
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports

A trajectory‑based loss
function to learn missing terms
in bifurcating dynamical systems
Rahel Vortmeyer‑Kley1,2*, Pascal Nieters1,2 & Gordon Pipa1

Missing terms in dynamical systems are a challenging problem for modeling. Recent developments in
the combination of machine learning and dynamical system theory open possibilities for a solution.
We show how physics-informed differential equations and machine learning—combined in the
Universal Differential Equation (UDE) framework by Rackauckas et al.—can be modified to discover
missing terms in systems that undergo sudden fundamental changes in their dynamical behavior
called bifurcations. With this we enable the application of the UDE approach to a wider class of
problems which are common in many real world applications. The choice of the loss function, which
compares the training data trajectory in state space and the current estimated solution trajectory of
the UDE to optimize the solution, plays a crucial role within this approach. The Mean Square Error as
loss function contains the risk of a reconstruction which completely misses the dynamical behavior
of the training data. By contrast, our suggested trajectory-based loss function which optimizes two
largely independent components, the length and angle of state space vectors of the training data,
performs reliable well in examples of systems from neuroscience, chemistry and biology showing
Saddle-Node, Pitchfork, Hopf and Period-doubling bifurcations.

Interacting oceanic flows governing our climate, increasing CO2 levels causing global warming, competing spe-
cies for coexistence, dominance or extinction—we live in a changing world. Understanding the impact of these
often slow and gradual changes is important. But sometimes, a system can undergo a sudden fundamental change
and end up in a totally different dynamical behavior. These points are sometimes called tipping points or regime
shifts. Since the middle of the last century, the theory of dynamical systems has been applied to characterize the
behavior of changing systems and real world phenomena in particular1–5 and examples therein.

The dynamics of the system can be described by the behavior of trajectories in a space defined by the state
variables of the system. This state space contains repelling, attracting and separating structures—namely stable
and unstable manifolds, and separatrices, and different types of attractors and coherent structures—that can act
as organizing structures by governing the dynamical behavior of trajectories6,7.

When modeling real world systems in simple equations we still face difficulties because our knowledge or
understanding of the underlying processes is limited (e.g.8–10). Here machine learning can help discover missing
knowledge about the dynamical relationships between state variables from observed data by statistical infer-
ence. For example, Universal Differential Equations (UDE)11 are a recently proposed method to learn dynami-
cal systems from data with machine learning and can be combined with the Sparse Identification of Nonlinear
Dynamics (SInDy) algorithm12 to estimate an algebraic form of the dynamical system from data (see the next
section for details). We show how this approach can be applied to learn missing terms in systems that can undergo
sudden fundamental changes in their dynamics called bifurcation.

The goal of this work is to investigate the role of the loss function used to compare the learned dynamics and
the training data given as time series data in learning a UDE. In particular, we propose a new loss function for
optimization that compares angle and length of vectors in state space independently. Usually, the mean-squared
error is used to compare time series for each variable in the system independently. Our idea is that this new
Length Difference and Angle Difference (LDA) loss is more reliable when learning a UDE in many bifurcating
systems and therefore is better suited to find missing terms in bifurcating systems. The examples we use for this
comparison cover on the one hand a broad range of different bifurcation types (Saddle-Node, Pitchfork, Hopf
and Period-doubling bifurcation) and on the other hand show the importance of bifurcations in various fields
of research (e.g. neuroscience, biology, chemistry). Firstly, we set up a statistical comparison of how well the two
loss functions perform in each of these systems in two different parameter regimes representing two different

OPEN

1Institute of Cognitive Science, Osnabrück University, Wachsbleiche 27, 49090 Osnabrück, Germany. 2These authors
contributed equally: Rahel Vortmeyer-Kley and Pascal Nieters. *email: rahel.vortmeyer-kley@uni-osnabrueck.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99609-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

dynamics respectively. We then narrow this comparison by focusing on nested intervals around the bifurcation
parameter as well as different trajectory starting points in state space. Finally, we show by way of example that
an algebraic reconstruction of the missing terms using SInDy is possible if a UDE was trained successfully and
discuss our results.

Universal differential equations (UDE) and sparse identification of nonlinear dynamics
(SInDy).  In this work, we investigate a complete, data-driven pipeline to discover the equations that describe
a dynamical system in the context of bifurcating systems. The approach follows recently published work by
Rackauckas et al. and combines the estimation of a UDE11 from data and the subsequent identification of alge-
braic terms from the UDE using SInDy12. We have illustrated the main steps involved in Fig. 1, starting with time
series measurements from the system in question which will be used as training data.

Firstly, a Universal Differential Equation generally describes the dynamics of a system as ẋ = f (x, t, UAp(x, t))
where the function UAp is a parameterized and differentiable universal function approximator. For example, a
partially known two dimensional system with variables x and y may be described as:

where functions f and g describe the known dynamics for x and y respectively, but we want to estimate an addi-
tional additive term in the dynamics of x. Given an initial x(t0) and y(t0) as well as initial parameters pinit the UDE
can numerically be solved and trajectories x̂(t) and ŷ(t) are estimated. Using a loss function, the Mean Squared
Error loss (cf. next section) for each variable of a system as in the original work, the estimated trajectories based
on the UDE can be compared against the actual system measured at sample points ti . The entire program, from
the definition of the unknown function UAp and the UDE through to the numerical solution of the system and
the calculation of the loss, can be differentiated with respect to parameters p using automatic differentiation in
the Julia programming language13,14. This enables the optimization of these parameters by gradient descent on the
loss function, and thereby allows a user to find a UDE with parameterized function UAp optimal that approximates
the measured time series of the original system well.

Using differentiable models in machine learning problems is a generalized view of highly successful deep
and artificial neural network (ANN) models16 that have previously been used to solve differential equations17,18.
Physics-informed neural networks, for example, aim to combine advantages of data-driven machine learning
with knowledge about underlying physical laws in the training process to reconstruct dynamics of a system19–21.
In this paper, we use ANNs as the parameterized universal function approximater22,23 UAp . The disadvantage
is that neural networks are black boxes and do not allow us to learn about systematic relationships between the
variables of the dynamical systems that may be the drivers of underlying dynamics.

Therefore, we also use the SInDy algorithm12 to identify algebraic terms that can replace the neural network
black box. In SInDy, finding the algebraic form of a differential equation is formulated as a linear regression
problem. A matrix of non-linear functions � applied to the state vector x of the system multiplied by a matrix of
sparse coefficient vectors � recovers the standard form of many non-linear dynamical systems: ẋ = f (x) = �(x)�
(see the original paper12 for examples). If measurements for both x and ẋ are available at several sample points in
time we can write Ẋ = �(X)�+ ηZ where X and Ẋ have rows for each sample point, �(X) is a design matrix of
non-linear functions applied to the data, and ηZ is independent and identically distributed Gaussian noise with
magnitude η . This is a standard linear regression problem in multiple variables24 where finding the sparse coef-
ficient vectors � = [ξ1, . . . , ξn] for a system with n state variables by using for example the LASSO algorithm25
can find those non-linear functions in x in the design matrix that best explain the data.

(1)

dx

dt
= f (x, y, t)+ UAp(x, y)

dy

dt
= g(x, y, t)

t

x,
y

t

x,
y

Universal Differential Equation

t

x,
y Training

Data

INPUT
RESULT

Trajectory-based
Loss

Mean Squared Error
Loss

Neural Networks
as Universal Function

Approximator

SInDy:

Algebraic Form

Figure 1.   Schematic sketch of the concept of UDE11. Depending on a successful approximation of the training
data, the application of SInDy12 is possible. The time series qualitatively correspond to the Selkov model15 in
Table 2 second row. This figure is plotted using Inkscape (Version 1.0.1, https://​inksc​ape.​org) and Julia package
Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl).

https://inkscape.org
https://github.com/JuliaPlots/Plots.jl

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Often, data for x is not abundant and ẋ is not immediately available. In these cases, we can still estimate the
UDE that fits the data. Given a UDE, it is easy to calculate ẋ from any given x and SInDy can be applied. Doing so
will find functions in x that are much easier to understand and analyze than a neural network and we have suc-
cessfully removed the black box from the UDE. Furthermore, if partial knowledge about the system is included
in the UDE, we can still use SInDy to find algebraic terms for the contribution by solving the regression problem
UAp optimal(x) = �(x)�+ ηZ in isolation and complete the algebraic description of the dynamical system.

Results
The loss function and the trajectories.  Generally speaking, the objective function or loss function in an
optimization problem must be chosen in accordance with the goal of the optimized model. In neural network
regression models, which we use here to find an approximation to missing terms in the UDE, this is typically
done by minimization of the Mean Squared Error (MSE) loss function26. However, more specialized practition-
ers of model optimization have sometimes found that particular choices of one subtly different loss function over
another can significantly alter the quality of the model fit, for example in financial modeling of option pricing27.

In the UDE approach, the MSE is used to compare observed dynamics to the estimated dynamics of the UDE
by treating each component of the i-th sampled state space vector xi (observed) and pi (estimated) independently:

where xji resp. pji is the j-th component in m dimensional state space, and the i-th point on a trajectory of length
n (cf. blue difference vectors in Fig. 2a). This can work well in practice in many different UDE problems11,28.
However, when trying to find a missing term in a potentially bifurcating system, this particular choice of loss
function can lead to unsatisfactory results.

For example, if the data generating system can undergo a Hopf bifurcation from a stable state solution to
an oscillatory solution, a UDE trained with an MSE loss often does not achieve dynamics in the correct regime
and does not produce dynamics that fit the original system’s structure of nullclines and attractors (see animated
state space portrait example of the oscillatory state of the Selkov model15 in the Supplementary video material
S1 panel c).

How can the optimization fail so spectacularly? If we simplify the problem and replace the neural network by
a simple linear regression with three parameters, one for each dimension of the state space and a bias parameter,
we can visualize the loss function across any axis. If bias and weight for state variable x from the example in
Fig. 1 (cf. Selkov model in Table 2 second row) are chosen correctly as 0, the correct solution for the weight for
y is 0.1 in this case. Indeed, the MSE loss has its minimum at the correct value (Fig. 2b blue line), but it also has

(2)LMSE =

n∑

i=1

m∑

j=1

(x
j
i − p

j
i)
2,

x

y

Mean Squared Error Loss

Cosine Difference

Length Difference

Combined LDA Loss

Legend

a b

c

Figure 2.   Schematic sketch of the concept of MSE and LDA loss function. (a) The UDE estimates trajectories
P = (p1, p2, . . . , pn) (red) in state space, the training data is X = (x1, x2, . . . , xn) (gray). The MSE measures
relative difference in each dimension of the sample point independently (blue lines), whereas the LDA measures
the difference in angle (cyan) and difference in vector length (purple). (b) Comparing trajectories for the
Selkov model15 (cf. Table 2 second row) based on MSE (blue), angular difference (cyan) via the cosine similarity
and length difference (purple) all show a maximum that splits the loss landscape into two regions, one where
the correct minimum can be reached and one where it cannot. Trajectories are compared based on a simple
regression model in which only the weight for y : wy in the Selkov model is unknown and gives the x-axis here.
(c) A weighted sum of the angular and length difference gives the LDA loss. Different sums are shown, with
k1 = 0.25 (length) and k2 = 0.75 (angle) marked as the thick orange line that gives a good compromise between
the two components. This figure is plotted using Inkscape (Version 1.0.1, https://​inksc​ape.​org) and Julia package
Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl).

https://inkscape.org
https://github.com/JuliaPlots/Plots.jl

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

a significant peak just below 0. For values smaller than 0, the gradient-descent based optimization of the UDE
runs into an alternative local minimum. This alternative local minimum acts like a “black hole of loss” in the
loss landscape and cannot be escaped. It becomes impossible to find the true solution. Thus, the quality of the
approximation is entirely dependent on initial conditions (see results below as well as the animated state space
portrait in the Supplementary video material S1 panel c).

In the setup using a neural network, we also observe the phenomenon that trajectories of the estimated and
real system must first diverge so that the correct dynamical regime can be reached. While the loss landscape over
many ANN parameters is not easily visualized, it can still contain local minima that represent alternative stable
solutions and act as “black holes of loss”.

We realized that this problem is unlikely to be solved by a single loss function and were inspired by the view
of the dynamics as a trajectory of state space vectors. These can also be described by their angle and length always
having the origin in state space as their common reference.

We construct the Length Difference and Angle Difference Loss (LDA):

where the first component describes the normalized length difference between the position vectors xi and pi of
the i-th point on a trajectory of length n and the second component the normalized difference between the angles
between the two position vectors (namely a normalized cosine similarity, cf. Fig. 2a).

Each component of LDA individually also has false local minima (Fig. 2b purple and cyan), but, crucially at
different points. However, the global minimum is at the same location in both functions. The ratio of these two
components can be weighted with the hyperparameter k1 and k2 (Fig. 2c) chosen for each problem. In most cases
k1 and k2 are chosen equal to 0.5 except for the Selkov model, where k1 equals 0.2 and k2 equals 0.8. Exceptions
to these values are indicated in the text.

This constructed loss function can be used to train the UDE successfully and is less dependent on the initial
ANN parameter guess. The UDE now reconstructs the state space portrait of the original describing differential
equation faithfully (see the animated state space portrait in the Supplementary video material S1 panel a).

In the simplified example, the combined LDA loss cannot fully eliminate a second erroneous local minimum
using a simple weighting of each component. However, when using a neural network as the model, the parameter
space has much larger dimensionality. We hypothesized that the basin of attraction for a correct minimum is
much larger when using the LDA loss with appropriate weight parameters. This should result in a much higher
chance to find a UDE that fits the data given random initial parameters than the MSE loss. Furthermore, we
expected this effect to also depend on the bifurcation itself. In the following we tested both hypotheses extensively
in computational experiments on four example systems with bifurcations.

The loss functions and different bifurcating systems.  What happens if these loss functions are
applied to different bifurcating systems from neuroscience, biology and chemistry? We considered the following
four systems as examples of four different types of bifurcation:

•	 Saddle-Node bifurcation: The FitzHugh–Nagumo model29,30 describes resting and excited states of neurons.
Specific parametrizations of the system can lead to a bistable behavior (“excitable”) with three fixed points
where two are stable and one unstable (saddle). When the bifurcation parameter changes, the left stable fixed
point and the saddle merge and disappear in a Saddle-Node bifurcation; the right stable fixed point remains
and the system is monostable. (cf. Table 1)

•	 Pitchfork bifurcation: The Gardner model31,32 describes a genetic toggle switch in Escherichia coli. In one
parametrization, the system is monostable with a stable fixed point but undergoes a Pitchfork bifurcation as
the bifurcation parameter decreases, leading to bistable behavior with two stable fixed points and one saddle
where each fixed point has its own basin of attraction. (cf. Table 1)

•	 Hopf bifurcation: The Selkov model15 describes oscillatory behavior in the enzyme reactions of the glycolysis
process. The systems shows either steady state behavior with a stable fixed point or—undergoing a Hopf
bifurcation—ends up in oscillatory behavior with a stable limit cycle. (cf. Table 2)

•	 Period-doubling: The Rössler model33,34 can describe chemical reactions, but is often chosen as example for
a simple period-doubling cascade. Here we focus on the transition from a period-one limit cycle to a period-
two limit cycle with changing parametrization. (cf. Table 2)

We wanted to evaluate the performance of a UDE trained with the LDA loss function against a UDE trained with
the MSE loss function for each model with two different parametrizations leading to the two different dynamical
behaviors of the systems named above. Furthermore, we considered three different levels of normal distributed
noise added to the training data to test the robustness of our results under more realistic conditions.

The universal function approximator UAp(x, y) (Equation 1) in all examples was a neural network with a
single hidden layer and 16 neurons with tanh-activation function to accommodate a wide variety of possible non-
linear functions with a limited number of ANN parameters. The initial weights of the Neural Network are chosen
randomly using the Glorot initializer35 with a Normal Distribution as its basis. We used the ADAM optimizer36
and added weight decay to train the UDE (see Supplementary Table S1 for additional details).

(3)LLDA =

n�

i=1









k1 ·

�

(|xi| −
�
�pi

�
�)2

|xi| +
�
�pi

�
�

� �� �

length difference

+k2 ·
1

2
·

�

1−
xi · pi

|xi| ·
�
�pi

�
�

�

� �� �

angle difference









,

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Tables 1 and 2 show representative results of the longterm prediction of the UDE model trained with LDA,
where four times the length of the training data is used.

To compare estimated trajectories of the UDE trained with LDA or MSE loss objectively, we calculated the
trajectory difference (TD) as the sum over the length of difference vectors over the sample points of the UDE
and samples from the full differential equation:

where the true trajectory is described by the position vectors of the n trajectory points xi and the approximated
position vectors of the n trajectory points pi.

Because the initial weights winit of the machine learning model can considerably determine the success of
UDE training (cp. Fig. 2), we independently drew 100 different sets of initial weights winit per model, model
parametrization and loss function and calculated TD for each independent experiment.

In Fig. 3 we show the distribution of a normalized version of TDs we get over all these 100 trained UDEs to
compare the quality of the UDE solutions across different systems, parametrizations and loss function used in
one figure. The general form of these distributions remains stable across all noise levels. All results for different
noise levels can be found in Supplementary Figs. S1 and S2.

Systems with a changing number of fixed points.  The Pitchfork and Saddle-Node bifurcations lead to a changing
number of fixed points in the Gardner and FitzHugh–Nagumo systems, respectively. A good approximation of

(4)TD =
1

n
·

n∑

i=1

||xi − pi||,

Table 1.   Overview of the models used with changing number of fixed points: FitzHugh–Nagumo model and
Gardner model. First column: UDE for the systems in a general x and y notation with UAp(x, y) as machine
learnable blank; second column: example of a trajectory’s longterm behavior trained with LDA (blue) in state
space in comparison to the true solution’s trajectory (black). The nullcline given by the known part of the
differential equation is dotted gray and the second nullcline of the true solution is gray dashed.; third column:
corresponding time series of the longterm behavior of trained x (blue) and y (red) variable in comparison to
the true solution (black, mainly masked by the predicted time series). The vertical gray line marks the end
of the training data; fourth column: corresponding SInDy estimate of UAp(x, y) based on the approximation
of the training data in comparison to the true missing term. The figures are plotted using Julia package Plots
(Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe
Illustrator (Version 25.4.1).

UDE State space Time series SInDy estimate

Monostable
FitzHugh–
Nagumo

dx
dt = x − x3

3 − y + 1.2

dy
dt = 1.25 · (0.9− y)+ UAp(x, y)

UAp(x, y) = 0.625481 · x,

cf. missing term = 0.625 · x

Saddle-Node
bifurcation

Bistable
FitzHugh–
Nagumo

dx
dt = x − x3

3 − y + 1.0

dy
dt = 1.25 · (0.9− y)+ UAp(x, y)

UAp(x, y) = 0.624665 · x,

cf. missing term = 0.625 · x

Saddle-Node
bifurcation

Monostable
Gardner

dx
dt = UAp(x, y)− x

dy
dt = 1.5

1+x2
− y

UAp(x, y) =
1.499501
1+y2

,

cf. missing term = 1.5
1+y2

Pitchfork
bifurcation

Bistable
Gardner

dx
dt = UAp(x, y)− x

dy
dt = 3.5

1+x2
− y

UAp(x, y) =
3.498237
1+y2

,

cf. missing term = 3.5
1+y2

Pitchfork
bifurcation

https://github.com/JuliaPlots/Plots.jl

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

the system’s longterm behavior, indicated by small TD between the approximated and the true solution’s trajec-
tory, is in general possible with both loss functions (see Fig. 3).

However, for the FitzHugh–Nagumo model, the results using the MSE as the loss function show a higher
median compared to the LDA loss and a larger distribution width in case of the monostable parametrization (cf.
Fig. 3a). The reason why is that the predicted trajectories vary more around the true solution’s trajectory which
leads to a number of trajectories ending in alternative stable states along the given nullcline (see Supplementary
Fig. S3c,d). This effect is also visible in the outliers of the TD distribution for the bistable case for the MSE loss
function, which make up around 12% of all trajectories end up in alternative stable states along the nullcline
given by the known part of the differential equation in the region of the second fixed point (cf. Fig. 3b and Sup-
plementary Fig. S3b). This second stable fixed point is also the only stable fixed point in case of the monostable
parametrization (cf. Tabel 1). The LDA loss function does not lead to this behavior, because the angular differ-
ence between trajectories favors the correct curvature of the trajectory compared to absolutely correct values
and guides the trajectory during training towards the correct fixed point. This reflects more precisely what we
hope to achieve with the learned UDE, and leads to a compact TD distribution for the longterm prediction.

Table 2.   Overview of the models used with oscillatory behavior: Selkov model and Rössler model. First
column: UDE for the systems in a general x and y resp. x, y and z notation with UAp(x, y) resp. UAp(x, y, z) as
machine learnable blank; second column: example of a trajectory’s longterm behavior trained with LDA (blue)
in state space in comparison to the true solution’s trajectory (black). In case of the Selkov model the nullcline
given by the known part of the differential equation is dotted gray and the second nullcline of the true solution
is gray dashed.; third column: corresponding time series of the longterm behavior of trained x (blue) and y
(red) and in case of Rössler z (cyan) variable in comparison to the true solution (black, mainly masked by the
predicted time series). The vertical gray line marks the end of the training data; fourth column: corresponding
SInDy estimate of UAp(x, y) resp. UAp(x, y, z) based on the approximation of the training data in comparison
to the true missing term. The figures are plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​
Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version 25.4.1).

UDE State space Time series SInDy estimate

Steady state
Selkov

dx
dt = −x + UAp(x, y)+ x2 · y

dy
dt = 0.15− 0.1 · y − x2 · y

UAp(x, y) = 0.100014 · y,

cf. missing term = 0.1 · y
 Hopf bifurcation

Oscillatory
Selkov

dx
dt = −x + UAp(x, y)+ x2 · y

dy
dt = 0.6− 0.1 · y − x2 · y

UAp(x, y) = 0.099735 · y,

cf. missing term = 0.1 · y
Hopf bifurcation

Period-one
Rössler

dx
dt = −y − z

dy
dt = x + UAp(x, y, z)

dz
dt = 0.1+ z · x − 4.0 · z

UAp(x, y, z) = 0.100181 · y,

cf. missing term = 0.1 · y
 Period-doubling

Period-two
Rössler

dx
dt = −y − z

dy
dt = x + UAp(x, y, z)

dz
dt = 0.1+ z · x − 6.0 · z

UAp(x, y, z) = 0.100183 · y,

cf. missing term = 0.1 · y
Period-doubling

https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaPlots/Plots.jl

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Only around 2% of the trajectories in the bistable case end in the alternative stable state (cf. Fig. 3b and Sup-
plementary Fig. S3a).

The same but somewhat weakened effect is observed for the bistable Gardner model (cf. Fig. 3b). Here, the
results using the MSE loss function show 6–7% of the predicted longterm trajectories terminating in the alterna-
tive stable state on the given nullcline close to the fixed point the true solution’s trajectory ends up in (cf. Table 1
and Supplementary Fig. S4b). The results using the LDA loss function only show up to 5% of the trajectories
ending in alternative stable states (see Supplementary Fig. S4a).

The main difference in the bistable parametrization of the FitzHugh–Nagumo compared to the bistable Gard-
ner model is, that the alternative states in the Gardner model are not linked to either the second stable fixed point
or the stable fixed point in the monostable parametrization. Rather, they only occur spuriously in the functions
permitted by the UDE in its current parametrization. The underlying dynamical structure of the Gardner sys-
tem separates the state space into regions that specify to which fixed point all trajectories starting in this region
converge. This dynamical behavior cannot be broken during the training. The alternative stable states can likely
be linked to a new parametrization of the bistable Gardner system that co-evolves during training of the UDE.

In case of the monostable parametrization of the Gardner system, both loss functions lead to approximately
equally good approximations of the longterm behavior of the system (cf. Fig. 3a and Supplementary Fig. S4c,d).

monostable FitzHugh-Nagumo
(Saddle-Node)

monostable Gardner
(Pitchfork)

steady state Selkov
(Hopf)

period one Rössler
(period-doubling)

0.00

0.25

0.50

0.75

1.00

bistable FitzHugh-Nagumo
(Saddle-Node)

bistable Gardner
(Pitchfork)

oscillatory Selkov
(Hopf)

period two Rössler
(period-doubling)

0.00

0.25

0.50

0.75

1.00

Figure 3.   Distribution of the trajectory difference (TD) for the longterm prediction of the bifurcating systems
over 100 neural network initializations trained using MSE loss function (red) or LDA loss function (blue). The
horizontal bar indicates the median of the respective distribution. The training data contain additive normal
distributed noise of noise level 0.0001. The trajectory difference is normalized by TD = 1.0 for FitzHugh–
Nagumo, by TD = 0.1 for the Gardner, by TD = 1.0 for the Selkov and by TD = 2.0 for the Rössler model. All
normalized values larger than one are clipped to one. The starting positions of the trajectories are chosen as
for the examples in Tables 1 and 2. (a) Monostable, steady state and period-one parametrization (b) bistable,
oscillatory and period-two parametrization. This figure is plotted using Julia package Plots (Version v1.16.6,
https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version
25.4.1).

https://github.com/JuliaPlots/Plots.jl

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Systems with oscillatory behavior.  The Hopf and period-doubling bifurcation lead to changing dynamical
behavior in the Selkov and Rössler systems, from non-oscillatory to oscillatory behavior or from period one to
period two oscillatory behavior respectively.

For steady state behavior of the Selkov system, both loss functions lead to good approximations of the
longterm behavior of the system without strong dependence on the noise level, with a median TD of around
0.006 for the LDA loss function and around 0.012 for the MSE (cf. Fig. 3a and Supplementary Fig. S5c,d). By
contrast, for the case of the oscillatory parametrization of the Selkov system, the results using the MSE loss func-
tion have a bimodal TD distribution, whereas the trajectory-based LDA loss function still leads to a narrow TD
distribution and consistently good approximations (cf. Fig. 3b).

This is because many initial conditions in the MSE case lead to an alternative steady state solution during
optimization which is a local minimum on the loss function that cannot be left (cf. Fig. 2b and Supplementary
video material S1 panel b). The bimodal nature of the TD distribution reflects this: if the initial condition is
favorable, the learning process finds the correct solution, if it is not, it fails completely (see supplemental Fig. S5b).
The calculated median of the TD distribution shifts depending on the number of successful approximations and
complete failures (see Supplementary Fig. S2b).

The LDA loss function on the other hand benefits from the combination of angular loss and the vector length
loss, which allow for detours in state space (cf. Supplementary video material S1 panel a) bringing the approxi-
mated solution during training in the region of the training data. The solutions reliably reproduce the correct
oscillations of the original system in nearly all cases (see Supplementary Fig. S5b).

For the case of the Rössler system, the approximations of the training data for both parametrizations show
median values of TD around 0.04 for both parametrizations for the MSE and around 0.03 for both parametriza-
tions for the trajectory-based loss function. The distribution is compact around the median with a few outliers
(see Supplementary Fig. S6). By contrast, the longterm prediction of both used loss functions show median
values of TD around 1.04 (period-one parametrization) resp. 1.22 (period-two parametrization) for MSE and
around 0.95 (period-one parametrization) resp. 1.10 (period-two parametrization) for the LDA loss function (cf.
Fig. 3a,b). Only a few runs yield good approximations. The reason why is that the training data do not include
the typical excursions of the Rössler system in z-direction in state space which are included in the longterm
prediction (cf. Table 2). These excursions are not approximated well by either of the trained networks. Longer
training data could improve these results. Nevertheless, the accurate approximation of the short term training
data enables a proper reconstruction of the algebraic form of the missing term as in Table 2.

The loss functions around the bifurcation.  In the previous section we observed very different dis-
tributions for the trajectory difference depending on the chosen loss function and the parametrizations of the
systems. To investigate if the distributions show a gradual change from one type to the other across the bifurca-
tion, we performed 50 training runs for the FitzHugh–Nagumo and the Selkov model each with 14 different
parametrization chosen from an interval nesting of the bifurcation parameter around the bifurcation. The bifur-
cation parameter for the case of FitzHugh–Nagumo is the 4th term in the first equation in Table 1 and in case
of Selkov the first term in the second equation in Table 2. The FitzHugh–Nagumo and the Selkov model were
chosen because they show the most different distributions of the trajectory difference TD for the two different
dynamical behaviors (cf. Fig. 3). The results are presented in Fig. 4.

Firstly, we see a change of the shape of the MSE loss distribution as soon as the curvature of the trajectory
increases (FitzHugh–Nagumo model Fig. 4a) or as soon as strongly damped oscillations start (Selkov model
Fig. 4b between the light gray and the gray bar). The median of the LDA TD distribution is only sensitive to this
in a narrow band of parameters shortly after the bifurcation in the FitzHugh–Nagumo model (cf. inset in Fig. 4a).
Thus, the distributions reflect the bifurcation, too. As the curvature of the trajectory changes drastically across
the bifurcation for both systems, the difference in the quality of the approximation using either loss function
is markedly different. The reason for this behavior is that MSE only optimizes the difference in each variable in
state space independently. This approach misses differences in the curvature of the training data trajectory and
the current approximated solution. Thus, the MSE is often not suited to approximate a proper solution for a
randomly chosen first guess of the approximated solution that belongs to a different dynamical regime than the
training data and must be transferred to another dynamical regime during training by temporarily changing the
curvature of the approximated solution drastically.

In contrast, the LDA loss function indirectly contains information about the curvature difference in its angle
part of the loss function at a specific position in state space (length difference part of the loss function). Therefore,
the LDA loss can capture changes in curvature earlier and permits the randomly chosen first guess UDE in the
wrong dynamical regime to change to the dynamical regime of the training data more reliably. On the other hand
considering small changes in the direction of a trajectory can immediately cause bad performance of LDA for
specific noisy trajectory passing very close to a saddle. These small changes in the direction of the trajectory can
lead to a switch of the dynamical behavior and a broader TD distribution (cf. Fig. 4a parameter 1.139 and 1.143).

In sum, there is an abrupt change from one type of distribution to another around the bifurcation reflecting
the ability of the loss functions to reliable capture changes in curvature or not.

The loss functions and different starting points of trajectories.  To investigate the impact of the
starting position of the trajectories in state space on the performance of a UDE trained with the LDA loss func-
tion against a UDE trained with the MSE loss function, we again trained 50 UDEs for the FitzHugh–Nagumo
and the Selkov model in the two parametrizations used in Tables 1 and 2 respectively. We chose starting points
with very different dynamical behavior of the trajectories, namely slow and fast dynamics in state space as well
as weak and strong curvatures of the trajectories. The results are presented in Fig. 5.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

For both models we observe a strong dependence of the success of the training on the starting position in
state space when using MSE. Less successful approximations are often linked with strong curvatures or oscilla-
tory behavior. In case of the LDA loss function for the monostable FitzHugh–Nagumo model we observe less
successful training for starting position B, C and E (cf. Fig. 5b). B and C share the common feature that they
pass very slowly close to the saddle and the training data trajectory ends in this region, thus small changes of the
trajectory due to noise can lead to a broadening of the distribution of the longterm prediction. Starting position
E corresponds to a trajectory with a fast dynamics in case of the monostable parametrization and an extremely
curved trajectory in case of the bistable parametrization. While we observe a wider distribution of trajectory
differences in the monostable case, the LDA loss still captures the correct dynamical regime in case of the bistable
parametrization and does not converge to a different fixed point as is possible for the MSE (cf. Fig. 5c).

When learning the Selkov model, the MSE shows a bimodal distribution for the oscillatory parametrization
as expected, but this is also the case for starting point E in the steady state parametrization (cf. Fig. 5e). E is very
close to second nullcline in state space which is unknown for the UDE. One possible explanation is that during
training two different solution classes (steady state and oscillatory) are realized. We even observe a bimodal
distribution in case of the LDA for the steady state and the oscillatory parametrization if we apply the standard
values for the factors k1 and k2 used in the experiments above. If we adjust k1 to 0.1 and k2 to 0.9, the bimodal
distribution vanishes and successful training is possible (cf. E in Fig. 5e,f). The same effect occurs for D in case

1.
0

1.
06

8

1.
10

1

1.
11

8

1.
12

7

1.
13

1

1.
13

3

1.
13

6

1.
13

7

1.
13

9

1.
14

3

1.
15

1

1.
16

8

1.
2

bifuraction parameter

0.0

0.5

1.0

1.5

2.0

2.5
Saddle Node Bifurcation (FitzHugh-Nagumo model)

1.00 1.05 1.10 1.15 1.20
bifurcation parameter

0.0
0.5
1.0
1.5

m
ed

ia
n

0.
15

0.
28

0.
34

5

0.
37

7

0.
39

4

0.
40

2

0.
40

6

0.
41

3

0.
41

6

0.
42

2

0.
43

4

0.
45

8

0.
50

5

0.
6

bifuraction parameter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hopf Bifurcation (Selkov model)

0.2 0.3 0.4 0.5 0.6
bifurcation parameter

0.0
0.1
0.2
0.3
0.4
0.5

m
ed

ia
n

Figure 4.   Distribution of the trajectory difference (TD) for the longterm prediction of the bifurcating systems
over 50 neural network initializations trained using the MSE loss function (red) or LDA loss function (blue)
for FitzHugh–Nagumo (a) and Selkov model (b) around the bifurcation (gray bar). The light gray bar in case of
the Selkov model indicates the onset of strongly damped oscillations. The horizontal bar indicates the median
of the respective distribution. The median of the distribution is plotted in the inset. The training data contain
additive normal distributed noise with the noise level set to 0.0001. The trajectory difference larger than 1.2 are
clipped to 1.2 in case of the Selkov model (b). The bifurcation parameter in case of FitzHugh–Nagumo is the 4th
term in the first equation in Table 1 and in case of Selkov the first term in the second equation in Table 2. The
trajectories start at (−2.0,−0.25) in case of FitzHugh–Nagumo and at (1.0, 1.0) in case of Selkov. This figure is
plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and
converted to eps using Adobe Illustrator (Version 25.4.1).

https://github.com/JuliaPlots/Plots.jl

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

of the oscillatory parametrization (cf. Fig. 5f), whereas a change of k1 and k2 does not impact the results for C
(cf. Fig. 5f).

To sum up, the starting position of the trajectory and its resulting properties can impact the success of the
training. This is especially the case for the MSE, where there are no further hyperparameters to tune the solution.

SInDy’s answer: algebraic form of the missing term.  Finally, to get an idea of the algebraic form of
the missing term, an approach for sparse identification of nonlinear dynamical systems (SInDy)12 by Brunton
et al. was applied to examples trained with the LDA loss function. This approach was chosen to show by way of
example that a successful trained UDE system can be translated into an algebraic form. The examples are chosen
from the statistical analysis with the lowest noise level such that the trajectory difference between the approxi-
mated solution of the training data and the training data itself is smallest. We investigated one example for each
parametrization and each model. To improve the performance of SInDy, outliers in the beginning and the end of
the approximated guess of the dynamics of the missing term are removed before SInDy is applied. The optimizer
used by SInDy is STRRidge12. The basis functions from which SInDy can select its guess are polynomials up to
order of 5, except for the case of the Gardner model where polynomials up to order of 3 are combined with terms
of the form 1

1+zn with z being either x or y and n = 1, 2, 3 . This exception was chosen to identify the term more
clearly and not hidden it in a polynomial expansion of the function.

−2 −1 0 1 2
x

−0.5

0.0

0.5

1.0

1.5

y

Saddle Node Bifurcation
(FitzHugh-Nagumo model)

A B C D E F
0.0

0.5

1.0

1.5

2.0

2.5
monostable

A B C D E F
0.0

0.5

1.0

1.5

2.0

2.5
bistable

0 1 2 3 4 5
x

0
1
2
3
4
5
6

y

Hopf Bifurcation
(Selkov model)

A B C D E F
0.0

0.2

0.4

0.6

steady state

A B C D E F
0.0
0.2
0.4
0.6
0.8
1.0
1.2

oscillatory

Figure 5.   Distribution of the trajectory difference (TD) for the longterm prediction of the FitzHugh–Nagumo
model (b, c) and the Selkov model (e, f) over 50 neural network initializations trained using the MSE loss
function (red) or LDA loss function (blue) for starting position A to F of the trajectories (a, d) using two
different parametrizations. The horizontal bar indicates the median of the respective distribution. The training
data contain additive normal distributed noise with the noise level set to 0.0001. The red trajectories correspond
to the bistable case (a) resp. oscillatory case (d), the blue one to the monostable case (a) resp. steady state (d).
The black curve is the nullcline given by the known part of the differential equation, the dashed red (blue) curve
is the second nullcline corresponding to the bistable resp. oscillatory state (to the monostable resp. steady state)
in (a) resp. (b). This figure is plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​
Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version 25.4.1).

https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaPlots/Plots.jl

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

The results are shown in Tables 1 and 2. All in all, the algebraic form of the missing terms as well as the system
parameters are approximated well.

The approach is not limited to the examples shown. It is possible to learn other terms or several terms at the
same time. A crucial precondition for a successful reconstruction of the missing term with SInDy is an accurate
approximation of the dynamics of the missing term with the UDE approach, which is directly linked with the
successful reconstruction of the dynamical behavior of the training data. Thus, the success of the SInDy approach
is directly linked with the accuracy of the results of the UDE approach. Furthermore, an accurate reconstruction
of the missing term with SInDy based only on the approximation of the training data might give better results
for the longterm prediction of the dynamics than the UDE, because the sparsity criterion of SInDy suppresses
numerical fluctuations present in the UDE that might interfere with the longterm prediction.

Discussion and conclusion
In summary, the LDA loss function leads to more stable and accurate approximation of the longterm dynami-
cal behavior in systems with a changing number of fixed points or a change in oscillatory behavior due to a
bifurcation.

Often, trained networks using MSE as loss function lead to a solution which is only slightly worse than the
networks using the LDA loss function, but there is a risk of complete failure of the approximation depending
on the network initialization. Local minima in the MSE loss function due to different dynamical regimes of the
UDE can represent completely different dynamical solutions, which gradient-based learning cannot recover
from by adapting the gradient-descent procedure with, for example, momentum37 or adaptive learning rates36.

We used the LDA loss, which optimizes two components, the length and angle of state space vectors, with
different local minima. A weighted combination of both components allowed us to estimate the dynamics of
bifurcating systems more accurately, and avoided the catastrophic scenario of local minima leading to different
dynamic regimes. While some randomly chosen initial parameters for the neural network can still lead to a bad
fit of the UDE, we found that in examples where the MSE loss often finds local minima in the wrong dynamic
regime, the basin of attraction of the optimization process was indeed much larger when we used the LDA loss
instead. In some cases the choice of the factors weighting the two components can improve the results of the
training as shown in case of the study of different starting points. We demonstrated that in applications, the loss
function has to be chosen with great care based on the dynamics of the measured trajectories. This is because
there is no gradual change from the possibility of successful training to failure across the bifurcation.

A more general open questions of UDE is the impact of the training data length and its temporal resolution on
the successful approximation of the system. A preliminary survey of this question for examples of the LDA loss
does not indicate a clear effect for the temporal resolution (cf. supplementary Fig. S7) but as expected the trajec-
tory differences between the approximated and the true solution trajectory decreases with increasing training
data length (cf. supplementary Fig. S8). A more comprehensive study should be the content of further research,
because in any real data set of measured time series the length and temporal resolution is fixed.

In real-world applications, physics-informed neural network approaches have successfully been applied
to, among others, fluid dynamical problems38,39. SInDy has also shown good results in complex data-driven
settings40–42. Universal Differential Equations11 elegantly bring together two important aspects of these
approaches: the advantages of knowledge about the underlying physics in the form of a differential equation,
and the statistical estimation of dynamics via machine learning. SInDy12 can be used to open the black box of
machine learning and reconstruct algebraic terms to complete a differential equation. This approach to knowledge
discovery is powerful. It implies that some interactions in the system of interest are not yet discovered, which is
particularly true for—for example—ecosystems that cannot completely be examined in the lab or for systems for
which the underlying governing equation is unknown. In such systems tipping points and potentially unknown
bifurcations are of particular interest.

We have demonstrated, that UDEs can be used to estimate and reconstruct missing terms even in bifurcat-
ing systems. However, all examples shown here are simple compared to real-world applications. But even at this
basic level we only have a rough idea of the interaction of the learning process and the bifurcation properties of
the system. The interaction of both the dynamics of gradient-descent optimizing a loss function and the dynam-
ics of the system of interest itself is highly fascinating and not yet understood. At this stage more fundamental
research is necessary.

Particular care has to be taken in how the loss function is constructed for the optimization process, because
the optimization process itself can lead to bifurcations. Nonetheless, our results suggest that dynamics in real-
world, not yet fully described systems can be discovered using the LDA loss function.

Data availability
All experiments have been implemented in the Julia programming language13 based on packages developed par-
ticularly to fit UDEs with neural networks (https://​github.​com/​SciML/​DiffE​qFlux.​jl) and SInDy (https://​github.​
com/​SciML/​DataD​riven​DiffEq.​jl). The code to produce all data presented in the paper is available publically at
https://​github.​com/​pniet​ers/​Gener​alize​dDyna​micsF​romDa​ta.

Code availability
Accession codes The code to produce all data presented in the paper is available publically at https://​github.​com/​
pniet​ers/​Gener​alize​dDyna​micsF​romDa​ta.

Received: 28 May 2021; Accepted: 21 September 2021

https://github.com/SciML/DiffEqFlux.jl
https://github.com/SciML/DataDrivenDiffEq.jl
https://github.com/SciML/DataDrivenDiffEq.jl
https://github.com/pnieters/GeneralizedDynamicsFromData
https://github.com/pnieters/GeneralizedDynamicsFromData
https://github.com/pnieters/GeneralizedDynamicsFromData

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

References
	 1.	 Steffen, W. et al. Trajectories of the Earth system in the anthropocene. Proc. Natl. Acad. Sci. 115, 8252–8259. https://​doi.​org/​10.​

1073/​pnas.​18101​41115 (2018).
	 2.	 Simonnet, E., Dijkstra, H. A. & Ghil, M. Bifurcation analysis of ocean, atmosphere, and climate models. In Handbook of Numerical

Analysis, 187–229. https://​doi.​org/​10.​1016/​s1570-​8659(08)​00203-2 (Elsevier, 2009).
	 3.	 van Nes, E. H., Rip, W. J. & Scheffer, M. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10, 17–28.

https://​doi.​org/​10.​1007/​s10021-​006-​0176-0 (2007).
	 4.	 Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230. https://​doi.​org/​10.​1111/j.​2153-​3490.​

1961.​tb000​79.x (1961).
	 5.	 Feudel, U., Pisarchik, A. N. & Showalter, K. Multistability and tipping: From mathematics and physics to climate and brain–Mini-

review and preface to the focus issue. Chaos Interdiscip. J. Nonlinear Sci. 28, 033501. https://​doi.​org/​10.​1063/1.​50277​18 (2018).
	 6.	 Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G. & Haller, G. A critical comparison of Lagrangian methods for coher-

ent structure detection. Chaos Interdiscip. J. Nonlinear Sci. 27, 053104. https://​doi.​org/​10.​1063/1.​49827​20 (2017).
	 7.	 Mancho, A. M., Small, D. & Wiggins, S. A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows

defined as finite time data sets: Theoretical and computational issues. Phys. Rep. 437, 55–124. https://​doi.​org/​10.​1016/j.​physr​ep.​
2006.​09.​005 (2006).

	 8.	 Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles.
Proc. Natl. Acad. Sci. 115, E11005–E11014. https://​doi.​org/​10.​1073/​pnas.​18025​73115 (2018).

	 9.	 Shimoda, Y. & Arhonditsis, G. B. Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of
the current state of knowledge. Ecol. Model. 320, 29–43. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2015.​08.​029 (2016).

	10.	 Edwards, A. M. & Brindley, J. Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11, 347–370.
https://​doi.​org/​10.​1080/​02681​11960​88062​31 (1996).

	11.	 Rackauckas, C. et al. Universal differential equations for scientific machine learning. arXiv preprintarXiv:​2001.​04385​v1, v2, v3
(2020).

	12.	 Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynami-
cal systems. Proc. Natl. Acad. Sci. 113, 3932–3937. https://​doi.​org/​10.​1073/​pnas.​15173​84113 (2016).

	13.	 Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98. https://​
doi.​org/​10.​1137/​14100​0671 (2017).

	14.	 Innes, M. Don’t unroll adjoint: Differentiating ssa-form programs. arXiv preprintarXiv:​1810.​07951 (2018).
	15.	 Sel’kov, E. E. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86. https://​doi.​org/​10.​1111/j.​1432-​

1033.​1968.​tb001​75.x (1968).
	16.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	17.	 Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE

Trans. Neural Netw. 9, 987–1000. https://​doi.​org/​10.​1109/​72.​712178 (1998).
	18.	 Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. Neural ordinary differential equations. arXiv preprintarXiv:​1806.​

07366 (2018). (Accessed 26 April 2021).
	19.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://​doi.​org/​10.​1016/j.​
jcp.​2018.​10.​045 (2019).

	20.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Multistep neural networks for data-driven discovery of nonlinear dynamical systems.
arXiv preprintarXiv:​1801.​01236 (2018). (Accessed 26 April 2021).

	21.	 Psichogios, D. C. & Ungar, L. H. A hybrid neural network-first principles approach to process modeling. AIChE J. 38, 1499–1511.
https://​doi.​org/​10.​1002/​aic.​69038​1003 (1992).

	22.	 Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314. https://​doi.​org/​10.​
1007/​BF025​51274 (1989).

	23.	 Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257. https://​doi.​org/​10.​1016/​
0893-​6080(91)​90009-T (1991).

	24.	 Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).
	25.	 Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B (Methodol.) 58, 267–288. https://​doi.​org/​10.​

1111/j.​2517-​6161.​1996.​tb020​80.x (1996).
	26.	 Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press Cambridge, 2016).
	27.	 Christoffersen, P. & Jacobs, K. The importance of the loss function in option valuation. J. Finan. Econ. 72, 291–318. https://​doi.​

org/​10.​1016/j.​jfine​co.​2003.​02.​001 (2004).
	28.	 Xiao, T. & Frank, M. Using neural networks to accelerate the solution of the Boltzmann equation. arXiv preprintarXiv:​2010.​13649

(2020). (Accessed 26 April 2021).
	29.	 FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278. https://​

doi.​org/​10.​1007/​bf024​77753 (1955).
	30.	 FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466. https://​doi.​org/​

10.​1016/​s0006-​3495(61)​86902-6 (1961).
	31.	 Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342. https://​

doi.​org/​10.​1038/​35002​131 (2000).
	32.	 Bose, I. & Ghosh, S. Bifurcation and criticality. J. Stat. Mech. Theory Exp. 2019, 043403. https://​doi.​org/​10.​1088/​1742-​5468/​ab11d8

(2019).
	33.	 Rössler, O. E. An equation for continuous chaos. Phys. Lett. A 57, 397–398. https://​doi.​org/​10.​1016/​0375-​9601(76)​90101-8 (1976).
	34.	 Rössler, O. E. Chaotic behavior in simple reaction systems. Zeitschrift für Naturforschung A 31, 259–264. https://​doi.​org/​10.​1515/​

zna-​1976-3-​408 (1976).
	35.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, 249–256 (JMLR Workshop and Conference Proceedings, 2010).
	36.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR)

(2015).
	37.	 Nesterov, Y. E. A method for solving the convex programming problem with convergence rate O (1/k2 ). In Dokl. akad. nauk Sssr

269, 543–547 (1983).
	38.	 Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.

Science 367, 1026–1030. https://​doi.​org/​10.​1126/​scien​ce.​aaw47​41 (2020).
	39.	 Raissi, M. & Karniadakis, G. E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 357, 125–141. https://​doi.​org/​10.​1016/j.​jcp.​2017.​11.​039 (2018).
	40.	 Champion, K., Zheng, P., Aravkin, A. Y., Brunton, S. L. & Kutz, J. N. A unified sparse optimization framework to learn parsimoni-

ous physics-informed models from data. IEEE Access 8, 169259–169271. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30236​25 (2020).
	41.	 Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl.

Acad. Sci. 116, 22445–22451. https://​doi.​org/​10.​1073/​pnas.​19069​95116 (2019).

https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1016/s1570-8659(08)00203-2
https://doi.org/10.1007/s10021-006-0176-0
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1063/1.5027718
https://doi.org/10.1063/1.4982720
https://doi.org/10.1016/j.physrep.2006.09.005
https://doi.org/10.1016/j.physrep.2006.09.005
https://doi.org/10.1073/pnas.1802573115
https://doi.org/10.1016/j.ecolmodel.2015.08.029
https://doi.org/10.1080/02681119608806231
http://arxiv.org/abs/2001.04385v1
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://arxiv.org/abs/1810.07951
https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/72.712178
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/abs/1801.01236
https://doi.org/10.1002/aic.690381003
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.jfineco.2003.02.001
https://doi.org/10.1016/j.jfineco.2003.02.001
http://arxiv.org/abs/2010.13649
https://doi.org/10.1007/bf02477753
https://doi.org/10.1007/bf02477753
https://doi.org/10.1016/s0006-3495(61)86902-6
https://doi.org/10.1016/s0006-3495(61)86902-6
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1088/1742-5468/ab11d8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1515/zna-1976-3-408
https://doi.org/10.1515/zna-1976-3-408
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1109/ACCESS.2020.3023625
https://doi.org/10.1073/pnas.1906995116

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

	42.	 Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614.
https://​doi.​org/​10.​1126/​sciadv.​16026​14 (2017).

Acknowledgements
R.V.-K. and P.N. thank Georg Schröter for intensive discussions.

Author contributions
R.V.-K. developed the trajectory-based loss function. P.N. and R.V-K. designed the numerical experiments. P.N.
implemented the experiments. Overall supervision was done by G.P. All authors contributed in preparing this
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​99609-x.

Correspondence and requests for materials should be addressed to R.V.-K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1038/s41598-021-99609-x
https://doi.org/10.1038/s41598-021-99609-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A trajectory-based loss function to learn missing terms in bifurcating dynamical systems
	Universal differential equations (UDE) and sparse identification of nonlinear dynamics (SInDy).
	Results
	The loss function and the trajectories.
	The loss functions and different bifurcating systems.
	Systems with a changing number of fixed points.
	Systems with oscillatory behavior.

	The loss functions around the bifurcation.
	The loss functions and different starting points of trajectories.
	SInDy’s answer: algebraic form of the missing term.

	Discussion and conclusion
	References
	Acknowledgements

