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a b s t r a c t 

Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. 

The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor 

and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro- 

inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell 

death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific 

neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering func- 

tional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, 

hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun 

exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplanta- 

tion, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and 

noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons 

in plasticity, and the exciting research avenues enhancing tissue repair following SCI. 
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Spinal cord injury (SCI) is a devastating condition which results in

mpaired sensory and motor function at and below the spinal level of

njury. The incidence of traumatic SCI in North America is 39 cases per

illion individuals [1] and lifetime medical costs amount to up to $4.6

illion USD per person, which is in addition to losses incurred from lost

roductivity. The highest proportion of traumatic SCIs in North Amer-

ca are a result of car accidents, with 60% of injuries occurring at the

ervical level [1] . 

Despite the significant personal, societal, and economic burden of

CI, to date there are no established neuroprotective or neuroregenera-

ive therapies. Though in recent years, advances in our understanding of

ndogenous plasticity and regeneration of the injured spinal cord have

nhanced the armamentarium of tools and approaches aimed at improv-

ng recovery after SCI. This review will explore cutting edge strategies

o enhance neural regeneration after SCI, with a focus on the role of

pinal interneurons in plasticity, endogenous neural stem/progenitor
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ells (NSPCs), stem cell transplantation, combinatorial approaches, and

ell reprogramming. 

athophysiology of SCI 

Following the initial physical damage associated with traumatic SCI,

xacerbation of cell loss and inflammation persists as the result of sec-

ndary injury, preventing recovery of lost neural networks and impact-

ng patient autonomy ( Fig. 1 ). 

Within the first 48 hours postinjury, known as the acute phase, sev-

ral cellular processes occur including hemorrhage, demyelination, and

ecrosis, paired with disruption of the blood-spinal cord barrier (BSCB),

eading to the initiation of the immune response [1 , 2] . This begins with

he infiltration of neutrophils [3 , 4] . Neutrophils produce metallopro-

einase 9 (MMP-9), which degrades the extracellular matrix, contribut-

ng to increased permeability of the BSCB and allowing for further infil-

ration of other immune cells including macrophages and lymphocytes

5] . There is a concurrent upregulation of pro-inflammatory cytokines,
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Fig. 1. Timeline of pathophysiological changes following spinal cord injury. (A) The acute phase of injury involves the initiation of inflammation, along with 

disruption of the blood-spinal cord barrier, hemorrhage and ischemia, demyelination, and activation of resident microglia to a pro-inflammatory phenotype (M1), 

resulting in nitric oxide production and glutamate excitotoxicity. (B) The subacute phase involves the STAT3 mediated activation of resident astrocytes to reactive 

astrocytes, further disrupting the blood-spinal cord barrier, dysregulating glutamate reuptake, and contributing to chondroitin sulfate proteoglycan (CSPG) deposition. 

There is also conversion of resident ependymal cells to neural stem/progenitor cells, which primarily differentiate into astrocytes, along with continued inflammation 

and ischemia. (C) The intermediate and chronic phases involve various changes to consolidate the type A pericyte-derived fibrotic scar core along with immune cells, 

CSPGs, abnormal vasculature, and ependymal-derived astrocytes, encased within a reactive astrocyte glial border. Created with BioRender.com. 
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ncluding tumor necrosis factor alpha (TNF 𝛼), interleukin-1 beta (IL–

 𝛽), and interleukin-6 (IL–6), which activate resident microglia bias-

ng them towards a pro-inflammatory phenotype, often termed M1 mi-

roglia [2] . Increased activation of microglia results in the release of

ro-inflammatory cytokines, as well as cytotoxic release of glutamate

nd nitric oxide to further impact cell survival [5 , 6] . 

The subacute phase, from 2 to 14 days postinjury [7] , is character-

zed by increased proliferation of astrocytes paired with upregulation

f glial fibrillary acidic protein (GFAP) and activation towards a reac-

ive phenotype. These reactive astrocytes lose aquaporin-4 (AQP4) ac-

ivity, further compromising the BSCB, as well as impaired glutamate

e-uptake and border-forming activity around the injury site mediated

y signal transducer and activator of transcription 3 (STAT3) [8 , 9] . Self-

enewing ependymal cells, which are ciliated cells of the central canal

hat normally remain quiescent, become activated and migrate to the

ite of injury forming a portion of astrocytes in the center of the injury

ite [10] . There is also increased formation of chondroitin sulfate pro-

eoglycans (CSPGs) primarily from resident astrocytes [1 , 8] , along with

ontinued ischemia [1] . 

In the intermediate and chronic phases of spinal cord injury, the per-

lesional scar is consolidated, with a fibrotic core formed from type A

ericytes compacted by 14 days postinjury, and this prevents neural out-

rowth and extensions. This fibrotic core is surrounded by activated en-

ogenous microglia and monocyte-derived macrophages, CSPGs, abnor-

al vasculature, and contained by border-forming reactive astrocytes,

o prevent the spread of immune cells beyond the lesion epicenter [1 , 8] .

Although the injury microenvironment is often nonconducive to neu-

al regeneration, modulation of the immune response has been shown to

romote conversion of astrocytes and microglia to more neuroprotective

henotypes. Specific CD4 + myelin basic protein (MBP)-autoimmune T

ymphocytes may participate in protective autoimmunity, helping acti-

ate microglia towards an anti-inflammatory phenotype [5 , 11–13] , de-

oted as M2 microglia. However, this classification is highly debated

nd may be further characterized by various spatial, environmental,

nd transcriptomic factors [2 , 14–16] . These adaptive microglia allow
able 1 

pinal interneuron subtype plasticity following SCI. 

Interneuron subtype Location to lesion SCI model Preinjury 

Cervical descending 

propriospinal neurons 

Rostral to lesion Incomplete 

(hemisection) SCI 

Coordinatio

reaching an

Excitatory thoracolumbar 

propriospinal neurons 

Caudal to lesion Complete thoracic SCI ? 

Inhibitory thoracolumbar 

propriospinal neurons 

Caudal to lesion Complete thoracic SCI ? 

Ascending/Descending 

Interenlargement 

propriospinal neurons 

Spared axons projecting 

through lesion 

Incomplete thoracic SCI Task-specifi

coordinatio

Spinocerebellar neurons Caudal to lesion Incomplete thoracic SCI Locomotor

axon collat

circuits 

V2a Interneurons Caudal to lesion Incomplete Thoracic SCI Left-right h

intermedia

dI3 Interneurons Caudal to lesion Complete Thoracic SCI Limited fun

locomotion

Shox2 + Interneurons Caudal to lesion Complete Thoracic SCI Locomotor

V3 Interneurons Caudal to lesion Complete Sacral (S2) SCI Multiple ro

control: lef

synchroniz

forelimb-hi

motor neur

3 
or the reduction of pro-inflammatory cytokines such as TNF 𝛼, upreg-

lation of neurotrophic factors like brain-derived neurotrophic factor

BDNF) and anti-inflammatory cytokines like interleukin-4 (IL–4) and

nterleukin-10 (IL–10), as well as buffering of excitatory glutamate pro-

uction [2 , 3 , 11] . Following modulation of the immune response, re-

ctive astrocytes may alter their phenotype to form bridges across the

brotic scar to aid in guiding axonal growth [8] . 

europlasticity after SCI 

daptive and maladaptive plasticity of spinal cord interneurons following 

CI 

Neuronal circuits in the spinal cord are vital for the coordination

nd execution of sensory processing [17] , sensorimotor control [18 , 19] ,

nd autonomic regulation [20] . These diverse functions are coordinated

y heterogeneous interneurons assembled throughout the spinal cord.

nterneuron subtypes form functionally autonomous circuits that both

ntegrate and modulate descending supraspinal and ascending sensory

ommands. Together, this modular arrangement of spinal interneuron

ubtypes enables the dynamic and context-specific coordination of so-

atic and visceral outputs. 

Traumatic SCI results in an abrupt silencing of descending and as-

ending communication between neuronal circuits caudal and rostral to

he injury site. For interneuron networks caudal to the lesion, the silenc-

ng of supraspinal regulation results in a compensatory reorganization

f sensory and interneuron circuits contributing to both adaptive and

aladaptive neuroplastic changes. Importantly, these spinal interneu-

on reorganizations are not only dependent on the injury severity and

ostinjury period, but are also highly interneuron subtype dependent.

hat is, distinct spinal interneuron subtypes can display either adaptive

r maladaptive changes while under the same injury and postinjury con-

itions ( Table 1 ). Thus, defining and investigating spinal interneuron

ubtypes is crucial to understanding the mechanisms underlying spinal

ord recovery and dysfunction after injury. 
Postinjury References 

n of locomotion, 

d grasping 

Form descending relay circuits around 

spinal cord lesion. 

[18 , 41–44 , 47] 

Activation improves hindlimb standing 

recovery. 

[53] 

Inhibition improves hindlimb stepping 

recovery. 

[53] 

c interlimb 

n 

Inhibition improves functional locomotor 

recovery. 

[51 , 54–57] 

 rhythm generation via 

eral outptus to lumbar 

Increased regenerative associated gene 

expressions. Increased lumbar axon 

sprouting. Unknown function in 

locomotor recovery. 

[60 , 65] 

indlimb alternation at 

te locomotor speed 

Necessary for slow speed locomotor 

recovery mediated by treadmill 

rehabilitation and electrical epidural 

stimulation. Increased sensory 

innervation. Increased serotonin 

sensitivity. Neurotransmitter inhibitory 

phenotype switching of subset. 

[58 , 59 , 69] 

ction in hindlimb 

 

Necessary for spontaneous locomotor 

recovery. Neurotransmitter inhibitory 

phenotype switching of subset. 

[58 , 68] 

 rhythm generation Increased afferent evoked excitation. 

Increased serotonin sensitivity. Unknown 

function in locomotor recovery. 

[64 , 152] 

les in locomotor 

t-right extensor centre 

ation; 

ndlimb coordination; 

on excitation. 

Mediate sensory-evoked tail spasms [55 , 75 , 153–155 ] 
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Almost 25 years ago, pioneering works defined cardinal spinal cord

nterneuron classes by their embryonic progenitor domains of origin

nd unique postmitotic transcription factor expression profiles [21 , 22] .

uring early embryonic development, counteracting morphogen gra-

ients organize dividing spinal cord cells into 11 discrete progenitor

omains across the dorsoventral axis. These progenitor domains give

ise to molecularly distinct postmitotic dorsal interneuron classes (dI1–

I6), ventral interneuron classes (V0–V3), and motor neurons. While

ardinal interneuron classes display characteristic molecular, anatom-

cal, and functional properties [23] , they each further diversify into

istinct subpopulations defined by increasingly refined molecular ex-

ressions and functional outputs [24 , 25] . By postnatal and adult stages,

ingle cell sequencing experiments in rodent models have further re-

ealed gene expression networks delineating excitatory and inhibitory

pinal interneuron subtypes [26–32] . Several interneuron subtypes dis-

overed in the adult have been linked to interneuron class origins [33] .

owever, further work is required to understand how embryonically de-

ned interneuron classes translate into molecular interneuron clusters

n the adult. Regardless, both the embryonic and adult molecular delin-

ation of spinal interneurons has enabled the experimental targeting of

istinct spinal circuits across uninjured and injured states. 

Spinal interneuron subtype-specific circuit changes have been impli-

ated in autonomic dysfunction [34 , 35] , neuropathic pain [36] , respira-

ory compensation [37–39] , locomotor recovery (reviewed below), and

ensory-evoked muscle spasms (reviewed below) following SCI. Investi-

ations into the interneurons involved in locomotor control have partic-

larly revealed key pathophysiologic principles underlying the adaptive

nd maladaptive spinal circuit changes postinjury. For the remainder of

he current review, we will focus on post-SCI interneuron changes un-

erlying locomotor recovery and dysfunction. 

he role of propriospinal neurons connecting across spinal segments 

Both human patients and animal models display varying degrees of

pontaneous and therapeutically enhanced locomotor recoveries in the

eeks to months following an incomplete SCI. However, full locomotor

ecovery is rarely obtained. These phenomena have prompted some of

he key investigations into spinal circuit reorganizations following SCI. 

Propriospinal neurons diffusely project through ventral and interme-

iate spinal white matter tracts connecting distant spinal cord segments.

hey often display a substantial degree of axonal sparing following in-

omplete SCI and have thus been extensively studied [40] . Beyond their

ell-established roles in bridging transected supraspinal commands to

audal spinal cord circuits, recent works have begun to reveal their het-

rogeneous functions in coordinating locomotor recovery following both

omplete and incomplete SCIs. 

Descending propriospinal circuit reorganizations are essential for the

ecovery of supraspinal directed locomotion following incomplete SCI.

evered supraspinal axons can regain access to caudal locomotor cir-

uits through the formation of interneuron relay circuits around an in-

omplete lesion [41–44] . Following spinal cord injury, severed corti-

ospinal axons sprout collaterals forming new synaptic connections onto

nterneuron networks rostral to the lesion. Immediately following an in-

ury, corticospinal axon sprouting is unspecified to both local and dis-

ant projecting spinal interneurons. With subsequent spontaneous loco-

otor recovery, the corticospinal synaptic contacts are preferentially

aintained on distant descending propriospinal neurons that project

round the lesion [41] . Additionally, the descending propriospinal neu-

ons bridging the injury site increase their synaptic innervations onto

audal motor neurons [41] . Thus, severed supraspinal axons and down-

tream descending propriospinal interneurons can form and maintain

ew circuit connections with caudal spinal networks following injury.

oreover, Courtine and colleagues (2008) demonstrated that the forma-

ion of propriospinal relay circuits was necessary for therapy-induced

ocomotor recovery following incomplete cervical SCI [43] . 
4 
Severed corticospinal axons may also reorganize via axonal sprout-

ng to locomotor nuclei in the medulla with postinjury rehabilitation

nd electrical epidural stimulation [45] . In turn, both spared [45] and

ransected [46] descending reticulospinal tracts are able to sprout axon

ollaterals to caudal and rostral spinal circuits, respectively. Thus, de-

cending propriospinal neurons are vital for re-establishing corticospinal

ommunication both directly through corticospinal-spinal relay circuits

nd indirectly through corticospinal-brainstem-spinal relay circuits. 

Beyond relaying corticospinal commands to caudal locomotor cir-

uits, descending propriospinal neurons coordinate locomotor outputs

n both pre- and postinjury states [47] . They are distributed throughout

he rostrocaudal spinal cord axis and are comprised of heterogeneous

ardinal interneuron subtypes with distinct laminar distributions, neu-

otransmitter phenotypes, and projection profiles [48–52] . Post-SCI, de-

cending propriospinal neurons display varied functional roles in coor-

inating locomotor recovery depending on their subtype identity and

roximity to the spinal cord lesion. 

Brommer and colleagues utilized a complete thoracic SCI model and

nvestigated the role of descending propriospinal neurons caudal to the

esion. They showed that general activation of propriospinal neurons

rojecting from mid-thoracic to lumbar segments improved locomotor

ecovery post-SCI. However, they uncovered functional distinctions be-

ween excitatory and inhibitory subtypes for postinjury hindlimb recov-

ry. Activation of excitatory propriospinal neurons improved the recov-

ry of extension during standing. In contrast, inhibitory propriospinal

eurons played a more significant role in the recovery of flexion dur-

ng the swing phase of locomotor stepping. Furthermore, inhibition of

nhibitory propriospinal neurons resulted in improved locomotor step-

ing post-SCI. Thus, while thoracic-lumbar propriospinal neurons cau-

al to a complete SCI site facilitate hindlimb recovery, distinct subtypes

ay be differentially targeted to preferentially facilitate the recovery of

indlimb stepping versus standing [53] . 

With incomplete SCI, there is often sparing of propriospinal neu-

ons through the lesion site. This raises the important question of how

ropriospinal projections spared through a lesion site contribute to the

ecovery of locomotor coordination. Both ascending and descending in-

erenlargement (lumbar and cervical) propriospinal neurons are nec-

ssary for task-specific interlimb coordination and locomotor stability

n the uninjured state [51 , 54 , 55] . However, both long lumbar ascend-

ng [56] and cervical descending [57] propriospinal projections that are

pared following incomplete thoracic SCI maladaptively inhibit locomo-

or recovery. In both cases, silencing of spared interenlargement pro-

riospinal neurons resulted in improved locomotor recovery [56 , 57] .

hus, while long ascending and descending propriospinal neurons coor-

inate locomotor output in the uninjured state, their spared projections

aradoxically hinder locomotor recovery in an incomplete SCI state. To-

ether, these works suggest that a subset of functionally necessary long

ropriospinal neurons may form maladaptive circuit organizations post-

CI inhibiting functional locomotor recovery. Further, these works high-

ight the necessity of investigating spinal interneuron functions in both

ninjured and injured models. 

daptive lumbar interneuron plasticity 

Lumbar sensorimotor circuits contained caudal to SCI sites un-

ergo interneuron subtype specific alterations in molecular expres-

ion [58–60] , intraspinal connectivity [59–62] , and sensory integration

59 , 63 , 64] . These postinjury interneuron changes often result in altered

ubtype specific functions. While some interneuron subtypes form cir-

uit rearrangements that are integral for sensorimotor recovery, others

ndergo maladaptive alterations leading to pathophysiological pheno-

ypes such as sensory-evoked muscle spasms. 

A recent investigation demonstrated that while the relative pro-

ortions of molecularly defined spinal interneuron subtypes did not

hange caudal to the SCI lesion, select interneuron subtypes displayed

ltered gene expression patterns [60] . Expression of genes associated
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ith axon regeneration, postsynaptic densities, and neurotransmitter re-

eptors were distinctly elevated in Shox2 + V2d interneurons and ascend-

ng spinocerebellar neurons. Moreover, severed spinocerebellar neurons

isplayed significant axon collateral sprouting caudal to the injury site

60] . 

Recently, ventral spinocerebellar tract neurons were revealed to pos-

ess extensive axon collaterals innervating local lumbar interneurons

nd motor neurons in the uninjured state [65] . These spinocerebellar

eurons were both sufficient and necessary for locomotor rhythm gener-

tion in the uninjured mouse spinal cord [65] . Together, these combined

tudies indicate spinocerebellar neurons as potential high yield thera-

eutic targets for locomotor recovery post-SCI. However, further work

s required to determine the functional consequences of spinocerebellar

ircuit reorganizations following SCI. 

Kathe and colleagues recently employed single cell sequencing ex-

eriments to uncover the interneuron subtypes mediating locomotor

ecovery induced by electrical epidural stimulation with rehabilita-

ion training in an incomplete SCI mouse model. Locomotor recov-

ry evoked by electrical epidural stimulation and rehabilitation re-

ults in an overall reduction in spinal neuronal activity in both hu-

an patients [59] and animal models [59 , 66] . This is likely owed

o spinal circuit rearrangements favoring the recruitment of function-

lly relevant interneuron subtypes. Indeed, Hoxa10 + V2a interneu-

ons displayed significantly increased recruitments with post-SCI ther-

peutic targeting [59] . Furthermore, their genetic ablation abolished

herapy-induced locomotor recovery [59] . Thus, Hoxa10 + V2a in-

erneurons are necessary for locomotor recovery induced by elec-

rical epidural stimulation and rehabilitation. Interestingly, V2a in-

erneurons are not required for low-speed walking in uninjured mice

59 , 67] . Furthermore, without post-SCI therapy, genes associated with

egeneration were not expressed in V2a interneurons as they were

n Shox2 + V2d and spinocerebellar neurons [60] . These results sug-

est that V2a interneurons adopt distinct post-SCI locomotor func-

ions dependent on targeted electrical stimulation and task-specific

ehabilitation. 

In the absence of intensive postinjury therapies, dI3 interneurons are

ecessary for spontaneous locomotor recovery in the mouse [68] . Sim-

lar to V2a interneurons, dI3 interneurons exhibit a limited functional

ole for slow speed locomotion in the uninjured state [68] . Thus, these

esults again highlight the functional adaptations of spinal interneu-

on subtypes underlying spontaneous (dI3) and therapy mediated (V2a)

ocomotor recovery post-SCI. Though, it is likely that other spinal in-

erneuron subtypes are also involved in locomotor recovery post-SCI

nd further studies are required. 

Understanding how distinct spinal interneuron subtypes rearrange

nto postinjury circuits enabling or hindering locomotor recovery is

ritical for the development of novel therapeutic strategies. Neuronal

ecruitment is determined by synaptic inputs combined with intrin-

ic electrophysiological properties. Intracellular patch-clamp recordings

evealed that while spinal interneuron subtypes maintain stable elec-

rophysiological properties [64 , 69] , they display increased serotonin

ensitivities [64 , 69] and enhanced afferent-evoked excitatory drives

63 , 64] . 

Achieving optimal spinal afferent reorganization is key to enhanc-

ng locomotor recovery and preventing sensory-evoked muscle spasms

ost-SCI. Targeted and task-specific excitation of proprioceptive affer-

nts is vital for adaptive spinal interneuron rearrangements and loco-

otor recovery. Electrical epidural stimulation over the dorsal spinal

ord must cooperatively interact with muscle spindle feedback during

ocomotion to enhance recovery [70 , 71] . Similarly, locomotor recovery

ssociated with rehabilitation training requires intact proprioceptive af-

erents [72] . In incomplete SCI, silencing proprioceptive afferents also

esults in reduced descending circuit rearrangements around the spinal

esion [72] . Thus, task-specific sensory afferent activation is likely a key

echanism reorganizing spinal interneuron subtypes into circuit assem-

lies necessary for locomotor recovery. 
5 
aladaptive lumbar interneuron plasticity 

In addition to adaptive lumbar spinal circuit rearrangements, distinct

aladaptive spinal interneuron changes counteract functional sensori-

otor recovery. Bertels and colleagues recently discovered that lumbar

xcitatory spinal interneuron subtypes undergo neurotransmitter pheno-

ype switching to inhibitory interneurons post-SCI. Experimentally sup-

ressing inhibitory phenotype switching significantly enhanced locomo-

or recovery [58] . Endogenous phenotype switching may therefore con-

ribute to the inhibition of spinal circuits necessary for locomotor recov-

ry. Interestingly, only select excitatory interneuron subtypes exhibited

eurotransmitter switching. dI3, dI5, and V2a interneurons displayed

ignificant inhibitory phenotype switching while V3 interneurons did

ot [58] . 

Sensorimotor dysfunction caudal to SCI sites can also manifest as

yper excitation of sensory reflexes, resulting in uncontrolled muscle

pasms. In addition to synaptic inhibition dysfunction [73] and motor

euron serotonin receptor dysregulation [74] , excitatory interneuron

ircuit rearrangements are involved in both initiating and maintaining

ensory-evoked tail spasms in the chronic SCI mouse model [63] . In-

erestingly, optogenetic stimulation of excitatory V3 interneurons pro-

uces characteristic sensory-evoked muscle spasm output patterns in the

hronic SCI mouse model [75] . Additionally, optogenetic silencing of

3 interneurons resulted in diminished spasms. Thus, excitatory V3 in-

erneurons likely play a key role in mediating sensory evoked muscle

pasms post-SCI. 

Taken together, these recent investigations have revealed several im-

ortant principles of interneuron circuit plasticity following SCI. First,

pinal interneuron reorganizations are subtype specific and may be

daptive or maladaptive for a given functional output. Second, spinal in-

erneuron subtypes may adopt new functional roles post-SCI that were

ot evident in the uninjured spinal cord. The interneuron circuits in-

olved in specific functional recoveries post-SCI may not necessarily be

nferred from studying uninjured models alone. Third, task-specific ther-

peutic targeting can significantly enhance adaptive spinal interneuron

eorganizations and functional improvements post-SCI. These findings

nderscore the importance of interneuron subtype diversity in the reor-

anization of spinal cord circuits postinjury. Going forward, it will be

ssential to further identify the key adaptive and maladaptive interneu-

on subtype-specific circuit changes to properly target and effectively

reat SCI. 

romoting regeneration after SCI 

ndogenous stem cells 

Following SCI there is extensive neuronal as well as glial cell death,

nd thus cellular replacement strategies are critical for recovering lost

eural networks. In the healthy spinal cord, most of the progenitor pop-

lation of proliferating cells comes from oligodendrocyte progenitor

ells (OPCs), which have unipotent potential to differentiate and replace

ligodendrocytes [76 , 77] . Compared to the brain, which has well estab-

ished neurogenic regions such as the hippocampal dentate gyrus and

he sub ventricular zone [2 , 76] , the spinal cord is often characterized as

 non-neurogenic region, with limited NSPC potential [77] . 

Most of the NSPC potential in the spinal cord comes from radial

nd tanycyte ependymal cells within the central canal, with the dorsal

ole of the ependymal zone thought to contain the majority of NSPCs

78] . During SCI, normally self-renewing ependymal cells have been

hown to demonstrate NPSC multipotent potential, with downregula-

ion of ependymal marker FoxJ1, and upregulation of stem/progenitor

ell markers such as nestin, CD113, and prominin [76 , 79–81] . Activat-

ng transcription factor 3 (ATF3) is a novel nuclear marker expressed by

igrating NSPCs from the central canal to the surrounding parenchyma

78] . 
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These ependymal-derived NSPCs have been shown to be able to dif-

erentiate in vitro into neurons, oligodendrocytes, and astrocytes [79] .

or in vivo SCI models, however, the differentiation is primarily glial-

iased, with a fraction forming Olig2 + oligodendrocytes and the major-

ty forming astrocytes positive for SOX9 and vimentin [76 , 79] . These

strocytes are functionally distinct from resident border-forming reac-

ive astrocytes, typically lacking increased GFAP expression and pro-

uction of CSPGs, and contributing to the center of the scar following

njury [77 , 79 , 81] . Sabelström et al. demonstrated that impairing NSPC

roliferation through inducible knockout of Ras resulted in secondary

xpansion of the lesion site [81] . 

Work by Yamamato et al. [82] demonstrated that there may be a

mall population of nonependymal-derived NSPCs in the periventricular

rea, along with medial and lateral regions of the cord, however, most

tudies to date demonstrate NSPC potential to be restricted to ependy-

al cells, confirmed through genetic cell fate mapping [79] . 

Ohori et al. [83] demonstrated that genetic manipulation through

etroviral administration of transcription factors Neurogenin2 (NGN2)

nd Mash1 can bias endogenous NSPC differentiation towards neuron

r oligodendrocyte lineages, respectively. Furthermore, use of fibroblast

rowth factor 2 (FGF2) and epidermal growth factor (EGF) can promote

xpression of immature neuronal markers including HuC/D and TuJ1

83] . Further in vitro studies confirm the role of EGF and basic fibroblast

rowth factor (bFGF) in proliferation and differentiation of endogenous

SPCs into neurons, astrocytes, and oligodendrocytes [84] . 

A clinical trial (NCT04054414) testing the safety of the drug So-

ateltide (PMZ-1620), an endothelin B (ET B ) receptor agonist, showed

nhanced endogenous progenitor cell activity, improved neurogene-

is and angiogenesis, and reduced apoptosis [85] . Strategies to acti-

ate these endogenous NSPCs to promote neuron-specific differentiation

ould provide an important noninvasive regeneration strategy follow-

ng SCI. 

odification of IPSC-derived NPCs prior to transplantation in the injured 

pinal cord 

Induced pluripotent stem cells (IPSCs), which can be made from eas-

ly accessible autologous somatic cells, have strong translational poten-

ial for transplantation after SCI [86] . Ideal transplantation candidates

re tripotent neural progenitor cells (NPCs) that can be developed from

PSCs via dual SMAD inhibition [87] . 

Several studies have examined biasing human IPSC-derived NPCs

rior to transplantation in the injured spinal cord to enhance motor re-

overy as well as to improve the integration of transplanted cells with

pared endogenous circuitry. Upon transplantation, NPCs form a higher

roportion of astrocytes due to the inflammatory SCI environment [88] .

iasing these cells prior to transplantation aims to maintain tripotency

hile also enhancing the generation of neurons and/or oligodendro-

ytes. 

Biasing NPCs to an oligodendrocytic fate prior to transplantation in

he injured cervical spinal cord demonstrated an earlier and significant

estoration of motor function 7 weeks postinjury with improved myeli-

ation as compared to the transplantation of NPCs alone [89] . Oligo-

endrocyte biasing of NPCs involved small molecule treatments using

 caudalizing agent, a ventralizing agent and platelet-derived growth

actor. 

The transplantation of GDNF-expressing NPCs promoted a more neu-

onal fate following transplantation into the injured cervical spinal

ord [90] . The expression of GDNF counteracted the elevated Notch-

 signaling found in the SCI microenvironment, which promoted a

ro-astrocytic fate in transplanted NPCs. Neuronal biasing of GDNF-

xpressing NPCs promoted the sparing of endogenous tissue, improved

he electrical integration of the transplanted cells and enhanced motor

ecovery. 

Biasing NPCs prior to transplantation combines the improved sur-

ival of NPCs in the inflammatory injury environment with an en-
6 
iched capacity for electrical integration (neuronal biasing) and/or im-

roved myelination (oligodendrocytic biasing), both of which can lead

o improved motor recovery and sparing of endogenous tissue. Several

ew protocols exist to develop specific neuronal populations through

he small molecule treatment of NPCs, such as glutamatergic V2a in-

erneurons [91] , motor neurons [92] and dorsal sensory interneurons

93] . 

Biasing NPCs towards a specific neuronal fate, such as an interneu-

on or motor neuron, prior to transplantation is a promising therapeutic

trategy. The immature progenitors more readily survive in the injured

pinal cord upon transplantation and would be biased to produce an en-

iched population of specific neurons involved in motor function that

ill mature within the injured spinal cord to form connections with

pared endogenous circuitry. 

ombinatorial approaches employing scaffolds and stem cells 

The injury microenvironment with scar formation, reactive astrocyte

order formation, inflammatory cell infiltration, and neurotoxic com-

ounds, is often not conducive to cellular regeneration and survival.

hen transplanting NSCs, the disrupted extracellular matrix (ECM) and

erineuronal networks (PNNs) needed for cell grafting are not available,

hus NSCs are not retained at the injury site. Research is examining the

se of scaffolds transplanted along with NSCs to provide a temporary

CM for newly generated neurons and glial cells, until the PNNs are

egenerated. Key advances in preclinical and clinical studies are high-

ighted in this section. 

The INSPIRE trials (NCT02138110; NCT03762655) are examin-

ng the safety and efficacy of a bioresorbable polymer of the Neuro-

pinal Scaffold, consisting of poly(lactic-co-glycolic acid)-b-poly(L-

ysine) (PLGA-PLL) in traumatic acute thoracic SCI. Preclinical work

ransplanting the PLGA with NSCs in rat [94] and monkey [95] models

emonstrated preliminary safety and improvements in locomotion, as

ell as reduced scar formation. Pilot data [96] , along with 6-month

97] and 24-month [98] follow-ups from the INSPIRE clinical trials,

emonstrate improvements in American Spinal Cord Injury (ASIA) im-

airment scores (AIS), with no serious side effects [99] . 

A set of clinical trials (NCT02688049, NCT02510365,

CT02352077) are examining the use of a collagen-based scaffold

NeuroRegen) in combination with either umbilical cord mesemchymal

tem cells (hUCB-MSCs) or autologous bone marrow mononuclear

ells (BMMCs) in chronic and acute SCI [99] . In vitro studies with

inearly-ordered collagen scaffolds (LOCs) demonstrate its potential for

uiding neurite outgrowth [100] . No adverse side effects were observed

nd there were sensory and AIS motor improvements [101 , 102] with

UCB-MSC transplantation, but no motor improvements with BMMCs

103] . Preclinical in vitro and rat models have assessed the NeuroRegen

caffold bound with epidermal growth factor receptor (EGFR) antibody

o allow for binding of NSCs, as well as reduced EGFR signalling to

romote neuronal differentiation [104] . 

Preclinical animal and in vitro models are examining additional bio-

aterial scaffolds. Self-assembling peptides, such as K 2 (QL) 6 K 2 (QL6),

orm a 3D nanomatrix upon injection into the injury cavity. QL6 is a mul-

idomain protein, which when transplanted with NPCs, helped increase

euronal differentiation, reduced cystic cavitation’s and inflammation,

nd improved functional recovery [105–108] . 

In addition to helping cell grafting, biomaterials can also be used

o provide localized growth factors for improved cell survival and re-

overy at the injury site. A fast-gelling, noncell adhering hydrogel poly-

er of hyaluronin (HA) and methylcellulose (MC) [HAMC] has been

ested to be nonimmunogenic, localized to the injury epicenter, and

iocompatible [105 , 109] . Modification of HAMC with platelet-derived

rowth factor-A (rPDGF-A) to target NSPC differentiation to oligoden-

rocytes allowed for improved locomotion and reduced lesion size com-

ared to NSPCs alone [110] . HAMC can be further modified by encapsu-

ating growth factors in poly(lactic-co-glycolic acid) (PLGA) nanoparti-
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les for extended, slow release, to provide continual support to neurons

111] . 

ell reprogramming strategies 

Astrocytes are important support glial cells present in the CNS.

fter injury, there is upregulation of astrocyte production from both

pendymal-derived NSPCs and resident astrocytes that form compo-

ents of the glial scar [8 , 77 , 79 , 81] . Recent work has examined strategies

o directly reprogram these somatic terminally differentiated astrocytes

irectly into neurons through direct cell reprogramming or transdiffer-

ntiation. 

Direct cell reprogramming can be conducted using a number of dif-

erent techniques. Small molecule or pharmacological reprogramming

as been used by Ma et al. [112] employing agents such as forskolin

ith support from bFGF to form functional glutamatergic and GABAer-

ic neurons capable of action potentials. The most common method,

owever, is the overexpression of select transcription factors via lentivi-

al vectors [113 , 114] . The first report of transdifferentiation of astro-

ytes to neurons was conducted by Heins et al., using retroviral ex-

ression of Paired box protein Pax6 (Pax6) [115 , 116] . A few research

roups have examined the impact of ectopic expression of Sry-related

MG-box 2 (Sox2) [2 , 114 , 117–119] . Su et al. found that Sox2 expres-

ion using a human GFAP promotor targeted-lentiviral delivery resulted

n the formation of doublecortin positive (DCX + ) neuroblasts, confirmed

o be of astrocyte origin using genetic lineage tracing. Further modifica-

ion with the histone deacetylase inhibitor valproic acid (VPA) helped

hese neuroblasts differentiate into GABAergic interneurons that were

ble to form functional connections with spinal motor neurons, with

urvival for up to 30 weeks postinjury. Mature neuron formation, ob-

erved 8 weeks postinjury, was confirmed with expression of MAP2 and

euN [117] . Wang et al. [118] confirmed the use of Sox2 expression to

orm neuroblasts and later VGUT2 + excitatory glutamatergic interneu-

ons. The p53-p21 pathway was identified to be involved in controlling

ox2 mediated transdifferentiation, with downregulation of either p53

r p21 increasing the number of neuroblasts and neurons obtained. Fur-

hermore, supplementing with BDNF and noggin (NOG) improves mat-

ration to glutamatergic neurons. Yang et al. [119] combined Sox2 ex-

ression with running wheel rehabilitation and found improved motor

ecovery postinjury. 

Ectopic expression of other transcription factors has proved success-

ul in the transdifferentiation of astrocytes to neurons using lentiviral or

denoviral vectors. Zarei-Kheirabadi et al. demonstrated more efficient

eprogramming with zinc finger protein 521 (Zfp521) in comparison to

ox2, with motor neuron-evoked potentials observed and improvements

n motor function [120 , 121] . Neurogenin2 (Ngn2) converted astrocytes

pecifically into glutamatergic and GABAergic neurons with induced

eurons able to respond to inputs from the dorsal root ganglion [122] .

eurod1 transformed astrocytes to functional glutamatergic neurons

ith 95% efficiency that integrated into spinal networks, with distal-

ree homolog2 (Dlx2) administration biasing differentiation to GABAer-

ic neurons [123] . Ghazale et al. mutated proneural gene Asc11 by mu-

ating 6 serine prospho-acceptor sites (Asc11 SA6 ), which was found to

nhance reprogramming and downregulate astrocytic markers such as

ox9 and GFAP [124] . 

Overexpression of transcription factors often does not have sufficient

eprogramming efficiency, and there remain concerns with regards to

he integration of viral vectors into host cell DNA and clinical translation

113 , 125] . CRISPR/Cas9 can be used to modulate transcription factors

113 , 125] . Zhou et al. used CRISPRa to activate expression of Ngn2 and

slet-1 (Isl1) in vitro and in vivo. ROCK inhibitor Y-27632 administra-

ion allowed for improved motor neuronal maturation and branching

o the sciatic nerves [120 , 125] . dCas9 is a mutant nuclease deactivated

orm of Cas9 that can be used to either augment or decrease gene ex-

ression without disruption of the DNA strands [113] . Russo et al. found
7 
hat early dCas9-mediated activation of neuronal mitochondrial proteins

ids to enhance reprogramming [126] . 

dditional therapies for spinal cord injury 

In addition to the cellular-based strategies highlighted earlier in

his review, several additional management approaches and noncellu-

ar therapies have emerged for the treatment of SCI. These include early

urgical decompression, hemodynamic management, targeted rehabili-

ation, along with small molecule and drug therapies that may further

arget the secondary injury of SCI, creating an environment conducive

or neural growth and repair ( Table 2 ). 

arly surgical decompression 

With the initiation of secondary injury cascades occurring within the

rst 24 hours after the physical insult associated with SCI, providing

arly treatment options is key to enhancing preservation of tissue and

ell survival. Early surgical decompression aims to reduce compression

n the cord to improve blood flow [127] . The Surgical Timing in Acute

pinal Cord Injury Study (STASCIS) found that early decompressive

urgery ( < 24 hours) resulted in 19.8% of patients observing an increase

n AIS scores by 2 grades, with minimal differences in complications be-

ween early and late decompression surgery groups [128 , 129] . Clinical

ractice guidelines released in 2017 by AO Spine and the American As-

ociation of Neurological Surgeons/Congress of Neurological Surgeons

AANS/ CNS), based on a systematic review of the literature, suggest

arly decompressive surgery within 24 hours for acute SCI as a treat-

ent option with weak evidence [129] . Further evidence has emerged

upporting the role of early surgery in improving outcomes after SCI

130] . Earlier time frames for decompressive surgery have also been

onsidered (eg, 8–12 hours postinjury), however, the evidence base is

acking [127] . 

emodynamic management 

Hypoxic-ischemic injury is a major component of the secondary in-

ury post-SCI. Injury to blood vessels impairs spinal cord perfusion,

hich is further compounded by hypotension, vasoconstriction and free

adical formation. Maintaining spinal cord perfusion is critical for mit-

gating the deleterious effects of ischemia on the cord. As such, current

uidelines recommend a MAP of 85 and 90 mm Hg be maintained for

 days post-SCI [131] . Spinal cord perfusion pressure (SCPP) has also

merged as a potentially more accurate predictor of outcomes as com-

ared to MAP. It is recommended to maintain SCPP above 50 mm Hg

132] in the acute injury period. Typically, maintenance of these param-

ters requires the use of vasopressors in the acute injury period, which

ay present additional complications. As such, further research into the

emodynamic management of SCI is critical for developing evidence-

ased guidelines that best enhance recovery. 

argeted rehabilitation and electrical stimulation 

Rehabilitation has become standard of care in the management of SCI

ith the aim of improving patient independence and activities of daily

iving. Targeted rehabilitation strategies offer goal-oriented motor ther-

pies with the potential to further improve recovery [133] . Recently,

reclinical studies have demonstrated that rehabilitation can augment

he integration of grafted stem cells into the lessoned spinal cord and

mprove functional recovery [134] . 

Rehabilitation strategies combined with electrical stimulation

aradigms have further shown promise in promoting recovery after SCI.

unctional electrical stimulation provides electrical currents to nerves

nd muscles to enhance activity. Epidural spinal cord stimulation ap-

lies rhythmic electrical currents to the spinal cord to activate locomo-

or circuits along with circuits underlying pain and cardiorespiratory
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Table 2 

Summary of regenerative strategies for spinal cord injury. 

Cellular strategies 

Endogenous stem cells • Limited endogenous neural progenitor/stem cell (NPSC) population derived from radial and tanycyte ependymal cells in the 

central canal, which are primarily astroglially-biased in differentiation. 

• Genetic manipulation can bias NSPCs towards oligodendytic or neuronal fates. 

• Clinical trial examining endothelin B receptor agonist drug, Sovateltide (NCT04054414), may help to activate endogenous NPSCs. 
IPSC-derived NPCs • IPSC-derived NPCs can be developed through dual SMAD inhibition to obtain tripotent NPCs. 

• Biasing of NPCs prior to transplantation to oligodendrogenic, motor neuron, or interneuronal fates may help enhance myelination 

and restore motor function. 

Direct cell reprogramming • With a high proportion of astrocytes in the lesion epicenter, direct cell reprogramming of astrocytes to neurons through various 

means – small molecules/pharmacological approaches, overexpression of transcription factors, CRISPR/Cas9 modulation of 

transcription factors – has been examined. 

Scaffolds and stem cells • Bioresorbable scaffolds, provided in combination with transplanted cells, aim to provide a temporary ECM to graft new cells 

and/or provide localized growth factors. 

• Collagen-based scaffold (NeuroRegen) [NCT02688049, NCT02510365, NCT02352077] and PLGA-PLL-based scaffold 

(Neuro-Spinal) [NCT02138110; NCT03762655] are being tested in clinical trials, with no observed adverse effects and some motor 

improvements. 

• Preclinical work is examining other potential scaffolds, such as self-assembling peptide QL6 and a hyaluronan-methylcellulose 

hydrogel (HAMC). 

Noncellular strategies 

Early surgery • Current clinical practice guidelines suggest providing early surgical decompression within the first 24 h postinjury, with some 

demonstrated improvements in AIS grade. 
Hemodynamic regulation • Current guidelines recommend a MAP of 85 and 90 mm Hg be maintained for 7 d post-SCI. 

• Spinal cord perfusion pressure (SCPP) may be a better predictor of outcomes compared to MAP. It is recommended to maintain 

SCPP above 50 mm Hg. 
Targeted rehabilitation and functional 

electrical stimulation 

• Targeted rehabilitation strategies aim to improve patient independence and activities of daily living. 

• Combined rehabilitation and electrical stimulation paradigms may further augment recovery. 

• Recent benefits demonstrated for rehabilitation on promoting stem cell graft integration after SCI in animal models. 
Riluzole • Sodium-channel blocking drug that helps to mitigate glutamate-associated excitotoxic effects post-SCI, has been tested in Phase I 

trial with no serious adverse effects following administration in acute SCI (NCT00876889). 

• Phase IIB/III trial halted due to slow enrolment (NCT01597518). 

• Current trial with unknown status examining the effect of riluzole in reducing spasticity in chronic SCI (NCT02859792). 
Anti-Nogo-A Antibody • Nogo-A is a myelin-associated neuronal growth inhibitory protein. 

• Anti-Nogo-A antibodies have demonstrated improvements in locomotion, dexterity, axonal sprouting, with good tolerability in 

humans. 

• Clinical trials (NCT0398944 and NCT03935321) are examining anti-Nogo in chronic and acute SCI respectively. 
Anti-RGMa Antibody • RGMa contributes to inhibition of axonal growth. 

• Anti-RGMa has been shown to improve neuronal growth as well as locomotion and is being tested in a current clinical trial 

(NCT04295538), with expanded access also approved (NCT04278235). 
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ystems [135] . Exoskeletons are additional devices that serve as motor-

zed orthoses that can facilitate locomotion through either hand/mouth-

ontrolled devices or through detection of micro-movements. 

merging noncellular regenerative strategies 

Several small molecule and pharmacological therapies have been as-

essed in preclinical and clinical trials for SCI, which are highlighted in

his section. 

iluzole 

Riluzole is a benzothiazole anticonvulsant neuroprotective drug that

as been shown to block sodium channels, thereby helping to reduce

lutamate-associated excitotoxicity [99 , 136 , 137] . Satkunendrarah et al.

emonstrated that following administration of riluzole in a rodent cer-

ical hemisection model, there was improved preservation of gluta-

atergic synapses and motor neurons caudal to the injury, with im-

rovements in locomotion and respiratory activity [138] . Multiple clin-

cal trials have assessed the use of riluzole as a therapeutic follow-

ng SCI. A phase I trial (NCT00876889) testing the safety and phar-

acokinetics of riluzole in acute traumatic SCI found variable levels

f peak plasma concentration with no serious effects from riluzole,

lthough some patients did observe mild-moderate increases in liver

nzymes [136 , 139–141] . Greater improvements in mean motor scores

ere also seen in the riluzole-treated group [141] . A phase IIB/III clin-

cal trial (NCT01597518), termed the Riluzole in Spinal Cord Injury

tudy (RISCIS), aimed to examine improvements in the International

tandards for Neurological Classification of Spinal Cord Injury (ISNC-
8 
CI) motor scores, although it was terminated due to challenges with

nrollment [99 , 136 , 142] . A further study aims to examine improve-

ents in spasticity following administration of riluzole in chronic SCI,

lthough the status of this trial is unknown (NCT02859792). 

nti-Nogo-A antibody 

Nogo-A is a myelin protein that contains an extracellular domain in-

olved in growth-cone collapse [99 , 143 , 144] . This is mediated in part

hrough the activation of the Rho-ROCK pathway upon binding to the

ogo receptor [99 , 145] . Preclinical work by Freund et al. demonstrated

mprovements in axonal sprouting and dexterity following cervical-level

esions in a macaque model [99 , 146 , 147] . The first human pilot in-

rathecal administration of anti-Nogo-A antibody (ATI355) found some

mprovements in motor scores and overall good tolerability of the an-

ibody in acute SCI [99 , 148] . The RESET (NCT03989440) and Nogo

nhibition in Spinal Cord Injury (NISCI; NCT03935321) clinical trials

re currently testing administration of anti-Nogo antibodies in chronic

nd acute SCI, respectively [99] . Administration of antibodies for Nogo

ay allow for improved axonal growth and inhibition of the Rho-ROCK

athway, thus enhancing neural regeneration post-SCI. 

nti-RGMa antibody 

Repulsive guidance molecule A (RGMa) binds to the Neogenin re-

eptor, activating the RhoA-Rho kinase pathway, and resulting in the

nhibition of axon growth [99 , 149 , 150] . RGMa is expressed by oligo-

endrocytes as well as neurons and is upregulated at the lesion epicenter

nd in myelinated regions following SCI [149 , 150] . Antibodies targeting
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GMa have been shown to help improve locomotion, neuron survival,

nd axon regeneration in vitro and in rodent SCI models [99 , 149 , 150] ,

long with ameliorate dexterity in rhesus monkeys [151] . Elezanumab

ABT-555) is a human anti-RGMa monoclonal antibody being tested for

afety, efficacy, and upper extremity motor improvements for acute SCI

n the ELASCI trial (NCT04295538), along with intravenous expanded

ccess being approved (NCT04278235) [99] . 

onclusions 

This review summarizes the key advances in the field of neural re-

eneration and neuroplasticity. Regenerative medicine shows promise

o help enhance tissue regeneration following SCI, with various cellu-

ar and noncellular strategies being tested in the preclinical phase and

hrough clinical trials. There will be ongoing work as researchers fur-

her optimize these strategies and establish standardized personalized

reatment options. Furthermore, assessing combinatorial regenerative

pproaches with current standard of care guidelines will be important

o target various aspects of secondary injury in order to improve sensori-

otor functional recovery and enhance patient quality of life following

CI. 
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