
the difference between the two clusters. First, the heatmap of
30 prognosis-related lncRNAs showed differential expression in

the two clusters (Figure 2C). Based on gender, age, and stage-
specific characteristics, differential expression of 30 prognosis-
related lncRNAs is shown in Supplementary Figures S2A–C.
Additionally, the Kaplan–Meier survival curve analysis suggested
that the overall survival of Cluster 2 patients was significantly
shorter than that of Cluster 1 patients (Figure 2D).

FIGURE 2 | Consensus clustering by prognosis-related lncRNAs. (A) Univariate Cox regression analysis showed that 30 iron metabolism-related lncRNAs
significantly correlated with the overall survival of OS patients. Orange and bluish dots represent the point estimation of the hazard ratio. (B) The consensus score matrix
of 84 samples when k = 2. (C) Heatmap with clinical information for 30 iron metabolism-related lncRNAs. (D) Kaplan–Meier curves of patients in two clusters.
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Immune Infiltration and the Immune
Microenvironment in Two
Prognosis-Related lncRNA Clusters
Furthermore, we analyzed the difference in immune infiltration
and the immune microenvironment in the two prognosis-related
lncRNA clusters. The percentage of 22 immune cells is shown in
Figure 3A. We found that M0 macrophages presented the largest

proportion and eosinophils accounted for a small scale. A violin
plot was used to further explore the difference in 22 immune cell
types in the two clusters (Figure 3B). The results of immune
infiltration showed that Cluster 1 was observably enriched with
B-cell memory, plasma cells, CD8 T cells, and monocytes
(Figures 3D–F). Only M0 macrophages were enriched in
Cluster 2 (Figure 3C). In addition, enrichment of M2
macrophages was not significant between Cluster 1 and

FIGURE 3 | Immune infiltration and the immune microenvironment in the two clusters. (A) The proportions of 22 types of immune cells in 84 samples. (B) The
significant analysis for the same type of immune cell proportions in the two clusters. (C–F) The results for proportions of macrophages, CD8 T cells, monocytes, and
plasma cells. (G,H) ESTIMATE score and stromal score in two clusters.
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FIGURE 4 | Construction of an iron metabolism-related lncRNA signature. (A,B) LASSO Cox regression analysis showed that seven iron metabolism-related
lncRNAs were good candidates for constructing the prognostic signature (λ = 0.0125, obtained seven nonzero coefficients). (C) Coefficients of the seven iron
metabolism-related lncRNAs. (D) Kaplan–Meier curves of patients in the high- and low-risk groups. (E) ROC curve to evaluate the 1/3/5-year prediction efficiency of the
iron metabolism-related lncRNA signature. (F) Principal component analysis (PCA) based on the identified iron metabolism-related lncRNA signature.
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Cluster 2 (Supplementary Figure S2D). The difference in the
immune microenvironment was estimated by the analysis of the
stromal score, immune score, and ESTIMATE score. The results
of the stromal score and ESTIMATE score showed that there was
a significantly higher score in Cluster 1 than in Cluster 2 (Figures
3G,H), and the immune score did not present a significant result.
Taken together, these results confirmed that Cluster 1 and Cluster
2 had different immune phenotypes.

Construction of an IronMetabolism-Related
lncRNA Signature
To further develop the prognostic signature, we performed
LASSO Cox regression analysis for 30 prognosis-related
lncRNAs. The analysis showed that seven of the thirty iron
metabolism-related lncRNAs were good candidates for
constructing the prognostic signature. When lambda was
minimum (0.1445), the number of nonzero coefficients was
seven in the model at this time (Figures 4A,B). Meanwhile,
the coefficients of five lncRNAs (PARD6G.AS1, GAS5,
UNC5B.AS1, LINC01060, and AC124798.1) were positive,
while AC090559.1 and AC104825.1 were negative (Figure 4C).
Based on the iron metabolism-related lncRNA signature, OS
patients were divided into high-risk (n = 42) and low-risk
(n = 42) groups. Then, the Kaplan–Meier survival curve
analysis, receiver-operating characteristic (ROC) analysis, and
principal component analysis (PCA) were used to examine the
prognostic value of iron metabolism-related lncRNA signatures.
The Kaplan–Meier survival curve analysis suggested that the
overall survival of OS patients with high-risk scores was
significantly shorter than that of patients with low-risk scores
(Figure 4D). ROC analysis presented a good prediction efficiency
of the iron metabolism-related lncRNA signature (1-year AUC =
0.767, 3-year AUC = 0.779, and 5-year AUC = 0.782; Figure 4E).
Finally, PCA revealed two relatively different distribution
patterns between high- and low-risk groups (Figure 4F).

Independent Prognostic Value and the
Predictive Prognostic Ability of the Risk
Score Model
Based on the iron metabolism-related lncRNA signature, we
visualized the risk score distribution and survival status of
every sample (Figures 5A,B). We also generated a heatmap of
the seven iron metabolism-related lncRNAs (Figure 5C).
Moreover, the respective Kaplan–Meier survival curves of
seven iron metabolism-related lncRNAs showed that they were
significantly correlated with the overall survival of patients
(Supplementary Figures S3A–G). Then, we applied
multivariate Cox analyses to evaluate the prognostic value of
the risk score model. The results suggested that tumor metastasis
and the risk score were significantly correlated with the overall
survival of patients (Figure 5D). Compared with the iron
metabolism-related lncRNA signature, ROC analysis of
clinicopathological factors did not have an advantage in
predicting prognosis (Supplementary Figure S3H).
Additionally, we constructed a nomogram and calibration

curve to accurately estimate the 1-, 3-, and 5-year survival
probabilities based on the risk score and other
clinicopathological factors, including age, gender, and the
prognosis stage (Figures 5E,F). Overall, the above data verified
that the risk score model had good performance in predicting the
overall survival of OS patients.

Different Immune-Related Functions
Between the High- and Low-Risk Groups
Based on the iron metabolism-related lncRNA signature, we
subsequently carried out GSEA to examine the potential
biological processes involved. Interestingly, the GSEA results
showed that the most significant GO terms and KEGG pathways
were mainly enriched in low-risk groups, and there were no
significant terms or pathways enriched in the high-risk groups
(Figures 6A,B). Then, we applied single-sample gene set
enrichment analysis (ssGSEA) to compare scores of immune
cells and immune-related pathways between high- and low-risk
groups. The ssGSEA results confirmed that the scores of
immune cells and immune-related pathways in low-risk
groups were significantly higher than those in high-risk
groups (Figures 6C,D). Based on the immune phenotypes,
the GSEA score and Kaplan–Meier survival curve analysis,
we speculated that the high-risk groups and Cluster 2
presented an immune-excluded phenotype. In addition, low-
risk groups and Cluster 1 showed an immune-inflamed
phenotype and presented a better survival (Chen & Mellman,
2017).

Immunotherapeutic Response Based on the
Risk Score Model
Except for the above immune cell and immune-related
pathway scores, we also calculated the correlation between
immune infiltration and the risk score. The results confirmed
that monocytes and CD8T cells were negatively related to the
risk score, but M0 macrophages were positively associated with
the risk score (Figures 6E–G). Then, we used the tumor
immune dysfunction and exclusion (TIDE) algorithm to
evaluate the immunotherapy response between the high-
and low-risk groups. Consistently, we found that TIDE,
microsatellite instability (MSI), and dysfunction were
significantly higher in low-risk groups (Figures 6H–J).
These results indicated that high-risk groups had a good
response to immunotherapy.

DISCUSSION

Recently, increasing evidence has indicated that iron metabolism
is a critical factor that promotes the carcinogenesis of OS (Lv
et al., 2020). Meanwhile, many reports revealed that improving
the process of ironmetabolism, such as iron deprivation, might be
an effective strategy for OS treatment (Li et al., 2016; Ni et al.,
2020). In our study, we identified 30 iron metabolism-related
lncRNAs that were related to OS prognosis. Meanwhile, the
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results of consensus clustering of 30 prognosis-related lncRNAs
showed the differences in immune infiltration and the immune
microenvironment in the two clusters. Through univariate Cox
regression and LASSO Cox regression analysis, we constructed an
iron metabolism-related lncRNA signature including seven iron
metabolism-related lncRNAs. The signature was verified to have
good performance in predicting the overall survival, immune-

related functions, and immunotherapy response of OS patients
between the high- and low-risk groups.

As important epigenetic regulators, lncRNAs play a crucial
role in the processes of iron metabolism (Wu et al., 2020).
Moreover, accumulating evidence confirmed that lncRNAs are
involved in the regulation of ferroptosis andmay serve as effective
targets for cancer treatment (Jiang et al., 2021; Xie & Guo, 2021).

FIGURE 5 | Evaluation of an iron metabolism-related lncRNA signature. (A) Risk score distribution. (B) Survival time of OS patients. (C) Heatmap of seven iron
metabolism-related lncRNAs. (D)Multivariate Cox analyses to evaluate whether the risk score and clinical features were independent prognostic indicators for the overall
survival of OS patients. (E) Nomogram for predicting 1/3/5-year survival rates of OS patients. (F) Calibration curve of the nomogram for 3/5-year survival rates.
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FIGURE 6 | Immune-related functions and immunotherapy response between the high- and low-risk groups. (A,B) Significantly enriched GO terms and KEGG
pathways in low-risk groups. (C,D) Scores of immune cells and immune-related pathways in low- and high-risk groups. (E–G) The significant correlation between
immune infiltration and risk scores, including monocytes, M0 macrophages, and CD8 T cells. (H–J) Analysis of TIDE, microsatellite instability (MSI), and dysfunction
(pp < 0.05; ppp < 0.01; and pppp < 0.001).
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In this study, we developed an iron metabolism-related lncRNA
signature including seven iron metabolism-related lncRNAs. In
particular, lncRNA GAS5, UNC5B-AS1, PARD6G-AS1, and
LINC01060 have been widely reported in cancer and other
diseases. For example, it was proven that lncRNA GAS5 was
associated with OS progression by regulating OS cell
proliferation, migration, and invasion (Ye et al., 2017; Yao
et al., 2020; Wang et al., 2021). Moreover, a report showed
that lncRNA GAS5 was associated with ovarian cancer
progression by regulating histone H3 at lysine 27 (H3K27me3)
(Wang et al., 2020). However, except for the reports that lncRNA
GAS5 correlated with OS progression, there was no evidence that
other iron metabolism-related lncRNAs were involved in OS
progression in vitro and in vivo. Therefore, OS treatment will be
necessary to explore the molecular biological functions of the
seven iron metabolism-related lncRNAs in the processes of iron
metabolism and ferroptosis.

Iron metabolism is closely related to the immune system,
including regulating immune cell proliferation,
differentiation, and interfering with antimicrobial immune
effectors (Ganz & Nemeth, 2015; Cronin et al., 2019; Haschka
et al., 2021). Furthermore, imbalances in iron metabolism,
including iron overload and iron deficiency, have an
important effect on immune function (Porto & De Sousa,
2007; Cassat & Skaar, 2013; Nairz & Weiss, 2020). In our
study, we found that many kinds of immune infiltration were
enriched in Cluster 1. Meanwhile, the stromal score and
ESTIMATE score were significantly higher in Cluster 1
than in Cluster 2. Taken together, we divided 84 samples
into two clusters based on 30 iron metabolism-related
lncRNAs and evaluated the different immune infiltrations
and microenvironments. Therefore, focusing on the
regulation of iron metabolism-related lncRNAs will be a
novel strategy to change iron metabolism and improve
immune functions.

To date, the tumor microenvironment is regarded as having a
critical role in cancer development and treatment, and has
become one of the most important factors affecting
immunotherapy (Smyth et al., 2016; Kaymak et al., 2021).
Meanwhile, strategies focusing on immunotherapy have been
an increasingly attractive treatment option for OS patients
(Dyson et al., 2019; Chen et al., 2021). In our study, the
GSEA results confirmed that significant GO terms and
KEGG pathways were mainly enriched in low-risk groups
and were associated with immune pathways. Additionally, it
was also found that the high-risk group presented an immune-
excluded phenotype and the low-risk group showed an
immune-inflamed phenotype. For the poorer prognosis of
high-risk patients, we speculated that higher
immunosuppression and lower immunoreactivity should have
been the causes. Interestingly, we found that the high-risk
groups well responded to immunotherapy through the TIDE
algorithm. Therefore, this evidence seems to provide a

theoretical basis for applying immunotherapy to OS patients
in the future.

Although the iron metabolism-related lncRNA signature
showed the ability to potentially predict prognosis, there are
several limitations to our study. Except for RNA-sequence data
and clinical information from the TARGET, there is a need to
evaluate the value of the risk score model in the other testing
dataset. Moreover, the risk score model showed a certain
predictive ability for OS prognosis, and it is still necessary to
verify this prediction in large cohorts.

In conclusion, we identified an iron metabolism-related
lncRNA signature that had good performance in predicting
survival outcomes and showed the immune landscape for OS
patients. Furthermore, our study will provide valuable
information to further develop immunotherapies.
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