
Citation: Volovat, S.-R.; Augustin, I.;

Zob, D.; Boboc, D.; Amurariti, F.;

Volovat, C.; Stefanescu, C.;

Stolniceanu, C.R.; Ciocoiu, M.;

Dumitras, E.A.; et al. Use of

Personalized Biomarkers in

Metastatic Colorectal Cancer and the

Impact of AI. Cancers 2022, 14, 4834.

https://doi.org/10.3390/

cancers14194834

Academic Editors: Fiorella Guadagni

and Patrizia Ferroni

Received: 10 July 2022

Accepted: 29 September 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Use of Personalized Biomarkers in Metastatic Colorectal Cancer
and the Impact of AI
Simona-Ruxandra Volovat 1,†, Iolanda Augustin 2, Daniela Zob 2, Diana Boboc 1,†, Florin Amurariti 1,
Constantin Volovat 3,* , Cipriana Stefanescu 4,*, Cati Raluca Stolniceanu 4,†, Manuela Ciocoiu 5,
Eduard Alexandru Dumitras 5,6, Mihai Danciu 7 , Delia Gabriela Ciobanu Apostol 7, Vasile Drug 8,9 ,
Sinziana Al Shurbaji 9, Lucia-Georgiana Coca 10, Florin Leon 11 , Adrian Iftene 10 and
Paul-Corneliu Herghelegiu 11

1 Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy,
16 University Str., 700115 Iasi, Romania

2 Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
3 Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
4 Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine

and Pharmacy, 16 University Str., 700115 Iasi, Romania
5 Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy,

700115 Iasi, Romania
6 Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
7 Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
8 Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str.,

700115 Iasi, Romania
9 Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital,

700115 Iasi, Romania
10 Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
11 Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University,

700115 Iasi, Romania
* Correspondence: volovatconstantin@gmail.com (C.V.); cipriana.stefanescu@yahoo.com (C.S.)
† These authors contributed equally to this work.

Simple Summary: Colorectal cancer is one of the most frequent cancers worldwide, with a high
incidence and mortality. Although many treatment options are available for metastatic disease, patient
survival is still limited. The molecular classification of colorectal cancer proposed in 2015 has helped
us to better understand colorectal cancer and realize a more effective implementation of therapeutic
sequences. It has also been observed that the existing mutational landscape is closely correlated with
the epigenetics of colorectal cancer. The identification of prognostic and predictive biomarkers in this
context becomes a necessity closely related to therapeutics, and artificial intelligence can be used to
discover new biomarkers.

Abstract: Colorectal cancer is a major cause of cancer-related death worldwide and is correlated
with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major
role in the pathophysiology of colorectal cancer through the development of gene mutations, but
recent research has shown an important role for epigenetic alterations. In this review, we try to
describe the current knowledge about epigenetic alterations, including DNA methylation and histone
modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic
and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness
of treatments. Additionally, the intestinal microbiota’s composition can be an important biomarker
for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers
in mCRC can be enhanced by developing artificial intelligence programs. We present the actual
models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted
some experiments to improve the quality of the model used as well as the speed of the model that
provides answers to users. In order to carry out this task, we implemented six algorithms: the naive
Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic
regression and SVM.
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1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer worldwide in both sexes,
with mortality rates of 45%, 35% and 47.8% in Europe, the USA and worldwide, respec-
tively [1]. However, CRC is a heterogeneous disease with widely variable clinical outcomes,
in terms of both prognosis and drug response. This is the reason for developing effective
treatments for patients with CRC, i.e., to prolong survival in metastatic settings. In order
to make treatments more efficient, it is very important to identify the prognostic and pre-
dictive markers, to allow the efficient targeting of the tumor cells. Epigenetics, defined as
alterations in gene expression, play a central role in the pathogenesis of various cancers,
including CRC. In fact, there are several markers used to monitor metastatic colon cancer,
but studies in recent decades have shown promising possibilities for using epigenetic
biomarkers, given the interaction of ncRNA with different gene mutations involved in
CRC pathogenesis.

2. Genomics in mCRC

Various genomic alterations have been studied in colorectal cancer, as the development
of both predictive and prognostic biomarkers is important in personalized medicine and
can be incorporated in treatment decisions.

Mismatch repair deficiency and microsatellite instability (MSI) are frequently associ-
ated with Lynch syndrome, in up to 20% of colorectal cancers, and are defined by mutations
in mismatch repair (MMR) genes [2], making the cell unable to correct DNA errors. MMR
deficiency is characterized by germline or somatic DNA alterations in MMR genes (MLH1,
MSH2, MSH6 or PMS2), leading to colorectal cancer. Most frequently, the loss of MLH1
expression leads to sporadic colorectal cancer [3]. MSI status is evaluated in early-stage
colorectal cancer and is a predictive biomarker for immunotherapy with pembrolizumab
in stage IV disease [4]. Moreover, the MSI status can provide prognostic information,
as patients with tumors that are dMMR (MSI-high) show longer survival [5], as well as
patients with proximal tumors associated with MSI [6]. In metastatic setting, MSI-H tumors
appear to behave more aggressively and have a negative impact on survival [7].

BRAF V600E mutations are downstream targets of the RAS signaling pathway and are
altered in 10% of colorectal cancer (CRC) patients; these mutations are also mutually exclu-
sive with the KRAS mutation [8]. Patients with these mutations have lower survival rates
when they are associated with MSI-low tumors, and current research approaches include
combining BRAF inhibitors with agents that block other signaling pathways. Although
BRAF inhibitors are effective treatments in BRAF mutant melanoma, this approach has
been ineffective in colorectal cancer. Preclinical studies suggest that could be due to a rapid
ERK reactivation [9]. Available data suggest that BRAF mutations are associated with resis-
tance to anti-EGFR therapy [10]. Combinations with MEK inhibitors have demonstrated
improved PFS and ORR compared to cetuximab and chemotherapy and could be an option
for later lines of treatment [11].

KRAS and NRAS mutations are the most prevalent forms of genomic alteration; they
are found in 75% of CRCs and are associated with a worse prognosis and resistance to
anti-EGFR therapy [12]. Studies have shown that the presence of KRAS mutations lead to a
worse survival when anti-EGFR therapy such as cetuximab or panitumumab are added to
the chemotherapy regimen in metastatic setting [13,14].

A new biomarker is represented by KRASG12C mutation, found in 14% of non-small
cell lung cancer (NSCLC) and 3% of CRC. Two new molecules, sotorasib and adagrasib
were found to decrese the phosphorylation of ERK and promote the tumor regression in
mice bearing KRAS G12C-mutant NSCLC tumors [15,16].
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In a phase 1 study, sotorasib was evaluated in patients with refractory KRAS G12C-
mutated solid tumors (NCT 03600883). In mCRC cohort, the objective response rate
(ORR) was 7.1% and the disease control rate (DCR) was 73.8%. The median PFS in this
group was 4 months [17]. In the phase 2 CodeBreak 100 (NCT03600883) trial studied
sotorasib in patients with metastatic KRASG12C-mutant CRC who had progressed on prior
chemotherapy treatment and the ORR was 9.7% and the DCR was 82.3% [18].

The KRYSTAL-1 study (NCT03785249) is a phase 1/2 study investigating adagrasib
monotherapy in patients with advanced or metastatic solid tumors harboring a KRAS G12C
mutation and previously treated with chemotherapy and/or anti PD-L1 therapy. In the
CRC cohort, the disease control rate was 87% and progression-free survival was 5.6 months.
One of two patients achieved a partial response (duration of response, 4.2 months) [19].

Some cohorts in the CodeBreak 101 umbrella trial (NCT04185883) combine sotora-
sib with other approved agents including a PD1/PD-L1 inhibitors, an mTOR inhibitor,
MEK inhibitor, a CDK 4/6 inhibitor, a VEGF inhibitor with various chemotherapies. The
KRYSTAL-1 umbrella trial is also including similar strategies. However, adding Palbociclib
to KRAS G12C inhibitors in preclinical studies, showed significantly more suppression of
RAS pathway phosphorylation, cell-division genes, and cell-cycle progression [20].

In combinations with immunotherapy, targeted therapy or KRAS-G12C inhibitors
failed to provide significant clinical benefit due to the complexity of the signaling path-
way [21].

HER2 alterations occur in 2–6% of metastatic CRCs and confer resistance to treatment
with EGFR inhibitors [22]. Efficient treatment options targeting HER2 in other tumors
such as gastric cancer or breast cancer supports the role of HER2 as a predictive biomarker.
Anti-HER2-targeted therapy has been proven effective in this setting; for example, response
rates of up to 38% for the use of trastuzumab, TDM-1 and pan-HER2 inhibitors such as
neratinib or lapatinib [23,24] have been documented.

NTRK fusions involve three genes that encode transmembrane receptors. NTRK
inhibitors such as entrectinib and larotrectinib have been associated with tumor responses
in CRC patients [25].

PI3K mutations have been described in KRAS-wild-type CRC and are responsive
to anti-EGFR therapy [26]. Moreover, they are associated with a negative prognosis in
BRAF-wild-type tumors [27], especially those showing mutations in exons 9 and 20.

Several genomic alterations have been evaluated as predictive biomarkers for the
response to chemotherapy, such as those involving dihydropyrimidine dehydrogenase
(DPD), thymidylate synthetase (TS) expression and UDP-glucuronosyltransferase 1A1
(UGT1A1). DPD deficiency has been associated with increased fluoropyrimidine toxicity;
thus, it has potential predictive value in clinical settings. It causes a deficit in the metabolism
of thymine and uracil, resulting in accumulation in the blood and resulting in increased
toxicity. Current guidelines are conflicting in recommending DPD genotyping before
fluoropyrimidine-based therapy [28]. Currently, data on its prognostic value are limited [29].
UGT1A1 expression has been associated with increased SN-38, leading to increased toxicity
in irinotecan-based chemotherapy. Irinotecan is metabolized into the active form, SN-38,
leading to severe treatment hematologic and digestive toxicity [30]. However, UGT1A1
genotyping is not routinely applied in clinical settings [31].

TS and ERCC1 expression levels have been described as potential biomarkers in CRC.
ERCC1 is involved in the cellular response to DNA damage, and TS has been shown to be
predictive of responses to fluoropyrimidine chemotherapy. Low TS levels are associated
with improved response rates and OS in patients treated with a FOLFOX regimen [32].

Molecular profiling using liquid biopsies has been validated in various tumor types in
clinical settings and can be used to assess circulating tumor cells (CTCs), circulating tumor
DNA (ctDNA) and exosomes released by cancer cells. However, its implementation in
clinical practice remains technically challenging. Several studies have shown ctDNA to
have both prognostic and predictive value in clinical settings [33]. A reduction in ctDNA
levels of at least 80% has been associated with a favorable response rate, and variations
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in ctDNA after the initial treatment response could predict clinical relapse within several
months [34].

The main advantage of the liquid biopsy is that ctDNA captures alterations of many
genes, specifically EGFR, ERBB2, PIK3CA or MAP2K1, revealing new potential targets
for therapies such as anti-BRAF, anti-EGFR and anti-HER2 agents. In metastatic CRC,
ctDNA can represent an important tool to monitor the molecular evolution of CRC over
time, during the different courses of treatment. Quantitative and qualitative fluctuation
of molecular landscapes, revealed by ctDNA, suggesting a molecular evolution of CRC,
which would have been difficult to assess by tissue biopsy were found [35–37].

The pulsatile behavior of tumor-specific mutant clones, detected through mutation
monitoring over time on ctDNA, provided a scientific rational for the retreatment with
anti-EGFR. In CHRONOS trial (NCT03227926), the mCRC patients approaching third or
later line of treatment were assessed in ctDNA for RAS, BRAF and EGFR ectodomain status
and re-challenged with anti-EGFR therapy (panitumumab) only for the patients with a
mutation-negative status. A 30% response rate and a 63% disease control rate was reported,
demonstrating that genotyping tumor DNA in the blood of CRC patients can be used to
direct therapy and can be included in the management of advanced CRC patients [38,39].

Tumor mutational burden (TMB) in CRC is typically increased in case of microsatellite
instability (MSI) or pathogenic mutations occurring in domains of the DNA polymerases
POLE and POLD, being correlated with the response to immunotherapy. Recently, Food and
Drug Administration (FDA) approved TMB as a companion biomarker for the treatment
with pembrolizumab or dostarlimab in mCRC [40].

The golden standard for TMB evaluation is represented by tumor-tissue specimens [41],
but the intratumoral heterogeneity represents a limit for TMB evaluation, supporting the
role of ctDNA as a monitoring biomarker, being known that TMB can change under
treatment with standard cytotoxic agents in CRC [42].

In the ARETHUSA trial (NCT03519412) the metastatic-colorectal patients who failed
standard therapies undergo treatment with pembrolizumab, are tested for o6-methylguanine-
DNA-methyltransferase (MGMT) expression (IHC), then for MGMT promoter methyla-
tion [43].

The microsatellite instability (MSI) also represents a relevant biomarker for immunother-
apy sensitivity in CRC, but similarly to TMB, MSI status is subjected to both spatial and tem-
poral heterogeneity, making its monitoring through ctDNA therapeutically valuable [44].

3. Transcriptomics in mCRC: Immunoscore

The classification of colorectal cancer plays an essential role in establishing the prog-
nosis and the choice of therapeutic management for the patient. The TNM classification is
the system most commonly used to determine the progression of CRC, but a more in-depth
approach is needed to establish the prognosis and therapeutic strategy.

In 2015, the International Consortium of CRC Subtypes proposed a unified transcrip-
tomic classification that allowed the identification of four biologically distinct consensus
molecular subtypes (CMS), which subsequently allowed the classification of CRC into
four subtypes with distinct molecular and biological characteristics: CMS1 (immune to mi-
crosatellite instability), CMS2 (canonical), CMS3 (metabolic) and CMS4 (mesenchymal) [45].

3.1. Clinical and Prognostic Associations of the Consensus Molecular Subtypes
3.1.1. CMS1

Serrated polyps, precursor lesions of CMS 1 have an evolution to carcinoma charac-
terized by their high mutation rate for BRAF V600E, hypermethylation of CpG islands
with the loss of the tumor suppressor function, a defective DNA mismatch repair (MMR)
system and tumor microenvironment with lymphocytic infiltration. The hypermethylation
of or mutations in the MMR gene promoter regions can cause microsatellite instability
(MSI). MSI cancers have approximately 47 mutations per 106 bases, compared to stable
microsatellite tumors (MSS or CMS2), which have an average of 2.8 per 106 bases [46,47].
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Clinical Implications—A favorable prognosis can be given when there is a presence
of specific populations of T cells: cytotoxic CD8+ T lymphocytes, CD4+ activated Th1
type helper T cells (Th1) and natural killer cells. CMS1 tumors are associated with poorer
survival after recurrence [45,48–51].

3.1.2. CMS2

CRC in the CMS2 category belongs to the canonical adenoma–carcinoma sequence [52].
The gene expression profile is directly related to a differentiated epithelial cell phenotype
characterized by the loss of the APC tumor suppressor gene, and an activating mutation
in KRAS. This may produce high rates of chromosomal instability (CIN), because of
the loss and/or gain of large portions of chromosomes, the loss of heterozygosity and
aneuploidy [53]. In the case of CMS2 tumors, the Wnt–β-catenin and MYC signaling
pathways are active. Recently, it has been suggested that the precursor lesions of the mutant
CRC KRAS are tubular hairy adenomas with serrated features and mixed histological
variants between CMS1 and 2 [54].

Clinical Implications—The five-year overall survival for all the stages of CMS2 is the
highest of any subtype [45]. In the case of CMS2 cancers, lesions on the left side are found
more frequently (59%), which leads to higher survival rates after recurrence (35 months).
CMS1 tumors commonly occur in the right colon and lead to poor survival after recurrence
(9 months) [45].

3.1.3. CMS3

Of all the subtypes, CMS3 is most similar to normal colonic tissue in terms of gene
expression, but pathway analysis revealed that CMS3 RNA is enriched for the majority of
the metabolic pathways investigated, including glutamine, fatty acids and lysophosphatidic
metabolism. KRAS mutants are present in each molecular subtype, but they are more
prevalent among CMS3 CRC (68%) [54].

Clinical Implications—In the case of metastatic CRC, the higher frequency of KRAS
mutations among these tumors reduces standard chemotherapeutic options, as mutant
KRAS is usually an indicator of poor response to epidermal growth factor receptor (EGFR)
monoclonal antibodies (mAbs, e.g., cetuximab) [55,56]. In the case of CMS3 tumors that do
not show KRAS mutations (neither BRAF nor PIK3CA), EGFR mAbs may be useful.

3.1.4. CMS4

Experimental studies showed that premalignant human organoid cultures with the
genetic background of a serrated adenoma (BRAF V600E) exposed to a high or low level of
transforming growth factor β (TGF-β) in the microenvironment, developed into a CMS4
(mesenchymal) or CMS1 (MSI) phenotype in response to, respectively [57]. The CMS4
tumor microenvironment is proinflammatory, with the presence of Treg cells, T-helper
17 cells, myeloid-derived suppressor cells, and tumor-promoting macrophages [58]. The
presence of immunosuppressive cytokines such as IL-23 and IL-17 links CMS4 cancers
to colitis-associated colorectal carcinoma, where TP53 inactivation occurs early in the
transformation to dysplasia [49], which is distinct from CMS2 precursor lesions, where
the loss of the TP53 tumor suppressor function occurs late in the adenoma-to-carcinoma
sequence. CMS4 tumors exhibit extremely low levels of hypermutation, an MSS status, and
very high SCNA counts.

Clinical Implications—CMS4 cancers are often diagnosed in advanced stages, leading
to a poor prognosis, with the worst overall survival at 5 years (62%). For metastatic disease,
CMS4 cancers are resistant to anti-EGFR therapy, regardless of the state of the KRAS muta-
tion [58–60]. Antiangiogenic therapies, such as bevacizumab, are standard supplements for
stage IV disease [61]; however, other stromal elements, such as CAFs and pro-tumorigenic
immune cells, such as tumor-associated macrophages, are not specifically targeted.
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3.2. Immunoscore (IS)

Present (as well as past) official cancer-classification approaches (American Joint
Committee on Cancer/Union for International Cancer Control, AJCC/UICC) still take into
consideration only the tumor characteristics, (TNM staging) [62]. However, immune system
cells seem to play a special role through the components of the tumor microenvironment
(TME) and can interfere with the personalized evolution of the neoplasia [63], which
is a good explanation for studies that showed how, among patients within the same
calculated TNM stage, the clinical outcome could be very different [64–66]. It appears that,
in most solid tumors, high T-cell infiltration is associated with a decreased risk of tumor
dissemination and improved survival. Until now, this correlation had been documented in
CC, but also in melanoma and ovarian, breast, prostate and lung cancers [67].

IS was proposed as a standardized diagnostic, tissue and digital-pathology-based test,
and was considered a system for assessing tumor prognosis and the risk of recurrence
in relation to the patient’s particular immune context. It provides a personalized score
defined by the precise quantification (assessing the densities) and the identification of two
lymphocyte populations, the CD3+ and CD8+ T cells, in the tumor core and its invasive
margin (Figure 1). The densities of CD3CT, CD3IM, CD8CT, and CD8IM are reported and
converted into percentile values, determined by international validation studies [68–70].
The mean percentile for the four markers is calculated to generate the IS percentile value
and translated into a three-category scoring system: IS high, IS intermediate and IS low [67].
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As studies demonstrated, IS could constitute the first highly efficient immune-based
scoring system for cancer and a personalized biomarker with prognostic value superior to
that of the TNM staging system [71].

There are currently AI studies that propose the correlation of IS with other parameters
of the patient, for the purpose of diagnosis and a personalized therapeutic approach [72]. It
seems that, using artificial intelligence tools, additional prognostic markers (to IS) could
be detected on pathological slides, the most promising of which is CD3 (using a single
standard CD3 pathological slide) [73]. Studies showed that both tumor stroma and tumor
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cell intrinsic variables, in association with immune cell infiltrates, should be taken into
account during colorectal cancer prognosis.

In conclusion, the evaluation of cancer patients using a score that takes into account
both the molecular histopathologic subtype (as TNM does) and the specific immune context,
could be the basis for a complete future personalized approach in the evolution of CRC,
as well as for other cancer types. In the context of the complexity of the elements of the
tumor–immune interaction, AI demonstrates, once more for this topic, that it can help to
improve patient care by assisting the practitioner using a personalized approach to decision
making related to CRC patients’ diagnosis, prognosis and treatment.

4. Epigenomics in mCRC

It is well established that a significant part of the pathogenesis of cancer, including
colorectal cancer, can be explained by epigenetic modifications, such as DNA methylation
and histone modifications, and epigenetic regulators, including ncRNAs.

4.1. Histone Modifications

In non-dividing cells, the DNA is wrapped around nucleosomes, an octameric protein
structure comprising four pairs of core histones. Each histone core has an individual
tail that contains lysine and arginine residues. The tail is subject to posttranslational
modifications, which can influence gene expression. Several types of histone modifications
are involved in crucial cellular functions, such as growth and differentiation. Histone
modifications are produced through the mutation of catalyzer enzymes that intervene in
the post-translation phase. The most frequently affected are histone deacetylases (HDACs)
and histone acetyltransferases (HATs).

Reversible histone acetylation is an active process that is achieved by the addition
or removal of histone acetyltransferases (HATs) and deacetylases (HDACs). Recently,
the HATs identified mainly include P300/CBP, GNAT, MYST, P160, PCAF, and TAFII230
families. HDACs can be classified into four groups on the basis of their homology with
the original yeast enzyme sequence. Among these HDACs Class I, II and IV are zinc-
dependent, while Class III are NAD+ -dependent [74]. HATs transfer the acetyl group of
acetyl coenzyme A to the terminal of histone amino acid and relax the structure of chromatin
under the action of electric charge, which is helpful to transcription employing increased
accessibility of DNA. On the contrary, HDAC removes the terminal acetyl group of histone
lysine, making the structure of chromatin is compact, which results in the inhibition of
transcription. In general, hyperacetylation leads to increased gene expression, which is
related to the activation of gene transcription, while hypoacetylation means repression of
gene expression [75].

Since research on the role of histone modifications in the development of colorectal
cancer (CRC) began, the apparent relationship between the former and latter has changed.
It has been found that changes in histone modification patterns can impair the expression
of genes that play crucial roles in the development of colorectal cancer. Karczmarski et al.
showed that H3K27 acetylation was significantly increased in CRC samples compared
to normal tissue [76]. In addition, several reports have indicated that global histone
acetylation has been positively correlated with the tumor stage, lymphatic metastases,
poor survival, unfavorable prognoses, histological subtypes and cancer recurrence [77].
Through multivariate analysis, Hashimoto et al. found that the global upregulation of
acetylated histone H3 (H3Ac) expression in colorectal cancer tissues was related to poor
overall survival [78]. Benard et al. showed that the increased nuclear expression of
H3K56ac and H4K16ac correlated with higher survival rates for CRC patients and a lower
chance of tumor recurrence [79]. Ashktorab et al. demonstrated that the acetylation of
H3K12ac and H3K18ac was significantly increased in moderate to well-differentiated
colon cancer and decreased in poorly differentiated colon cancer. They also observed the
presence of high levels of HDAC2 in adenocarcinoma compared to those in adenoma,
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suggesting that HDAC2 expression is closely related to the progression from adenoma to
adenocarcinoma [80].

In addition, there are some studies that have indicated that certain histone acetylations
may be targeted by a specific signaling pathway [77]. For example, Liu et al. found
that RAS–PI3K signaling downregulated the level of H3K56ac, which is linked to the
transcription, proliferation and migration of cancer cells [81]. A study by Zhang et al.
found that cell-cycle-related and growth-enhancing protein (CREPT) cooperated with
P300 acetyltransferase and stimulated Wnt/β-catenin signaling to promote H4Ac and
H3K27ac expression [82]. Tamagawa et al. showed that the methylation of H3K27me2
in liver metastasis was decreased compared to that in the primary tumor, whereas the
expression of H3K36me2 showed the opposite pattern. They also demonstrated a positive
correlation between the expression of H3K37me2 and tumor size, with lower survival rates.
The expression of H3K37me2 could be used as an independent prognostic factor for CRC
patients with metachronous liver metastasis [83]. Kornbluht et al. described how lower
levels of the histone methyltransferase SEDT2 facilitated CRC development by affecting
alternative splicing [84]. Another study conducted by Qin showed that the expression
of G9A was increased in CRC tumor tissues, and the overexpression of G9A was mainly
correlated with stage, tumor differentiation, and tumor relapse in CRC [85]. The elevated
expression of lysine-specific demethylase (LSD1) observed in colon cancer tissues was
strongly correlated with advanced TNM stages and distant metastasis [86]. To date, there
has been little research on the relationship between histone phosphorylation and colorectal
cancer. Several studies have shown that histone phosphorylation aberrations are correlated
with the pathogenesis of colorectal cancer [77]. For example, a decrease in double-specific
phosphatase 22 expression (DUSP22) was observed in colorectal cancer specimens, and the
reduced expression of DUSP22 in stage IV patients was linked to poor survival rates [87].
Lee et al. revealed that the phosphorylation of histone H2AX (p-H2AX) was found to
be increased in CRC tissues and was correlated with more aggressive tumor behavior
as well as poor survival for CRC patients [88]. A recent investigation revealed that the
process of histone modification is reversible, and aberrations can be restored to an almost
normal status through epigenetic therapy. Thus, histone modification serves as a promising
therapeutic target in treating various cancers in combination with conventional treatment.
The current investigation indicated that the deregulation of HATs and histone HDACs was
involved in the progression of a range of cancers, making them attract considerable interest
from the research community. Thus, various HDACis and histone deacetylase inhibitors
(HDIs) have become favored in attempts to attenuate many human cancers, including
colorectal cancer [77].

The research undertaken concluded that the process of histone modification is re-
versible and their aberrant modification can be reestablished to a nearly normal status
through epigenetic therapy. Therefore, histone modification represents a promising thera-
peutic target in the treatment of various cancers. Histone deacetylation and methylation
inhibitors are the most promising in colorectal cancer.

Aberrant histone methylation is a frequent result of gene mutation and is associated
with the occurrence and development of cancer. The development of new cancer treatments
includes studies that are trying to identify molecules targeting histone methyltransferases or
demethylases, therefore most of the histone modifying enzymes serve as a drug target [75].

Until now, four HDACis have been approved by Food and Drug Administration
(FDA) for the treatment of patients with cutaneous T cell lymphoma and peripheral T cell
lymphoma [89,90]. The HDACis applied to colorectal cancer is expanding fast, with a wide
list of candidates that are ongoing study and clinical trials.

DNA Methylation

DNA methylation is a frequently used signaling tool that can “switch off” gene ex-
pression. The process refers to the conversion of the cytosine ring to 5-methylcytosine
by the addition of a methyl group to the DNA strand. The reaction is catalyzed by DNA
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methyltransferases (DNMTs) and is reversible. The 5-methylcytosine residues are usually
positioned next to a guanine base (CpG methylation), resulting in a structure that blocks
both DNA strands. DNA methylation is present across the genome, with the exception
of certain areas where the content of CpG is high (promoter areas called CpG islands).
The methylation of CpG islands (called hypermethylation) can result in the inappropriate
silencing of genes such as tumor suppressor genes. Compared to that of normal cells, the
genome of malignant cells appears to be hypomethylated overall, but with the hypermethy-
lation of genes controlling the cell cycle, invasion, DNA repair, and other processes where
silencing would lead to the promotion of cancer. In colon cancer, hypermethylation can be
detected in the early stages [91]. This evidence is solid in the case of CRC, in which aberrant
hypermethylation has been identified in the promoter regions of essential tumor suppres-
sor genes [92], including CDKN2A (in the promoters p16INK4A and p14ARF) [93,94],
MLH1 [95] and APC [96].

Hypermethylation outside the CpG islands, especially in gene bodies, appears to be
positively correlated with gene expression. Genome hypomethylation was one of the first
aberrant methylation events reported in CRC and is an early event in colorectal carcinogene-
sis. Indeed, hypomethylation has been observed in various stages of the disease, from early
adenomas to adenocarcinomas and metastases, with a linear correlation between the degree
of demethylation and the stage of the disease [97]. Because the overall loss of DNA methyla-
tion has also been described during normal aging and senescence, its role in carcinogenesis
(and, therefore, as an independent risk factor) is the subject of an ongoing debate. However,
DNA methylation has been thought to be the missing link that explains why cancer is an
age-related disease [98]. In general, the hypomethylation of DNA at three specific sites
has been linked to proto-oncogene activation in CRC, including in the promoter regions,
which may lead to the loss of gene imprinting (e.g., IGF2) [99] or the direct activation of
proto-oncogenes (for example, MYC and HRAS) [100] and distant regulatory regions, such
as super intensifiers and antisense promoters located downstream in certain repetitive
elements (such as long intercalated element 1 (LINE-1)), whose expression is reduced to
evolutionary silence under normal physiological conditions [101]. Because up to 17% of
the human genome consists of LINE-1 elements, their hypomethylation has been used
as a surrogate for global DNA hypomethylation and is associated with early-onset CRC
and poor prognosis, making LINE-1 a potential biomarker [102]. These LINE-1 elements,
if activated by hypomethylation, can also function as retrotransposons through a “cut
and paste” mechanism, inserting themselves into distant fragile places (unstable genomic
regions) and leading to genomic instability. Consequently, LINE-1 hypomethylation is
inversely correlated with MSI and the CpG island methylator phenotype (CIMP) [103].

Nowadays, it is accepted that, beside genetic mutations, epigenetic mechanisms, such
as aberrant DNA methylation, are involved in every step of cancer development and pro-
gression. The old methods cannot predict the prognosis of particular cases, but for clinicians
it is important to be able to accurately know which patient is at high risk for recurrence
and benefit from chemotherapy and to which chemotherapy. In consequence, it is essential
to find novel biomarkers that would help clinicians in the decision-making process in the
management of patients. Different technologies, such as methylation microarrays and next
generation sequencing, helped in the advancement of our understanding of epigenetic
events. Epigenetic signatures, for example, neoplasm-specific panels of methylated genes
or specific miRNAs profiles, represent the future in the early diagnosis and prognosis
prediction of CRC patients [36,104].

4.2. miRNA

MiRNAs are small non-coding RNAs that originate in larger transcripts and have
a role in messenger RNA (mRNA) regulation in the cytoplasm [105,106]. MiRNAs have
multi-target potential; for instance, they are able to target a single miRNA by inducing
translational repression. Additionally, miRNAs can undergo mRNA cleavage and conse-
quent decay, which can target up to 200 mRNAs or hundreds of target genes, followed by
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a lower expression of the protein levels, while different miRNAs can modulate the same
mRNA target [107]. They are highly stable molecules, with relatively high specificity in
cells and tissues, and are easily determined in various biological samples from tissues to
saliva, serum, circulating exosomes and feces. They have emerged as good non-invasive
biomarker candidates for the monitoring of metastatic disease or the prediction of the
response in colorectal cancer [106]. MiRNAs are involved in different molecular pathways
of the carcinogenesis of colorectal cancer such as the Wnt/β-catenin, TGF-β and EGFR path-
ways or epithelial-to-mesenchymal transition (EMT), and are correlated with the evolution
of metastatic disease or with the efficacy of systemic treatments.

• WNT/β-catenin pathway

The dysregulation of the Wnt/β-catenin pathway is involved in CRC carcinogenesis
from an early stage, through the upregulation of the expression of Wnt target genes via
β-catenin [108].

The crosstalk between miRNAs and the Wnt/β-catenin pathway was demonstrated,
on the one hand, by miRNAs that activate/inhibit the canonical Wnt pathway and, on
the other hand, by the activation of the Wnt pathway, which increases the expression of
miRNAs. The regulatory effect of miR-224 on GSK3β and SFRP2 genes is followed by the
activation of Wnt/β-catenin signaling and the nuclear translocation of β-catenin [109].

The suppression of miR-224 can restore the expression of SFRP2 and GSK3β and
suppress Wnt/β-catenin-mediated cell metastasis and cell proliferation. The Wnt pathway
can also stabilize β-catenin in colorectal cancer, thereby modulating the symmetrical cell
division of cancer stem cells (CSCs), enhancing the initiation and progression of CRC. Snail
is an epithelial–mesenchymal transition (EMT) inducer that regulates the symmetrical cell
division of cancer stem cells (CSCs) and enhances the expression of microRNA-146a (miR-
146a) through the β-catenin–TCF4 complex. MiR-146a maintains Wnt activity and directs
symmetrical division by targeting NUMB to stabilize β-catenin. The miR-146a–NUMB axis
was demonstrated as being able to regulate the Wnt pathway in colorectal cancer stem cells
(CRCSCs), rather than the Notch pathway, and inhibiting Wnt activity has a similar effect on
MEK inhibition. Interference with the Snail–miR-146a–β-catenin loop by inhibiting MEK or
Wnt activity reduces the symmetrical division of CRCSCs, attenuating the tumorigenicity,
and the high-Snail–low-NUMB profile has been correlated with cetuximab resistance and a
poorer prognosis in colorectal cancer [110].

• EGFR pathways

Mutations in the PIK3CA gene are associated with an increase in the severity of
disease and worse clinical outcomes. PI3K/AKT signaling is involved in CRC, with a
frequency of 15–20%, and can be mediated by miR-126, which mediates a reduction in
p85β followed by a reduction in phosphorylated AKT levels in cancer cells, suggesting a
deficiency in PI3K signaling [111,112]. Src inhibition reduces the interaction between Src
and p85, subsequently decreasing Akt-dependent signaling. It was found that mutations
in the miR-520a- and miR-525a-binding sites in the 3′UTR of PIK3CA could improve the
sensitivity of CRC cell lines to an inhibitor of Akt-dependent signaling, saracatinib [113].
KRAS mutations are present in 30–60% of all CRC cases and mediate primary resistance
to anti-EGFR-targeted therapy [114]. Some miRNAs, such as let-7 [115], miR-18a* [116],
miR-30b [117], miR-143 [118] and miR-145 [119], have been shown to be tumor suppressors
(since they inhibit KRAS expression) and potential biomarkers for predicting favorable
responses to anti-EGFR therapy.

• TGF-β signaling pathway

The transforming growth factor-beta (TGF-β) superfamily plays key roles in tissue
maintenance, particularly in the context of inflammation and tumorigenesis, by modulating
cell growth, differentiation and apoptosis. It was estimated that 30% of CRC cases showed
mutations in the TGF-β type 2 receptor (TGF-βR2) [120,121]. TGF-β is activated by a
protease and binds to its receptors (TGF-βR type I and II), mediating the triggering of its



Cancers 2022, 14, 4834 11 of 45

pathway through the phosphorylation of Smad. This complex is further translocated to
the nucleus, and it modulates the expression of transcriptional factors (Snail, ZEB and
Twist). Mismatch repair deficiency influences TGF-β receptor type 2 (TGFBR2) mutations
and generates colorectal cancers (CRCs) with microsatellite instability, which is correlated
with better survival rates. On the other hand, the loss of SMAD4, a transcription factor
involved in the signaling of the TGF-β superfamily, promotes tumor progression and
SMAD4-deficient CRC, and is linked to short survival for patients [122]. Several miRNAs,
such as miR-21, miR-301a and miR-106a, have been reported to target the TGF-β/Smad
signaling pathway, inducing stemness or cancer invasion and migration in CRC [123–125].
Conversely, the downregulation of the expression of miR-25 in CRC cell lines can promote
SMAD7, an inhibitor of the TGF-β signaling pathway, enhancing cancer proliferation and
the migratory ability of tumor cells [126].

• Epithelial-to-mesenchymal transition (EMT)

Some miRNAs have been described as key regulators of this EMT process in CRC. The
expression of the miR-34 family is promoted by p53, and the loss of miR-34a expression has
been associated with EMT through the induction of the EMT transcription factor Snail [127].
MiR-29c has been demonstrated to be downregulated in metastatic CRC, and it was corre-
lated with significantly lower patient survival. Importantly, the forced hyperexpression
of miR-29c inhibits cell migration and invasion in vitro and metastasis in vivo, which is
associated with its suppression of the AKT/GSK3β/β-catenin and ERK/GSK3β/β-catenin
pathways [128]. A higher level of miR-200c was observed in liver metastasis and is specif-
ically associated with the hypomethylation of the miRNA gene’s promoter [129]. The
Wnt/β-catenin pathway was also shown to activate miR-150, which targets EMT in CRC
by inhibiting CREB signaling [130].

4.3. MiRNAs as Potential Biomarkers in CRC

Tumor tissue from the surgical resection of primary tumors or metastasis can be an
important source for finding CRC-related miRNAs. Various miRNAs have been reported to
be upregulated or downregulated in CRC tumor specimens from patients, which suggests
their association with the prognosis and response to the anticancer drugs of the patients.
It is known that oncogenic miRNAs (oncomiRs) and tumor suppressor miRNAs have
different expression during the development and progression of CRC.

• miRNAs as prognostic biomarkers for CRC

There are some tissue-specific signatures of miRNAs that have been reported as
prognostic biomarkers, but more work is necessary to establish the value of miRNAs as
prognostic tools for guiding the treatment of CRC patients. Many miRNAs have been
found to be upregulated or downregulated in CRC cell lines in tumor specimens from
patients, suggesting their association with patients’ prognosis and the prediction of the
response to anticancer drugs. Oncogenic miRNAs and tumor suppressor miRNAs are
differentially expressed during the development and progression of CRC, and this miRNA
expression in CRC is regulated in a stage-specific manner [114]. Therefore, the order
of miRNA regulation during CRC progression may suggest the disease prognosis and
predict the treatment response. The miR-17/92 cluster (also known as ‘oncomiR-1′) is very
often amplified in CRC, and its members (miR-17, miR-18a, miR-20a, miR-19a, miR-19b-1
and miR-92a-1) are described as having oncogenic roles. The mir-17 and TNM staging
systems are significant but independent prognostic biomarkers in CRC patients [131].
Other miRNAs were shown to regulate multiple targets to drive CRC progression (PTEN
by miR-19a and miR-19b-1; BCL2L11 by miR-19b-1, miR-19a, miR-20a and miR-92; E2F1
by miR-20a and miR-17; TGF-β receptor 2 by miR-20a and miR-17 [132–135]). A high
level of miR-21 in tumor specimens was shown to be correlated with distal metastasis
in CRC patients [136]. Shybuia et al. reported on a cohort of 156 CRC patients with a
high level of miR-21 and showed there was a correlation between liver metastasis and
venous invasion [137]. A signature including increased miR-21, miR-93 and miR-103 was
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reported to be correlated with liver metastasis in CRC cases [138]. Additionally, miR-
29a was reported to be a metastasis-promoting factor that targets the suppressor gene
KLF4, upregulating matrix metalloproteinase 2 and downregulating E-cadherin [139]. A
significant limitation of evaluating miRNAs in archival tumor tissues is heterogeneity
(differences between the primary tumor and different metastatic sites). Therefore, detecting
miRNA expression from human fluids may be preferable for predicting prognoses in the
clinical setting. In this regard, there have been reports on the detection of three types of
miRNA: circulating miRNAs (serum/plasma), fecal-based miRNAs and miRNAs in CRC-
derived exosomes. Several circulating miRNAs have been evaluated for use as prognostic
markers in CRC. A recent study revealed that a panel of miRNAs isolated from serum
(let-7g, miR-21, miR-31, miR-203, miR-92a and miR-181b) was reported to have value as a
prognostic marker in CRC, with 93% sensitivity and 91% specificity [140]. A high level of
miR-141 in the plasma was reported as an independent prognostic factor in advanced CRC,
predicting poor survival [141]. The plasma levels of miR-24, miR-320a and miR-423-5p
were evaluated for the prediction of post-surgery metastasis in CRC patients, and high
levels have promising potential to serve as novel biomarkers. Moreover, the sensitivities
of miR-24, miR-320a and miR-423-5p were 77.78%, 90.74% and 88.89%, respectively [142].
MiRNAs are stable enough for detection in stool samples because they are protected in
exosomes. Moreover, due to the direct contact of the stool with the lumen of the colon,
molecular changes in CRC are easier to detect from fecal matter than from the blood [143].
Eight miRNAs (miR-9, miR-127-5p, miR-138, miR-29b, miR-143, miR-222, miR-146a and
miR-938) had lower expression in the stools of patients with colon cancer, which was more
pronounced in the later TNM stages [144]. miR-135b was found to be higher in CRC than
in adenoma, with a specificity of 68% (Table 1).

Tumor-derived exosomes are known to be mediators of oncogenic transformation
through the transfer of mRNAs, miRNAs and proteins during tumorigenesis [145]. The
elevated expression of the exosomal miR-17-92a cluster was found to be correlated with
recurrence in late-stage CRC patients. Additionally, an elevated exosomal level of miR-19a
in the serum samples of CRC patients was reported to be correlated with poor progno-
sis [146]. A recent report has demonstrated an enrichment of the exosomal cargo of miR-328
from CRC patients’ plasma samples collected from mesenteric veins, when compared
to peripheral veins, indicating a possible role of miR-328 in the development of liver
metastases [147].

Table 1. miRNAs from tissue specimens, from free circulating/exosome cargo in the serum/plasma and
from fecal samples suggested to have prognostic value in patients with metastatic colorectal cancer.

Type of Sample miRNA Method of Detection Correlation with Clinical Outcome Ref.

Tissue specimen

miR-15a/miR-16 qRT-PCR

Downregulation correlated with an
advanced TNM stage, poor histologic grade,
lymph node metastasis, and unfavorable OS

and DFS

[148]

miR-21 In situ hybridization

High expression correlated with poor
survival and poor therapeutic outcomes;

miR-21 regulates the expression of ITGb4,
PDCD4, PTEN, SPRY2 and RECK

[149]

miR-106a qRT-PCR Downregulation correlated with
unfavorable OS [150]

miR-132 qRT-PCR
Downregulation correlated with

unfavorable OS and the development of
liver metastasis

[151]
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Table 1. Cont.

Type of Sample miRNA Method of Detection Correlation with Clinical Outcome Ref.

miR-150 qRT-PCR, In situ
hybridization

Low expression associated with longer OS;
high expression associated with

unfavorable outcomes in patients treated
with 5-FU-based chemotherapy

[152]

miR-181a qRT-PCR
Low expression associated with poor PFS in
patients with wild KRAS treated with EGFR

inhibitors
[153,154]

miR-188-3p Level 3 Illumina (from
TCGA database)

High expression correlated with metastatic
disease; lower OS and lower expression are

correlated with BRAF status
[155]

miR-195 qRT-PCR
Low expression associated with lymph

node metastasis and an advanced tumor
stage

[156]

miR-199b qRT-PCR and miRNA
microarray

MiR-199b regulates the SIRT1/CREB/KISS1
signaling pathway, and high expression is

associated with longer survival
[157]

miR-215 qRT-PCR High levels associated with poor overall
survival [158]

miR-218 qRT-PCR High miR-218 expression associated with
the response to the first-line 5-FU treatment [159]

Circulating
miRNAs—

serum/plasma

miR-21 qRT-PCR Lower serum levels correlated with higher
local recurrence [160]

miR-23b qRT-PCR
Low plasma levels correlated with a shorter

recurrence-free survival time and poorer
overall survival

[161]

miR-139-5p qRT-PCR High serum levels correlated with tumor
recurrence and metastasis [162]

miR-141 qRT-PCR High plasma levels correlated with poor
prognosis [141]

miR-155 qRT-PCR
High serum levels correlated with tumor

differentiation, regional and distant
metastasis, and the clinical TNM stage

[163]

miR-183 qRT-PCR
High plasma levels associated with regional

and distant metastasis and tumor
recurrence

[164]

miR-203 qRT-PCR High serum levels associated with short
survival and metastasis [165]

miR-218 qRT-PCR
Low serum levels associated with the TNM
stage, lymph node metastasis (LNM) and

differentiation
[166]

miR-221 qRT-PCR High plasma level is a prognostic factor for
poor overall survival [167]

miR-885-5p qRT-PCR
miRNA microarray

High serum levels correlated with poor
prognosis, regional and distant metastasis [168]

miR-122

miRNA microarray

High plasma levels correlated with higher
grading, and higher miR-200a, miR-200b
and miR-200c levels were associated with

increasing severity of the recurrence in
metastatic CRC patients

[169]
miR-200a

miR-200b

miR-200c
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Table 1. Cont.

Type of Sample miRNA Method of Detection Correlation with Clinical Outcome Ref.

Exosomes from
serum/plasma

let-7a

qRT-PCR
TaqMan

Upregulated serum levels are correlated
with recurrence

[170]

miR-21
miR-23a
miR-150
miR-223

miR-1246
miR-1229

miR-203 qRT-PCR Upregulated serum levels are correlated
with recurrence [171]

miR-548c-5p

qRT-PCR
miRNA microarray

Downregulated serum level associated with
increased risk of liver metastasis and later

TNM stage
[172,173]

miR-638
miR-5787
miR-8075

miR-68869-5p

Fecal samples

miRNA signature

qRT-PCR High miRNA signature associated with
reduced DFS and OS

[174]
miR-223/miR-222
miR-92a/miR-222
miR-16/miR-222

miR-20a/miR-222

miRNA panel miRNA microarray,
qRT-PCR

12 upregulated miRNAs (miR-7, miR-17,
miR-20a, miR-21, miR-92a, miR-96,

miR-106a,
miR-134, miR-183, miR-196a, miR-199a-3p

and miR-214) and 8 downregulated
miRNAs (miR-9, miR-29b, miR-127-5p,

miR-138, miR-143, miR-146a, miR-222 and
miR-938) were found to differentiate TNM
stages with high sensitivity and specificity

[142]12 upregulated

8 downregulated

PFS—progression-free survival; OS—overall survival; DFS—disease-free survival.

4.4. MiRNAs for Predicting the Response to Systemic Therapy in mCRC

There is a strong research interest in designing a miRNA signature to predict a more
personalized response to systemic anticancer treatments for CRC, with fewer adverse
effects. The potential use of miRNAs as biomarkers in tissues or other human fluids to
predict the response to drug therapies (capecitabine/oxaliplatin cytotoxic chemotherapy
and antiangiogenic or anti-EGFR-targeted therapy) in CRC patients has been reported by
various studies (Table 2). In metastatic CRC settings, the new options are to identify the
most efficient regimens and to identify the order of the application of different regimes
to prolong the survival of the patients. It was found that some miRNAs were linked to
a favorable response to anti-EGFR therapy, and other miRNAs are correlated with poor
prognoses with these therapies for mCRC. The most studied miRNA was let-7, which
targets the mutant KRAS and is found in KRAS-mutated tumors, and a high level of let-7
is a predictive factor for a favorable response to anti-EGFR therapy [175]. MiR-7 targets
EGFR, and a high expression of miR-7 is predictive of an unfavorable response to anti-
EGFR therapy [176]. The efficacy of anti-EGFR monoclonal therapy is also associated with
the KRAS/BRAF status and how KRAS/BRAF-wild-type patients respond to anti-EGFR
therapy. In some studies on metastatic CRC patients, it was found that low expression of
miR-529 and also of miR-181a was correlated with a lack of response to anti-EGFR therapy
with cetuximab or panitumumab [177], and a predictive signature in tumors with wild-type
or mutant KRAS for the cluster let-7c/miR-99a/miR-125b was described, where high levels
were correlated with a longer PFS and OS in patients treated with anti-EGFR therapy [178].
The levels of miRNAs in human fluids (serum, plasma and circulating exosomes) or stools
are also correlated with the response to therapy in mCRC. It was reported that a strong
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response to anti-VEGF (bevacizumab) therapy combined with cytotoxic therapy was related
to decreased circulating levels of miR-126, while a high circulating level of miR-126 predicts
a lack of response to bevacizumab–chemotherapy regimens [179]. A panel of five circulating
miRNAs (miR-130, miR-145, miR-20a, miR-216 and miR-372) was reported to predict the
response to classical regimens of chemotherapy, and it may help in the selection of these
regimens [171]. Additionally, high levels of miR-155 and mir-345 are associated with
poor responses to 5-FU/leucovorin/cetuximab and irinotecan/cetuximab in mCRC [180]
(Table 2)

Table 2. MiRNAs from plasma, serum and exosomes for predicting the response to systemic therapy
in mCRC.

miRNA

Expression That
Suggests

Inadequate
Response

Treatment
Regimen Molecular Mechanism Detection Method Ref.

Tissue specimen

let-7 Low Cetuximab–
irinotecan

Let-7 targets KRAS and
improves survival only
withKRAS mutations

qRT-PCR [175]

miR-7 Low Cetuximab MiR-7 suppresses EGFR qRT-PCR [176]

miR-31* High Anti-EGFR
MiR-31* targets the mRNA

levels
of SLC26A3 and ATN1

qRT-PCR [177]

miR-143 High
Capecitabine,

oxaliplatin and
anti-EGFR

Modulation of KRAS by
miR-143

Microarray,
qRT-PCR [181]

miR-145 Low Cetuximab

Overexpression of
cetuximab-mediated

antibody-dependent cellular
cytotoxicity

qRT-PCR [182]

miR-146b-3p High Cetuximab
SP1/miR-146b-
3p/FAM107A

axis
qRT-PCR [183,184]

miR-181a Low Anti-EGFR
miR-181 expression

activated Wnt/β-catenin
signaling

qRT-PCR [181]

miR-200b Low Anti-EGFR MiR-200b inhibits ERRFI
mRNA in KRAS mutations

Microarray,
qRT-PCR [181]

miR-455-5p High
Capecitabine,

oxaliplatin and
bevacizumab

MiR-455-5p downregulates
the expression of PIK3R1 qRT-PCR, ISH [185]

miR-592 Low Anti-EGFR
MiR-592 targets the mTOR

and FOXO signaling
pathways

Microarray,
qRT-PCR [177]

miR-664-3p Low
Capecitabine,

oxaliplatin and
bevacizumab

MiR-664-3p targets
angiogenesis qRT-PCR, ISH [185]

signature
let-7c, miR-99a and

miR-125b
Low Anti-EGFR In wild-type KRAS Microarray,

qRT-PCR [178]

miR-320e High 5-FU
MiR-320e targets PP2R2C,
IRF6, ONECUT2, CMCL1

and CPEB genes
Microarray [186]
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Table 2. Cont.

miRNA

Expression That
Suggests

Inadequate
Response

Treatment
Regimen Molecular Mechanism Detection Method Ref.

Serum/plasma

miR-19a High FOLFOX

Targeted tumor suppressor
genes, including E2F1,

CDKN1A, PTEN, BCL2L11
and c-Myc

Microarray,
qRT-PCR [187]

miR-126 High Cetuximab [179]

miR-155 High Leucovorin, 5-FU
and cetuximab qRT-PCR [180]

miR-345 High Cetuximab and
irinotecan

EGFR inhibits miR-345
maturation

Microarray,
qRT-PCR
TaqMan

[181,182]

miR-106a, miR-484
and miR-130b

miR-27b, miR-148a
and miR-326

High 5-FU and
oxaliplatin

Oncogenic miRNAs
upregulated in metastatic

disease
qRT-PCR [183]

Exosomes

Panel
miR-100, miR-92a,
miR-16, miR-30e,
miR-144-5p and

let-7i

Low Oxaliplatin Targets of ATG4B, BCL2,
CCNJ and FUBP1 qRT-PCR [184]

miR-92a-3p High 5-FU and
oxaliplatin

CAF-derived exosomes
transfer

miR-92a-3p, enhancing cell
stemness, EMT, metastasis

and chemoresistance

qRT-PCR [185]

Panel
miR-21-5p,
miR-1246,

miR-1229-5p,
miR-135b,

miR-425 and
miR-96-5p

High 5-FU and
oxaliplatin

Targets of the PI3K–Akt
pathway, FOXO pathway
and autophagy pathway

qRT-PCR [186]

miR-125b High mFOLFOX6

Exosomal miR-125b has
been

correlated with
chemoresistance

qRT-PCR [187]

4.5. LncRNA

LncRNAs represent a type of ncRNA implicated in transcriptional processes and
function in a similar way to positive or negative regulators. These small molecules can
influence many biological processes such as cell proliferation, apoptosis, angiogenesis and
stem cell self-renewal. Additionally, they can directly interact with mRNAs and regulatory
protein complexes. In recent years, these molecules have been a major subject in cancer
research because they can influence all the stages of cancer development [188,189]. In this
review, we try to summarize the involvement of lncRNAs in metastatic CRC and some
potentially therapeutic targets.

1. RP11 expression in CRC cells seems to correlate with lymph node metastasis and the
advanced TNM stage, suggesting that this molecule can be a strong predictor of CRC
metastasis and prognosis. Additionally, the upregulation of RP11 by m6A regulation
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can trigger the migration, invasion and EMT of CRC cells via the post-translational
upregulation of the EMT-promoting TF Zeb1 [190].

2. SATB2-AS1 is a colorectal-specific lncRNA expressed in colorectal tissues and CRC
cells that inhibits tumor metastasis and regulates the immune response by activating
SATB-2 in CRC. SATB2-AS1 downregulation seems to be due to DNA hypermethyla-
tion and histone H3K4me3 loss in the promoter region. Low levels of this lncRNA
are correlated with the tumor invasion depth, lymph node metastasis and the TNM
stage. Additionally, the gene signatures of the hallmark epithelial–mesenchymal
transition, hallmark inflammatory response and hallmark interferon-gamma response
were enriched in patients with low SATB2-AS1 expression. Overall, low SATB2-AS1
expression was associated with poor survival, and this study suggests that SATB2-AS1
and SATB2 may be novel biomarkers and promising therapeutic targets in CRC [191].

3. LINC00659 expression in CRC is associated with poor prognosis. This study revealed
higher levels of LINC00659 in CAF-exos than in NF-exos, which are transmitted to
CRC cells and act through upregulating ANXA2 and increasing cell proliferation,
migration and invasion [192].

4. MALAT1 is another lncRNA that promotes CRC’s aggressiveness by regulating FUT4-
associated fucosylation and the PI3K/Akt/mTOR pathway. In this study, we demon-
strated that exosomes containing MALAT1 contributed to metastasis and the invasion
of CRC cells via targeting miR-20b-5p, and targeting exosomal MALAT1 could attenu-
ate the PI3K/AKT/mTOR pathway in CRC [193].

4.6. circRNA

As they have regulatory roles, circRNAs have maintained similar structures and
roles during biological evolution [194]. CircRNAs are circular-shaped RNA transcripts,
and they are produced through “back-splicing”: the ligation of the 3′ and 5′ ends of a
linear RNA. This process can be induced by intron pairing, intron lariat formation and
the dimerization of proteins. The result of “back-splicing” is a covalent loop. CircRNAs
are involved in miRNA sponging, and they mediate the up- or downregulation of the
expression of one or multiple targets of a miRNA. Furthermore, circRNAs can influence
the translation of ceRNA transcripts [195]. Other identified roles of circRNAs include
regulating proteins’ interactions and their ability to change their function and be translated
into proteins, and the “back-splicing” of a pre-mRNA can interact with mature mRNA
production [196]. CircRNAs are known to play critical roles in a cell’s cytoplasm and its
protein interactions [197]. The intracellular circRNA level is mainly modulated through
exosome removal [198]. All ncRNAs, including circRNAs, can leave the cell and interact
with other cells through bodily fluids. They reach the target cells via a hormone-like
mechanism that includes autocrine (a cell signals to itself), paracrine (induces changes
in nearby cells) and endocrine (signals are carried to target cells in distant parts of the
body) communication [199]. Exosomes (diameter of 30–160 nm), as a type of extracellular
vesicles, can mediate the communication between two cells. This pathway is extremely
controlled and well-studied. They are released into the bloodstream attached to protein and
lipid complexes or inside extracellular vesicles and are, thus, protected against enzymatic
activity such as that of exonucleases and ribonucleases. Thus, circRNAs are stable and have
sufficient half-lives in body fluids. Exosomes contain different types of genetic material such
as RNA (non-coding RNAs and messenger RNAs) and DNA, and other molecules such
as proteins and lipids. Their surfaces contain proteins including major histocompatibility
complex I and II, integrins, CD9, CD63 and CD81, and they facilitate the delivery of
exosomes to target cells [200]. Because it reflects tumor features, the circRNA information
that can be found in exosomes is specific. CircRNAs are also involved in tumoral anchorage-
independent growth, invasion and the migration of colon cancer. Having the necessary
characteristics to become an ideal biomarker for cancer diagnosis and prognosis, circRNA
is tissue-specific and shows stable levels in bodily fluids such as tissue samples, saliva and
blood [201].
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4.6.1. Candidate Prognostic Biomarkers in Metastatic CRC

Following changes in the expression of cell-junction proteins (E-cadherin) and mes-
enchymal proteins (N-cadherin, fibronectin and vimentin), epithelial cells lose their polarity
and anchorage and become mobile. This process, known as EMT, is associated with metasta-
sis and is activated through the modulation of signaling pathways by transcription factors
such as ZEB1 [202]. CircRNAs also act along with transcription factors, and together,
they regulate EMT. The increased level of hsa_circ_0001178 found in CRC cells increases
ZEB1 expression, and, in addition to sponging miR-382/587/616, this increases N-cadherin
expression [203]. Circ_ABCC1 and hsa_circ_0005075, which are blood- and tissue-based,
modulate the Wnt/β-catenin pathway and regulate EMT. The alteration of their expression
is associated with invasiveness and distant metastases [204–206]. CircCCDC66 is a well-
known circRNA that can sponge numerous miRNAs that target key oncogenes in CRC.
Elevated circCCDC66 expression leads to the derepression of certain tumor suppressor
miRNAs (that target MYC, EZH2, YAP1 and DNMT3B) [207]. CircCCDC66 is a potential
prognostic biomarker for metastatic CRC [207] (Table 3).

Table 3. Proposed prognostic biomarkers in metastatic colorectal cancer.

circRNA Blood/Tissue-
Based

CircRNA’s
Expression Level

Target Pathway/
Target miRNA Biological Function

1

circ_0122319,
circ_0087391,
circ_0079480

[208]

Tissue Increased - Promotes CRC metastasis

2 circ_ABCC1
[204] Blood (plasma) Increased Wnt/β-catenin

pathway

Promotes an advanced CRC
stage with the involvement

of the lymph node
and distant organs

3 circ-0104631 [209] Tissue Increased - Promotes lymph node and
distant metastasis

4 circCAMSAP1
[210] Tissue Increased MiR-328-5p Promotes an advanced

TNM stage

5 circCDC66 [207] Tissue Increased -
Promotes cancer cell

proliferation, migration and
metastasis

6 circCSNK1G1
[211] Tissue Increased MiR-455-3p

Promotes aggressive cell
proliferation, migration and

distant metastasis

7 circFADS2 [212] Tissue Increased -
Regulates cancer cell

proliferation, invasion, EMT
and metastasis

8 circ-FBXW7 [213] Tissue Decreased
NEK2, mTOR and

PTEN signaling
pathways

Controls tumor cell
metastasis, stress response

and immune functions

9 circHIPK3 [214] Tissue Increased MiR-7 Promotes an advanced
TNM stage

10 circHUWE1
[215] Tissue Increased MiR-486

Promotes lymphovascular
invasion, lymph node
metastasis and distant

metastasis
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Table 3. Cont.

circRNA Blood/Tissue-
Based

CircRNA’s
Expression Level

Target Pathway/
Target miRNA Biological Function

11 circ-ITGA7 [216] Tissue Decreased
Suppressing

RREB1 via Ras
pathway

Promotes lymph node
metastasis, distant

metastasis and an advanced
TNM stage

12 circLONP2 [217] Tissue Increased MiR-17 Promotes CRC metastasis

13 circMBOAT2
[218] Blood Increased MiR-519d-3p Promotes cell proliferation,

invasion and metastasis

14 circ-NSD2 [219] Tissue increased MiR-199b-
5p/DDR1/JAG1

Promotes the migration,
invasion and metastasis of

CRC cells

15 circ-NSUN2 [220] Tissue Increased IGF2BP2/HMGA2 Promotes CRC metastasis

16 circPPP1R12A
[221] Tissue Increased

Activating
Hippo-YAP

signaling pathway

Promotes the proliferation
and metastasis of cancer

cells

17 circ-PVT1 [222] Tissue Increased MiR-145 Promotes CRC liver
metastasis

18 circRNA_100290
[223] Tissue Increased MiR-516b

Promotes cell growth and
metastasis in CRC, and
suppresses apoptosis

19 circRNA_101951
[224] Tissue Increased KIF3A-mediated

EMT
Promotes colon cancer
growth and metastasis

20 circVAPA [225] Tissue Increased MiR-101

Promotes lymphovascular
invasion,

lymph node metastasis and
distant metastasis

21 ciRS-7—A [226] Tissue Increased MiR-7 a Promotes lymph node and
distant metastasis

22 has_circ_0055625
[227] Tissue Increased MiR-106b-5p Promotes mCRC

development

23 hsa_circ_ 0000372
[228] Tissue Decreased

MiR-101-3p,
miR-495,

miR-485-5p

Promotes cancer
progression

24 hsa_circ_0000567
[229] Tissue Decreased - Promotes cancer-cell

proliferation and metastasis

25 hsa_circ_0001178
[203] Tissue Increased MiR-

382/587/616/ZEB1
Promotes colon cancer
growth and metastasis

26 hsa_circ_0004831
[230] Blood Increased MiR-4326 Promotes advanced CRC

evolution

27 hsa_circ_0005075
[205,206] Tissue Increased Wnt/β-catenin

pathway Promotes CRC metastasis

28 hsa_circ_0007534
[231,232] Blood Increased - Promotes progression to

metastatic stage

29 hsa_circ_0014717
[233] Tissue and plasma Decreased

Upregulates the
expression of cell-
cycle-inhibitory

protein p16

Promotes lymph node
metastasis and distant

metastasis

30 hsa_circ_0026416
[234] Tissue and plasma Increased MiR-346/NFIB Promotes colon cancer

growth and distal metastasis
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Table 3. Cont.

circRNA Blood/Tissue-
Based

CircRNA’s
Expression Level

Target Pathway/
Target miRNA Biological Function

31 hsa_circ_0079993
[235] Tissue Increased MiR-203a-3p.1 Promotes CRC metastasis

32 hsa_circ_0136666
[236] Tissue Increased MiR-383

Promotes metastasis in the
lymph nodes and distant

metastasis

33 hsa_circ_100876
[237] Tissue Increased MiR-516b

Promotes metastasis in the
lymph nodes and distant

metastasis

34 hsa_circ_101555
[238] Tissue Increased MiR-597-5p

Promotes metastasis in the
lymph nodes and distant

metastasis

35 hsa_circRNA_002144
[239] Tissue and plasma Increased MiR-615-

5p/LARP1/mTOR

Promotes metastasis in the
lymph nodes and distant

metastasis

41 hsa_circRNA_102209
[240] Tissue Increased MiR-761/RIN1

axis
Promotes colon cancer

growth and distal metastasis

4.6.2. Candidate Predictive Biomarkers in Metastatic CRC

Chemotherapy still plays a crucial role and can palliate the symptoms and prolong the
lives of advanced CRC patients. Chemoresistance occurs through various mechanisms in
almost all patients and is associated with a poor prognosis. The main mechanisms of drug
resistance include: (1). the excessive expression of ATP-binding cassette (ABC) transporters
in tumor cells causing the drug’s excretion from the cell and, thus, a dramatic decrease in
its intracellular concentration and therapeutic effect; (2). an increase in the expression of
antiapoptotic genes or the repression of the expression of tumor suppressor genes [241];
(3). increased DNA repair capacity, decreasing the effectiveness of the drug’s destruction
of the structure of DNA, and 4; the tumor microenvironment being characterized by the
presence of hypoxia and acidosis, but also fibroblasts and the neoformation of vessels,
protecting tumor cells from the action of the immune system and drugs [242]. Some studies
have analyzed the role of circRNA in the occurrence of therapeutic resistance and have
demonstrated a correlation between increased levels of their expression in neoplastic cells
and resistance to oxaliplatin, 5-FU or doxorubicin.

Laboratory-observed cell lines (HCT116-P) from patients diagnosed with CRC treated
with FOLFOX/XELOX protocols and evaluated according to the RECIST 1.1 criteria were
further exposed to ten cycles (with one cycle lasting 14 days) of 5 µM 5-FU and 0.625 µM
oxaliplatin for 48 h. The surviving cells (HCT116-R) were maintained in a drug-free
medium for 12 days and then in a medium with low concentrations of 5-FU and oxaliplatin
(3125 µM of 5-FU + 0.625 µM of oxaliplatin).

Correlated with the higher concentration of circ_0000338 in HCT116-R exosomes,
HCT116-R cells are 5.78 times more resistant to 5-FU and 2.58 times more resistant to
oxaliplatin compared to HCT116-P cells. HCT116-R are 5.78 times more resistant to 5-FU
and 2.58 times more resistant to oxaliplatin compared to HCT116-P cells [243].

The circRNA profile of chemotherapy-resistant cells is different from that of chemotherapy-
sensitive cells. Thus, an elevated level of hsa_circ_32883 was observed in HCT116-R
cells, correlating with the increased resistance to FOLFOX therapy of these cells [244].
Other circRNAs that promote 5-FU resistance are circ_0007031 [76], circ_0000504 [76],
circ-PRKDC [245] and circ0007006 [246]. By contrast, the overexpression of circDDX17 is
correlated with the increased 5-FU sensitivity of neoplastic cells [247].
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Via exosomes, circ_0005963 is transferred from oxaliplatin-resistant to sensitive cells,
producing changes in glycolysis and PMK2 expression and eventually inducing oxaliplatin
resistance in cells that were initially sensitive to oxaliplatin [248].

Hsa_circ_0079662 is overexpressed in cell lines exposed to different concentrations of
oxaliplatin that have acquired resistance to its action (HT29-LOHP, HCT116-LOHP and
HCT8-LOHP) [249]. Following the serial administration of known oxaliplatin concentra-
tions to the HCT116 and HT-29 cell lines, a dose-dependent increase in circCCDC66 is
observed. CircCCDC66 expression is necessary for cell survival during the cellular stress
caused by oxaliplatin administration, but also for the appearance of the treatment-resistant
population [250]. Circ_001680 can promote the irinotecan therapeutic resistance of CRC
cells [251].

5. Metabolomics

The gut microbiota is composed of many microorganisms, including viruses, fungi,
bacteria and archaea, that interact with the intestinal cells of the host and play multiple
roles in gut physiology and pathology [252,253]. The highest density of bacterial cells per
gram of content in the gastrointestinal (GI) tract is found in the colon (3 × 1013 cells/gram
of content), in contrast with the stomach (ten cells/gram of content) or the small intestine
(103–107 cells/gram of content), with important roles impacting nutrition and immunity.
Changes in the microbiota equilibrium could cause or perpetuate the development and
evolution of several diseases [254–257]. The intestinal microbiota is over 90% composed
of the phyla Firmicutes and Bacteroidetes, along with Proteobacteria and Actinobacteria,
and one of their functions is the production of metabolites such as vitamin B and K, as
well as hormones and other essential bioactive compounds [258–261]. In addition, the gut
microbiota is responsible for adequate enteral immune-system function and homeostasis
and, regarding GI cancer, some microorganisms are connected with carcinogenesis through
the modulation of inflammation and the production of toxic metabolites [256,258,262]. The
strong link between microbiota alterations and the appearance or progression of colorectal
cancer (CRC) is supported by the high load of microorganisms in the distal part of the GI
tract and by the preponderance of CRC cases in the context of the digestive oncological
pathology [261,263]. The term dysbiosis is defined by modifications in the protective roles
of the microbiota due to changes in dietary habits or environment [264]. Dysbiosis could
cause a disruption in the host and microbiota physiology that could result in the appear-
ance of CRC [265]. The proposed pathophysiological mechanism for this interrelation is
that dysbiosis causes inflammation that prevents the colonic epithelial cells from forming
an efficient barrier against microorganisms; therefore, bacteria can easily invade the un-
derlying tissue and promote tumorigenesis through further inflammation [261,266,267].
Scientific data indicate that species of the genera Escherichia, Enterococcus, Bacteroides and
Clostridium could increase aberrant crypt foci and thus promote carcinogenesis [268,269].
Further scientific studies reveal the role of Fusobacterium nucleatum, Helicobacter pylori, Strep-
tococcus bovis/gallolyticus, Clostridium septicum and Bacteroides fragilis as key factors in the
carcinogenesis of CRC (Table 4) [270–274].

5.1. Gram-Negative Bacteria

Fusobacterium nucleatum is a Gram-negative, obligate anaerobic bacterium that causes
an increase in the levels of polyamines (N1-acetylspermidine and N1,N12-diacetylspermine),
especially in the tumoral microenvironment, and also increases the levels of proinflam-
matory cytokines (interleukin 17F, interleukin 21 and interleukin 22), leading to higher
proliferation and invasiveness of CRC cells [275,276]. Polyamines are metabolites that
induce oxidative stress and DNA damage that accelerate carcinogenesis in CRC [277]. A
study by Ye et al. demonstrated a connection between F. nucleatum and increased lev-
els of the oncogenic interleukin 17a (IL-17a) and tumor necrosis factor-α (TNF-α), and,
furthermore, F. nucleatum inhibits T-cell and NK-cell antitumor activity [278,279].
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Escherichia coli strains have previously been linked to intestinal inflammatory diseases
and colon cancer [280]. E. coli strains are divided into the phylogenetic groups A, B1, B2 and
D; the last two most frequently possess harmful virulence factors [281]. Some strains secrete
metabolites that play important roles in CRC’s pathophysiology such as cycle-inhibiting
factor (CIF), cytotoxic necrotizing factor (CNF), cytolethal distending toxin (CDT) and
colibactin [261]. CIF, CDT and CNF are responsible for inducing cell-cycle arrest through
different mechanisms, and mutations and could play a vital role in carcinogenesis [261,281].
Colibactin is a toxic compound secreted by the phylogenetic group B2 of E. coli that
generates DNA damage, with the activation of the DNA damage checkpoint pathway and
cell cycle arrest [282]. Scientific evidence has demonstrated a potent mutagenic function of
colibactin in E. coli-infected cells in CRC [283].

Helicobacter pylori has a strain-dependent effect, and CagA-producing strains show
more virulence [281]. H. pylori enhances gastrin production, which, in turn, increases
antiapoptotic B cell lymphoma 2 protein (BCL-2) and disturbs acid production, with a
negative impact on the intestinal epithelial cell barrier [284,285]. In addition, H. pylori
stimulates the production of cytokines that are proinflammatory such as IL-1, IL-6, IL-8,
interferon-γ (IFN-γ) and TNF-α [286].

Enterotoxigenic Bacteroides fragilis colonization was discovered in precancerous and
cancerous lesions, highlighting the role of B. fragilis in the initial stages of carcinogen-
esis [261,286]. The oncogenic roles of B. fragilis are mediated through the secretion of
enterotoxins responsible for polyamine catabolism and reactive oxygen species (ROS) pro-
duction, the cleavage of E-cadherin and the overexpression of IL-17, which induce cell
proliferation and inflammation [287,288].

5.2. Gram-Positive Bacteria

Streptococcus bovis/gallolyticus antigen is a potent activator of the cyclooxygenase 2
(COX-2) enzyme, which initiates angiogenesis and suppresses apoptosis [289]. Mucosa and
stool samples of CRC patients demonstrated high numbers of S. bovis/gallolyticus, which
were strongly linked to a high expression of the proinflammatory nuclear factor κB (NF-κB)
and IL-8 mRNA [271]. The levels of Enterococcus faecalis, which are facultative anaerobic
commensal bacteria, were found to be lower in the guts of healthy controls compared with
those of colorectal patients [261,290]. E. faecalis induces DNA damage and chromosomal
instability through the production of ROS such as extracellular superoxide and hydrogen
peroxide [281,291]. Clostridium septicum is a spore-forming obligate anaerobic bacterium
that is not found in the human digestive tract under normal conditions [261]. Its viru-
lence resides in the production of α-toxin, which is hemolytic [292]. C. septicum activates
proinflammatory TNF-α production and survives in the hypoxic tumor microenviron-
ment [273,293]. In the case of CRC patients with C. septicum colonization and bacteremia,
mortality rates were discovered to be higher [294].

Table 4. Summary of pathogen mechanisms implicated in carcinogenesis.

Pathogen Mechanism Implicated in Carcinogenesis Reference

Fusobacterium nucleatum Increased levels of polyamines
Increased levels of proinflammatory cytokines [275,276]

Escherichia coli Secretion of CIF, CDT, CNF and colibactin
Induction of cell cycle arrest [261,281,282]

Helicobacter pylori

Increase in antiapoptotic B cell lymphoma 2 protein
(BCL-2) levels

Disturbance of gastric acid production
Increase in proinflammatory cytokine levels

[284–286]
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Table 4. Cont.

Pathogen Mechanism Implicated in Carcinogenesis Reference

Bacteroides fragilis
Secretion of enterotoxins
Cleavage of E-cadherin
Overexpression of IL-17

[277,288]

Streptococcus bovis/gallolyticus
Activator of COX-2

Overexpression of NF-κB mRNA
Overexpression of IL-8 mRNA

[271,289]

Enterococcus faecalis
ROS production

DNS damage
Chromosomal instability

[281,291]

Clostridium septicum Hemolytic α-toxin production
TNF-α production [273,292,293]

5.3. Microbiota as Biomarkers in Colorectal Cancer

Fusobacterium nucleatum appears to be a fundamental marker for CRC, either quan-
tified alone or combined with the colibactin-producing bacteria Clostridium symbiosum or
Clostridium hathewayi [295–297]. Measuring the fecal levels of F. nucleatum can increase
the sensitivity and specificity of fecal immunochemical testing (FIT) in detecting CRC,
compared to FIT alone [295,298]. This association demonstrates the advantages of test-
ing different complementary targets with the ultimate goal of reducing missed cancer
cases [268]. F. nucleatum could also be an important prognostic marker in CRC, as multiple
studies have highlighted an association between high tumor amounts of F. nucleatum and
decreased survival in CRC [299–301]. Various studies have shown an association between
oral microbiota, including Streptococcus and Prevotella spp., and CRC and could indicate a
possible role for the oral microbiota in CRC prognosis [302,303]. Furthermore, a positive
serological test for S. gallolyticus was associated with CRC development even 10 years after
the test [304].

6. Artificial Intelligence Methods Used in mCRC

Since 2010, the use of AI in medical disease diagnosis and treatment has grown over
the years [305,306]. AI techniques have been used with success in many contexts, including
colon polyps, adenomas, colon cancer, ulcerative colitis and intestinal motor diseases.
Although the application of AI to the diagnosis and treatment of CRC still lacks systematic
research, the continuous development of AI applications in the medical field is an indication
that AI will eventually be used for the diagnosis and therapy of CRC.

A classification of AI applications for the identification of new prediction/prognosis
biomarkers in mCRC is related to machine learning (ML) models that can be described
according to the basic features: (1) support vector machines (SVMs) that are supervised
learning models with associated learning algorithms that analyze data for classification
and regression analysis, and; (2) the artificial neural networks (ANN) usually simply called
neural networks (NNs) or neural nets, including convolutional neural network (CNN, or
ConvNet), that can be defined as regularized versions of multilayer perceptrons.

ML is divided into supervised and unsupervised based on whether the training data
is labeled or not [307].

6.1. AI Application for Developing Biomarkers in mCRC in Blood Tests and Other Tests

Xu et al. [308] 2017, used an SVM system and identified a 15-gene signature (HES5,
ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK, HTR6, GRIP2, KLRK1, VEGFA, AKAP12,
RHEB, NCRNA00152, and PMEPA1) with differentially expressed genes (DEGs) as a
predictor of recurrence risk and prognosis in mCRC patients. A new method called the
“walking pathway” was designed by Kel et al., to search for potential rewiring mechanisms
in cancer pathways due to changes in the DNA methylation status of regulatory gene
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regions (“epigenomic walking”). Researchers analyzed an extensive collection of complete
genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG
islands from a sample of the tumor and normal gut epithelial tissues of 300 patients with
colorectal cancer using the web service “My Genome Enhancer” (MGE), gene regulation
database TRANSFAC®, the signal transduction pathways database TRANSPATH®, and AI
software [309].

An artificial neural network (CP-ANN) was developed by Zhang et al., to obtain
higher sensitivity and lower cost for the detection of the BRAF gene mutation, where valine
was substituted by glutamic acid at codon 600 (V600E) in CRC. The CP-ANN achieved a
diagnostic sensitivity of 100%, specificity of 87.5%, and accuracy of 93.8% [310].

In 2014, Tutar considered that AI technology could be seen as a bridge to connect ncR-
NAs with tumor researchers [311]. In the beginning, the research was based on naive Bayes
classifiers and on ANN algorithms. In the paper [312], the authors used an ANN algorithm
to measure different expression profiles of microRNAs (miRNAs). They identified three
miRNAs (miR-139-5p, miR-31 and miR-17-92) that could predict the tumor status of stage
II CRC. Later, in 2015, Amirkhah proposed a miRNA-associated tumor prediction method
based on naive Bayes classification, called CRCmiRTar [313]. The ShrinkBayes model has
been demonstrated to have good predictive accuracy through studies with small sample
sizes or complex designs [314]. Later research activities were related to using CNN-based
methods. Xuan et al. proposed a dual-CNN-based prediction method for disease-related
miRNAs that explores the deep features of miRNA similarities and disease similarities [315].
Afshar et al. screened four CRC-specific miRNAs from a database and accurately classified
the sample data as cancerous and non-cancerous data using an ANN [316]. Using an
SVM classification model, the results from testing on 297 patients was 85% [317]. Other
researchers have used three datasets and CNN combined with adversarial training to
minimize the specific features of the dataset [318]. Cao et al. proposed a multiple instance
learning (MIL)-based, deep-learning pipeline, which made predictions at two levels: the
patch-level and whole-slide-image (WSI) level [319]. Some experiments also used machine-
learning (ML) and computer-vision (CV) techniques to identify the percentages of positive
tumor cells within tumor areas for AREG and EREG [320]. A CNN model (VGG-19) was
tested for classifying different types of pathologic CRC images [321]. In a review of AI
methods used in medical applications targeting personalized therapies for cancer, it was
shown that artificial neural networks (ANNs), logistic regression (LR) and support vector
machines (SVMs) were the preferred models [322].

6.2. AI Application in the Personalization and Precision Treatment of mCRC

The IBM Corporation, together with the Memorial Sloan Kettering Cancer Center,
developed a system called “Watson for Oncology” (WFO), an AI system that can assist
the decision of personalized treatment in mCRC. This AI system can automatically extract
medical characters from doctor records and translate them into a practical language for
learning. WFO’s recommendations are approx. 90% consistent with the guidance of the
multidisciplinary team (MTD), according to Dr. Anderson [323]. In a South-Korean trial,
the concordance between WFO and MTD increased to 88,4% [324]. Additionally, WFO
was experimented with in Tokyo University for gene-sequencing in cancer, significantly
reducing wait time [325]. Keshava et al. developed an AI model that can identify dif-
ferent subpopulations with different responses to target inhibitors, being revealed more
information about the mechanisms of resistance and pathway cross-talk [326].

AI has shown impressive performance for targeted drugs. Another AI system was
designed by Ding et al. to screen molecular markers from proteomics and transcriptomics
data. It predicted which protein products of the common up-regulated and down-regulated
genes can be secreted into blood, urine, or saliva using SVM-based classified models.

Three genes: ESM1, CTHRC1, and AZGP1 can be secreted into saliva, blood, and urine
simultaneously and are predicted as candidate biomarkers for colorectal cancer. ESM1
promotes angiogenesis; CTHRC1 is a negative regulator of collagen matrix deposition
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and AZGP1 activates the lipid degradation in adipocytes [327]. Lee et al. [328] developed
an AI model that predicts the protein-protein interactions of S100A9 with different drugs
by applying machine learning classifiers on 2D-molecular descriptors. An efficient FAST-
CORMICS RNA-seq workflow to build 10,005 high-resolution metabolic models from the
TCGA dataset was designed to capture metabolic rewiring strategies in cancer cells in
mCRC patients. The metabolic model based on RNA-seq data successfully predicts drug
targets and drugs not yet indicted for colorectal cancer. Was demonstrated that cancer-type
and patient-specific drugs can be identified if the workflow is used together with machine
learning, identifying different patient groups with different responses to drugs [329].

6.3. AI for Developing Biomarkers to Predict and Prognosticate the mCRC

Deep-learning models based on protein–protein interaction networks to diagnose CRC
metastases by selecting more effective molecular markers and algorithm parameters in a
two-stage model were designed. In the first stage, particle swarm optimization (PSO) and
differential evolution (DE) is used to optimize parameters of the support vector machine
recursive feature elimination algorithm, and a dynamic Bayesian network is then used to
predict the temporal relationship between biomarkers across two-time points. Results show
that 18 and 25 biomarkers selected by PSO and DE-based showed the same accuracy of
97.3% and 97.6% [330]. Another study combined the logistic regression model (LRM) with
an ANN system to design a mixed prediction model in which the most effective parameters
were selected by the LRM to build hybrid predictors of metastasis in mCRC [331]. A protein-
protein interaction (PPI) network was designed for these DEGs to identify the differentially
expressed genes (DEGs), and the SVM-classified gene signatures were identified.

In total, 358 DEGs were identified by meta-analysis. Based on the SVM classification
model, 40 signature genes were described to be related to the AMPK signaling pathway
(e.g., CREB1), endoplasmic reticulum (e.g., SSR3), and ubiquitin-mediated proteolysis
(e.g., FBXO2, CUL7 and UBE2D3) pathways. These genes have the potential to be used as
biomarkers for the prognosis of metastatic CRC [332].

6.4. Implementation of the Selected Predictive Models

We experimented with different machine-learning algorithms. In order to exploit the
capacity of machine-learning algorithms or algorithms that use neural networks, we used
several colorectal cancer datasets such as “Metastatic Colorectal Cancer—MSKCC, Cancer
Cell 2018”. This resource contains the data of 1134 patients aged between 20 and 80 years,
distributed by age as shown in Figure 2.
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Of these data, we used 90% for training and 10% for tests. The relevance of the features
selected and the correlations between them are presented in Figure 4.

We implemented six algorithms: (1) the naive Bayes classifier (a probabilistic classi-
fier) [333], (2) the random forest classifier (an ensemble learning method) [334], (3) the deci-
sion tree classifier (which creates the classification model by building a decision tree) [335],
(4) gradient boosted trees (an ensemble of weak prediction models) [336], (5) logistic re-
gression (models’ probability of output in terms of input) [337] and (6) SVM (supervised
learning models with associated learning algorithms) [338]. In the implementation, we
used our experience from implementing similar solutions for fake news identification [339]
and for plant identification [340].
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6.5. Predictive Model Mobile App

In recent years, many mobile applications have used the power of artificial intelligence
models to perform classification or prediction. Android applications take data from the
user, then send them to a background process to analyze them and use the model to give
an answer to the user. In our case, after collecting the data from the user with the help
of an Android application, they were sent to a web server in order to apply the currently
developed AI algorithms to the data. The application uses the client–server architecture,
where the client is the Android application and the server component is represented by
services that access the model built with the help of artificial intelligence.
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We conducted some experiments in order to improve two aspects: (1) the quality of
the used model, and (2) the speed of the model that provides answers to users. To date,
we have obtained a pilot solution of quite good quality that offers solutions in a very short
amount of time, i.e., close to real time. This solution will be further updated as the AI
algorithms are upgraded to a newer version.

6.5.1. Experiments

As previously stated, in our experiments, we implemented six algorithms: (1) the naive
Bayes classifier, (2) the random forest classifier, (3) the decision tree classifier, (4) gradient
boosted trees, (5) logistic regression and, (6) SVM. The features used can be seen in Figure 3.
Considering the values in the dataset were textual and the algorithms use a numerical input,
a dictionary solution was adopted in order to translate the text into numbers. For example,
“patient_id” 0000119 is of “age” 67, and the “chemo_exposure” value is in the lungs with
the “first_site_of_metastasis” being in the liver and peritoneum; the translated values for
the algorithms are “patient_id”: 0000119, “age”: 67, “chemo_exposure”: 1 (1 being lung),
and “first_site_of_metastasis”: 2, 3 (2 being liver and 3 being peritoneum). Aside from this
translation, the removal of negative values in the dataset was necessary in order to adhere
to the prerequisites of the machine-learning algorithms. The algorithms implemented use
the PySpark machine-learning library as well as sklearn and pandas. The classified column
is the “living_status”, meaning that the algorithms try to classify whether the respective
patient is alive or not.

6.5.2. Naive Bayes

The settings for this algorithm were smoothing = 1.0 and model = “multinomial”.
Table 5 shows the classification report, and Table 6 shows the confusion matrix. In this case,
the obtained accuracy had the lowest value from all the implemented algorithms.

Table 5. Naive Bayes classification report.

Precision Recall F1-Score Support

0 0.80 0.64 0.71 677
1 0.48 0.68 0.56 328

Accuracy 0.65 1005
Macro avg. 0.64 0.66 0.64 1005

Weighted avg. 0.70 0.65 0.66 1005

Table 6. Naive Bayes confusion matrix.

Predicted Yes Predicted No

Actual Yes 434 243
Actual No 106 222

6.5.3. Random Forest

The settings for this algorithm are maxDepth = 5, maxBins = 32,
minInstancesPerNode = 1, minInfoGain = 0.0, maxMemoryInMB = 256, impurity = “gini”
and numTrees = 20. Table 7 shows the classification report, and Table 8 shows the
confusion matrix. The obtained accuracy is very close to the highest value from all the
implemented algorithms.
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Table 7. Random forest classification report.

Precision Recall F1-Score Support

0 1.0 1.0 1.0 677

1 1.0 0.99 1.0 328

Accuracy 1.0 1005

Macro avg. 1.0 1.0 1.0 1005

Weighted avg. 1.0 1.0 1.0 1005

Table 8. Random forest confusion matrix.

Predicted Yes Predicted No

Actual Yes 677 0

Actual No 3 325

6.5.4. Decision Tree

The settings for this algorithm are maxDepth = 5, maxBins = 32, minInstancesPerNode
= 1, minInfoGain = 0.0 and maxMemoryInMB = 256. Table 9 shows the classification report,
and Table 10 shows the confusion matrix. The obtained accuracy in this case had the highest
value from all the implemented algorithms.

Table 9. Decision tree classification report.

Precision Recall F1-Score Support

0 1.0 1.0 1.0 677

1 1.0 1.0 1.0 328

Accuracy 1.0 1005

Macro avg. 1.0 1.0 1.0 1005

Weighted avg. 1.0 1.0 1.0 1005

Table 10. Decision tree confusion matrix.

Predicted Yes Predicted No

Actual Yes 677 0

Actual No 0 328

6.5.5. Gradient Boosted Trees

The settings for this algorithm were default, maxDepth = 5, maxBins = 32, minInstances-
PerNode = 1, minInfoGain = 0.0, maxMemoryInMB = 256, cacheNodeIds = False, check-
pointInterval = 10, lossType = “logistic”, maxIter = 20, stepSize = 0.1, seed = None, subsam-
plingRate = 1.0, impurity = “variance”, featureSubsetStrategy = “all”, validationTol = 0.01,
validationIndicatorCol = None, leafCol = “”, minWeightFractionPerNode = 0.0, and weight-
Col = None. Table 11 shows the classification report, and Table 12 shows the confusion
matrix. The obtained accuracy was the highest value from all the implemented algorithms.
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Table 11. Gradient boosted tree classification report.

Precision Recall F1-Score Support

0 1.0 1.0 1.0 677

1 1.0 1.0 1.0 328

Accuracy 1.0 1005

Macro avg. 1.0 1.0 1.0 1005

Weighted avg. 1.0 1.0 1.0 1005

Table 12. Gradient boosted tree confusion matrix.

Predicted Yes Predicted No

Actual Yes 677 0

Actual No 0 328

6.5.6. Logistic Regression

The settings for this algorithm are default, maxIter = 100, regParam = 0.0,
elasticNetParam = 0.0, tol = 1 × 10−6, fitIntercept = True, threshold = 0.5, thresholds = None,
probabilityCol = “probability”, rawPredictionCol = “rawPrediction”, standardization = True,
weightCol = None, aggregationDepth = 2, family = “auto”, lowerBoundsOnCoefficients = None,
upperBoundsOnCoefficients = None, lowerBoundsOnIntercepts = None, and upperBound-
sOnIntercepts = None. Table 13 shows the classification report, and Table 14 shows the
confusion matrix. The obtained accuracy is close to the highest value from all the imple-
mented algorithms.

Table 13. Logistic regression classification report.

Precision Recall F1-Score Support

0 0.97 0.99 0.98 677

1 0.97 0.94 0.96 328

Accuracy 0.97 1005

Macro avg. 0.97 0.96 0.97 1005

Weighted avg. 0.97 0.97 0.97 1005

Table 14. Logistic regression confusion matrix.

Predicted Yes Predicted No

Actual Yes 667 10

Actual No 19 309

6.5.7. SVM

The settings for this algorithm were maxIter = 100, regParam = 0.0, tol = 1 × 10−6,
threshold = 0.0, and aggregationDepth = 2. Table 15 shows the classification report, and
Table 16 shows the confusion matrix. The obtained accuracy is very close to the highest
value from all the implemented algorithms.
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Table 15. SVM classification report.

Precision Recall F1-Score Support

0 1.0 1.0 1.0 677

1 1.0 1.0 1.0 328

Accuracy 1.0 1005

Macro avg. 1.0 1.0 1.0 1005

Weighted avg. 1.0 1.0 1.0 1005

Table 16. SVM confusion matrix.

Predicted Yes Predicted No

Actual Yes 676 1

Actual No 0 328

7. Discussion

Although research has led to major advantages through new information on the driver
genes responsible for carcinogenesis and metastasis, the transcriptional and epigenetic
aberrations in this malignancy that influence many central signaling pathways have recently
aroused increased interest. The ability of treatments to alter several different molecular
pathways may have crucial implications for their efficacy. Epigenetic changes play a
decisive role in the epithelial-to-mesenchymal transition (EMT), which is an essential
phenotype for metastasis and includes DNA methylation, non-coding RNAs (ncRNAs), and
N6-methyladenosine (m6A) RNA, which are valuable biomarkers in CRCs. For ncRNAs,
a “molecular sponge effect” was described between long non-coding RNAs (lncRNAs),
circular RNAs (circRNAs) and microRNAs (miRNAs).

Many studies have focused on miRNAs as biomarkers for the following reasons:
miRNAs represent small molecules, and they can remain intact in vivo or in vitro for a long
time; extracellular circulating miRNAs are stable for at least one month [341]; miRNAs have
been detected in various tissues, and it has been demonstrated that they participate in a
variety of physiological and pathological processes [342]; in many studies, aberrant miRNA
expression was found to also play crucial roles in the response to anticancer drugs [343],
and; miRNAs change during treatment with anticancer drugs [344]. The implementation of
AI in the identification of prognostic and predictive biomarkers in mCRC represents a new
step in the progress of biomarker identification. NcRNAs play crucial roles in modulating
the resistance to molecular therapies in CRC, including oncogenes and tumor suppressors
such as miRNAs, lncRNAs and circRNAs, based on miRNA–mRNA, lncRNA–miRNA–
mRNA or circRNA–miRNA–mRNA regulatory networks through the EGFR signaling
pathway, the RAS signaling pathway and the PI3K/AKT signaling pathway (Figure 5).
In this context, ncRNAs may function as novel biomarkers for predicting the prognosis
with, efficacy of and resistance to anti-EGFR therapy in CRC. Further studies need to
investigate new therapeutic strategies based on ncRNA regulatory networks. Due to the
complexity of the molecular mechanisms and the multitude of genetic and epigenetic actors
involved in the natural history of mCRC and its treatment, the implementation of AI in
the identification of prognostic and predictive biomarkers in mCRC represents a new step
towards the progress of biomarker identification. Machine-learning (ML) and deep-learning
(DL) strategies are extremely powerful tools with which to analyze and interpret genomic
and biological data that are useful for providing prognostic and predictive information. DL
methods can be applied, together with imaging techniques, to correlate CRC molecular
features with morphological markers. Two studies showed that the CRC MSI status and
CMS transcriptional classification were more predictive than classical molecular profiling
using DL combined with infrared imaging and hematoxylin and eosin (H&E)-stained tissue
sections [345,346]. A network-based ML model was used to evaluate pharmacogenomic
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data derived from CRC organoids, identifying drug-response biomarkers linked to the
5-FU response [347]. In our study, we tried to design a predictive mobile app model and
our experiments aimed to improve the quality of the model used and the speed of the
model that provides answers to users. We obtained a pilot solution that is close to real
time in performance and that should be updated when the AI algorithms are upgraded to
newer versions.
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8. Conclusions

In recent years, artificial intelligence has been used more and more to identify col-
orectal cancer, with promising results. As observed in the experiments, AI algorithms
help to correctly classify patients with good results and can support physicians in their
daily activities.

Author Contributions: Conceptualization, C.V., S.-R.V., C.S., V.D., A.I. and P.-C.H.; writing—original
draft preparation, I.A., D.Z., D.B., F.A., E.A.D., S.A.S., L.-G.C. and F.L.; writing—review and editing,
S.-R.V., C.V., C.S., C.R.S., M.C., M.D. and D.G.C.A.; visualization, D.B. and C.S.; supervision, S.-R.V.,
C.V. and C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by EU Targeted therapy for advanced colorectal cancer patients
(REVERT), grant number 848,098.

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2022, 14, 4834 32 of 45

References
1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65,

87–108. [CrossRef] [PubMed]
2. Shibata, D.; Peinado, M.A.; Ionov, Y.; Malkhosyan, S.; Perucho, M. Genomic instability in repeated sequences is an early somatic

event in colorectal tumorigenesis that persists after transformation. Nat. Genet. 1994, 6, 273–281. [CrossRef] [PubMed]
3. Ruiz-Bañobre, J.; Roy, R.; Alustiza Fernández, M.; Murcia, Ó.; Jover, R.; Pera, M.; Balaguer, F.; López-López, R.; Goel, A.

Clinical significance of a microRNA signature for the identification and predicting prognosis in colorectal cancers with mucinous
differentiation. Carcinogenesis 2020, 41, 1498–1506. [CrossRef] [PubMed]

4. Lanza, G.; Gafa, R.; Santini, A.; Maestri, I.; Guerzoni, L.; Cavazzini, L. Immunohistochemical test for MLH1 and MSH2 expression
predicts clinical outcome in stage II and III colorectal cancer patients. J. Clin. Oncol. 2006, 24, 2359–2367. [CrossRef]

5. Liu, G.C.; Liu, R.Y.; Yan, J.P.; An, X.; Jiang, W.; Ling, Y.H.; Chen, J.W.; Bei, J.X.; Zuo, X.Y.; Cai, M.Y.; et al. The Heterogeneity
Between Lynch-Associated and Sporadic MMR Deficiency in Colorectal Cancers. J. Natl. Cancer Inst. 2018, 110, 975–984.
[CrossRef]

6. Sinicrope, F.A.; Yoon, H.H.; Mahoney, M.R.; Nelson, G.D.; Thibodeau, S.N.; Goldberg, R.M.; Sargent, D.J.; Alberts, S.R. Overall
survival result and outcomes by KRAS, BRAF, and DNA mismatch repair in relation to primary tumor site in colon cancers from
a randomized trial of adjuvant chemotherapy: NCCTG (Alliance) N0147. J. Clin. Oncol. 2014, 32, 3525. [CrossRef]

7. Jin, Z.; Sanhueza, C.T.; Johnson, B.; Nagorney, D.M.; Larson, D.W.; Mara, K.C.; Harmsen, W.C.; Smyrk, T.C.; Grothey, A.; Hubbard,
J.M. Outcome of mismatch repair-deficient metastatic colorectal cancer: The mayo clinic experience. Oncologist 2018, 23, 1083–1091.
[CrossRef]

8. Tan, C.; Du, X. KRAS mutation testing in metastatic colorectal cancer. World J. Gastroenterol. 2012, 18, 5171–5180.
9. Corcoran, R.B.; Ebi, H.; Turke, A.B.; Coffee, E.M.; Nishino, M.; Cogdill, A.P.; Brown, R.D.; Della Pelle, P.; Dias-Santagata, D.;

Hung, K.E.; et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers
to RAF inhibition with vemurafenib. Cancer Discov. 2012, 2, 227–235. [CrossRef]

10. Sinicrope, F.A.; Mahoney, M.R.; Smyrk, T.C.; Thibodeau, S.N.; Warren, R.S.; Bertagnolli, M.M.; Nelson, G.D.; Goldberg, R.M.;
Sargent, D.J.; Alberts, S.R. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a
randomized trial of FOLFOX-based adjuvant chemotherapy. J. Clin. Oncol. 2013, 31, 3664–3672. [CrossRef]

11. Kopetz, S.; Guthrie, K.A.; Morris, V.K.; Lenz, H.J.; Magliocco, A.M.; Maru, D.; Yan, Y.; Lanman, R.; Manyam, G.; Hong, D.S.; et al.
Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG
S1406). J. Clin. Oncol. 2021, 39, 285–294. [CrossRef] [PubMed]

12. Modest, D.P.; Ricard, I.; Heinemann, V.; Hegewisch-Becker, S.; Schmiegel, W.; Porschen, R.; Stintzing, S.; Graeven, U.; Arnold,
D.; von Weikersthal, L.F.; et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants:
Pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol.
2016, 27, 1746–1753. [CrossRef] [PubMed]

13. Lièvre, A.; Bachet, J.B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.F.; Côté, J.F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS
mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006, 66, 3992–3995. [CrossRef]
[PubMed]

14. Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al.
Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26,
1626–1634. [CrossRef] [PubMed]

15. Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical
KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [CrossRef]

16. Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.;
et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse
models and patients. Cancer Discov. 2020, 10, 54–71. [CrossRef]

17. Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.;
et al. KRAS G12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [CrossRef]

18. NCT03600883. A Phase 1/2, Study Evaluating the Safety, Tolerability, PK, and Efficacy of Sotorasib (AMG 510) in Subjects with
Solid Tumors with a Specific KRAS Mutation (CodeBreaK 100). Available online: https://clinicaltrials.gov/ct2/show/NCT03600
883 (accessed on 5 April 2022).

19. Ou, S.I.; Jänne, P.A.; Leal, T.A.; Rybkin, I.I.; Sabari, J.K.; Barve, M.A.; Bazhenova, L.; Johnson, M.L.; Velastegui, K.L.; Cilliers, C.;
et al. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients with Advanced KRASG12C Solid
Tumors (KRYSTAL-1). J. Clin. Oncol. 2022, 40, 2530–2538. [CrossRef]

20. Lou, K.; Steri, V.; Ge, A.Y.; Hwang, Y.C.; Yogodzinski, C.H.; Shkedi, A.R.; Choi, A.; Mitchell, D.C.; Swaney, D.L.; Hann, B.;
et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci. Signal. 2019, 12, eaaw9450.
[CrossRef]

21. Molina-Arcas, M.; Samani, A.; Downward, J. Drugging the Undruggable: Advances on RAS Targeting in Cancer. Genes 2021, 12,
899. [CrossRef]

22. Nathanson, D.R.; Culliford, A.T.; Shia, J.; Chen, B.; D’Alessio, M.; Zeng, Z.S.; Nash, G.M.; Gerald, W.; Barany, F.; Paty, P.B. HER
2/neu expression and gene amplification in colon cancer. Int. J. Cancer 2003, 105, 796–802. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://doi.org/10.1038/ng0394-273
http://www.ncbi.nlm.nih.gov/pubmed/8012390
http://doi.org/10.1093/carcin/bgaa097
http://www.ncbi.nlm.nih.gov/pubmed/32911537
http://doi.org/10.1200/JCO.2005.03.2433
http://doi.org/10.1093/jnci/djy004
http://doi.org/10.1200/jco.2014.32.15_suppl.3525
http://doi.org/10.1634/theoncologist.2017-0289
http://doi.org/10.1158/2159-8290.CD-11-0341
http://doi.org/10.1200/JCO.2013.48.9591
http://doi.org/10.1200/JCO.20.01994
http://www.ncbi.nlm.nih.gov/pubmed/33356422
http://doi.org/10.1093/annonc/mdw261
http://www.ncbi.nlm.nih.gov/pubmed/27358379
http://doi.org/10.1158/0008-5472.CAN-06-0191
http://www.ncbi.nlm.nih.gov/pubmed/16618717
http://doi.org/10.1200/JCO.2007.14.7116
http://www.ncbi.nlm.nih.gov/pubmed/18316791
http://doi.org/10.1038/s41586-019-1694-1
http://doi.org/10.1158/2159-8290.CD-19-1167
http://doi.org/10.1056/NEJMoa1917239
https://clinicaltrials.gov/ct2/show/NCT03600883
https://clinicaltrials.gov/ct2/show/NCT03600883
http://doi.org/10.1200/JCO.21.02752
http://doi.org/10.1126/scisignal.aaw9450
http://doi.org/10.3390/genes12060899
http://doi.org/10.1002/ijc.11137
http://www.ncbi.nlm.nih.gov/pubmed/12767065


Cancers 2022, 14, 4834 33 of 45

23. Bertotti, A.; Migliardi, G.; Galimi, F.; Sassi, F.; Torti, D.; Isella, C.; Corà, D.; Di Nicolantonio, F.; Buscarino, M.; Petti, C.; et al. A
molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target
in cetuximab-resistant colorectal cancer. Cancer Discov. 2011, 1, 508–523. [CrossRef] [PubMed]

24. Kavuri, S.M.; Jain, N.; Galimi, F.; Cottino, F.; Leto, S.M.; Migliardi, G.; Searleman, A.C.; Shen, W.; Monsey, J.; Trusolino, L.; et al.
HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 2015, 5, 832–841. [CrossRef] [PubMed]

25. Sartore-Bianchi, A.; Ardini, E.; Bosotti, R.; Amatu, A.; Valtorta, E.; Somaschini, A.; Raddrizzani, L.; Palmeri, L.; Banfi, P.; Bonazzina,
E.; et al. Sensitivity to Entrectinib Associated with a Novel LMNA-NTRK1 Gene Fusion in Metastatic Colorectal Cancer. J. Natl.
Cancer Inst. 2016, 108, djv306. [CrossRef] [PubMed]

26. Seligmann, J.F.; Elliott, F.; Richman, S.D.; Jacobs, B.; Hemmings, G.; Brown, S.; Barrett, J.H.; Tejpar, S.; Quirke, P.; Seymour, M.T.
Combined Epiregulin and Amphiregulin Expression Levels as a Predictive Biomarker for Panitumumab Therapy Benefit or Lack
of Benefit in Patients with RAS Wild-Type Advanced Colorectal Cancer. JAMA Oncol. 2016, 2, 633–642. [CrossRef]

27. Rosty, C.; Young, J.P.; Walsh, M.D.; Clendenning, M.; Sanderson, K.; Walters, R.J.; Parry, S.; Jenkins, M.A.; Win, A.K.; Southey,
M.C.; et al. PIK3CA activating mutation in colorectal carcinoma: Associations with molecular features and survival. PLoS ONE
2013, 8, e65479. [CrossRef]

28. Innocenti, F.; Mills, S.C.; Sanoff, H.; Ciccolini, J.; Lenz, H.-J.; Milano, G. All you need to know about DPYD genetic testing for
patients treated with fluorouracil and capecitabine: A practitioner-friendly guide. JCO Oncol. Pract. 2020, 16, 793–798. [CrossRef]

29. Merloni, F.; Ranallo, N.; Scortichini, L.; Giampieri, R.; Berardi, R. Tailored therapy in patients treated with fluoropyrimidines:
Focus on the role of dihydropyrimidine dehydrogenase. Cancer Drug Resist. 2019, 2, 787–802. [CrossRef]

30. Innocenti, F.; Undevia, S.D.; Iyer, L.; Chen, P.X.; Das, S.; Kocherginsky, M.; Karrison, T.; Janisch, L.; Ramírez, J.; Rudin, C.M.; et al.
Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol.
2004, 22, 1382–1388. [CrossRef]

31. Mathijssen, R.H.; Gurney, H. Irinogenetics: How many stars are there in the sky? J. Clin. Oncol. 2009, 27, 2578–2579. [CrossRef]
32. Shirota, Y.; Stoehlmacher, J.; Brabender, J.; Xiong, Y.P.; Uetake, H.; Danenberg, K.D.; Groshen, S.; Tsao-Wei, D.D.; Danenberg, P.V.;

Lenz, H.J. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination
oxaliplatin and fluorouracil chemotherapy. J. Clin. Oncol. 2001, 19, 4298–4304. [CrossRef] [PubMed]

33. Haber, D.A.; Velculescu, V.E. Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA. Cancer Discov.
2014, 4, 650–661. [CrossRef] [PubMed]

34. Tie, J.; Kinde, I.; Wang, Y.; Wong, H.L.; Roebert, J.; Christie, M.; Tacey, M.; Wong, R.; Singh, M.; Karapetis, C.S.; et al. Circulating
tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann. Oncol. 2015, 26,
1715–1722. [CrossRef] [PubMed]

35. Siravegna, G.; Mussolin, B.; Buscarino, M.; Corti, G.; Cassingena, A.; Crisafulli, G.; Ponzetti, A.; Cremolini, C.; Amatu, A.;
Lauricella, C.; et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectalcancer patients. Nat. Med. 2015,
21, 827. [CrossRef] [PubMed]

36. Mauri, G.; Vitiello, P.P.; Sogari, A.; Crisafulli, G.; Sartore-Bianchi, A.; Marsoni, S.; Siena, S.; Bardelli, A. Liquid biopsies to monitor
and direct cancer treatment in colorectal cancer. Br. J. Cancer 2022, 127, 394–407. [CrossRef]

37. Gabriel, E.; Bagaria, S.P. Assessing the Impact of Circulating Tumor DNA (ctDNA) in Patients with Colorectal Cancer: Separating
Fact From Fiction. Front. Oncol. 2018, 8, 297. [CrossRef]

38. Sartore-Bianchi, A.; Pietrantonio, F.; Lonardi, S.; Mussolin, B.; Rua, F.; Crisafulli, G.; Bartolini, A.; Fenocchio, E.; Amatu, A.; Manca,
P.; et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: The phase 2 CHRONOS
trial. Nat. Med. 2022, 28, 1612–1618. [CrossRef]

39. Nakamura, Y.; Yoshino, T. Clinical Utility of Analyzing Circulating Tumor DNA in Patients with Metastatic Colorectal Cancer.
Oncologist 2018, 23, 1310–1318. [CrossRef]

40. Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.;
Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors.
Clin. Cancer Res. 2021, 27, 4685–4689. [CrossRef]

41. Schrock, A.B.; Ouyang, C.; Sandhu, J.; Sokol, E.; Jin, D.; Ross, J.S.; Miller, V.A.; Lim, D.; Amanam, I.; Chao, J.; et al. Tumor
mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann.
Oncol. 2019, 30, 1096–1103. [CrossRef]

42. Pich, O.; Muiños, F.; Lolkema, M.P.; Steeghs, N.; Gonzalez-Perez, A.; Lopez-Bigas, N. The mutational footprints of cancer therapies.
Nat. Genet. 2019, 51, 1732–1740. [CrossRef] [PubMed]

43. Baraibar, I.; Mirallas, O.; Saoudi, N.; Ros, J.; Salvà, F.; Tabernero, J.; Élez, E. Combined Treatment with Immunotherapy-Based
Strategies for MSS Metastatic Colorectal Cancer. Cancers 2021, 13, 6311. [CrossRef] [PubMed]

44. He, W.Z.; Hu, W.M.; Wang, F.; Rong, Y.M.; Yang, L.; Xie, Q.K.; Yang, Y.Z.; Jiang, C.; Qiu, H.J.; Lu, J.B.; et al. Comparison of
Mismatch Repair Status Between Primary and Matched Metastatic Sites in Patients with Colorectal Cancer. J. Natl. Compr. Cancer
Netw. 2019, 17, 1174–1183. [CrossRef]

45. Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.;
Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [CrossRef] [PubMed]

46. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487,
330–337. [CrossRef] [PubMed]

http://doi.org/10.1158/2159-8290.CD-11-0109
http://www.ncbi.nlm.nih.gov/pubmed/22586653
http://doi.org/10.1158/2159-8290.CD-14-1211
http://www.ncbi.nlm.nih.gov/pubmed/26243863
http://doi.org/10.1093/jnci/djv306
http://www.ncbi.nlm.nih.gov/pubmed/26563355
http://doi.org/10.1001/jamaoncol.2015.6065
http://doi.org/10.1371/journal.pone.0065479
http://doi.org/10.1200/OP.20.00553
http://doi.org/10.20517/cdr.2018.006
http://doi.org/10.1200/JCO.2004.07.173
http://doi.org/10.1200/JCO.2008.21.2480
http://doi.org/10.1200/JCO.2001.19.23.4298
http://www.ncbi.nlm.nih.gov/pubmed/11731512
http://doi.org/10.1158/2159-8290.CD-13-1014
http://www.ncbi.nlm.nih.gov/pubmed/24801577
http://doi.org/10.1093/annonc/mdv177
http://www.ncbi.nlm.nih.gov/pubmed/25851626
http://doi.org/10.1038/nm0715-827b
http://www.ncbi.nlm.nih.gov/pubmed/26151329
http://doi.org/10.1038/s41416-022-01769-8
http://doi.org/10.3389/fonc.2018.00297
http://doi.org/10.1038/s41591-022-01886-0
http://doi.org/10.1634/theoncologist.2017-0621
http://doi.org/10.1158/1078-0432.CCR-21-0327
http://doi.org/10.1093/annonc/mdz134
http://doi.org/10.1038/s41588-019-0525-5
http://www.ncbi.nlm.nih.gov/pubmed/31740835
http://doi.org/10.3390/cancers13246311
http://www.ncbi.nlm.nih.gov/pubmed/34944931
http://doi.org/10.6004/jnccn.2019.7308
http://doi.org/10.1038/nm.3967
http://www.ncbi.nlm.nih.gov/pubmed/26457759
http://doi.org/10.1038/nature11252
http://www.ncbi.nlm.nih.gov/pubmed/22810696


Cancers 2022, 14, 4834 34 of 45

47. Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087. [CrossRef] [PubMed]
48. Sinicrope, F.A.; Foster, N.R.; Thibodeau, S.N.; Marsoni, S.; Monges, G.; Labianca, R.; Kim, G.P.; Yothers, G.; Allegra, C.; Moore,

M.J.; et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant
therapy. J. Natl. Cancer Inst. 2011, 103, 863–875. [CrossRef]

49. Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.;
et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer.
J. Clin. Oncol. 2010, 28, 3219–3226. [CrossRef]

50. Andre, T.; de Gramont, A.; Vernerey, D.; Chibaudel, B.; Bonnetain, F.; Tijeras-Raballand, A.; Scriva, A.; Hickish, T.; Tabernero,
J.; Van Laethem, J.L.; et al. Adjuvant Fluorouracil, Leucovorin, and Oxaliplatin in Stage II to III colon cancer: Updated 10-year
survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J. Clin. Oncol. 2015, 33,
4176–4187. [CrossRef]

51. Gavin, P.G.; Colangelo, L.H.; Fumagalli, D.; Tanaka, N.; Remillard, M.Y.; Yothers, G.; Kim, C.; Taniyama, Y.; Kim, S.I.; Choi, H.J.;
et al. Mutation profiling and microsatellite instability in stage II and III colon cancer: An assessment of their prognostic and
oxaliplatin predictive value. Clin. Cancer Res. 2012, 18, 6531–6541. [CrossRef]

52. Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [CrossRef]
53. Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution

of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017, 17, 79–92. [CrossRef] [PubMed]
54. Abdelkader, A.; Hartley, C.; Hagen, C. Tubulovillous adenomas with serrated features are precursors to KRAS mutant colorectal

carcinoma. Mod. Pathol. 2017, 30, 157.
55. Blons, H.; Emile, J.F.; Le Malicot, K.; Julié, C.; Zaanan, A.; Tabernero, J.; Mini, E.; Folprecht, G.; Van Laethem, J.L.; Thaler, J.; et al.

Prognostic value of KRAS mutations in stage III colon cancer: Post hoc analysis of the PETACC8 phase III trial dataset. Ann.
Oncol. 2014, 25, 2378–2385. [CrossRef] [PubMed]

56. De Roock, W.; Piessevaux, H.; De Schutter, J.; Janssens, M.; De Hertogh, G.; Personeni, N.; Biesmans, B.; Van Laethem, J.L.; Peeters,
M.; Humblet, Y.; et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic
colorectal cancer treated with cetuximab. Ann. Oncol. 2008, 19, 508–515. [CrossRef] [PubMed]

57. Fessler, E.; Drost, J.; van Hooff, S.R.; Linnekamp, J.F.; Wang, X.; Jansen, M.; De Sousa EMelo, F.; Prasetyanti, P.R.; IJspeert, J.E.;
Franitza, M.; et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med.
2016, 8, 745–760. [CrossRef] [PubMed]

58. De Sousa, E.M.F.; Wang, X.; Jansen, M.; Fessler, E.; Trinh, A.; de Rooij, L.P.; de Jong, J.H.; de Boer, O.J.; van Leersum, R.; Bijlsma,
M.F.; et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions.
Nat. Med. 2013, 19, 614–618. [CrossRef] [PubMed]

59. Leedham, S.J.; Graham, T.A.; Oukrif, D.; McDonald, S.A.; Rodriguez-Justo, M.; Harrison, R.F.; Shepherd, N.A.; Novelli, M.R.;
Jankowski, J.A.; Wright, N.A. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated
neoplasia. Gastroenterology 2009, 136, 542–550.e546. [CrossRef]

60. Roepman, P.; Schlicker, A.; Tabernero, J.; Majewski, I.; Tian, S.; Moreno, V.; Snel, M.H.; Chresta, C.M.; Rosenberg, R.; Nitsche, U.;
et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal
transition. Int. J. Cancer 2014, 134, 552–562. [CrossRef]

61. Loupakis, F.; Cremolini, C.; Masi, G.; Lonardi, S.; Zagonel, V.; Salvatore, L.; Cortesi, E.; Tomasello, G.; Ronzoni, M.; Spadi, R.;
et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 2014, 371, 1609–1618.
[CrossRef]

62. Sobin, L.; Wittekind, C. TNM Classification of Malignant Tumors, 6th ed.; UICC: Geneva, Switzerland; Wiley-Blackwell: New York,
NY, USA, 2002.

63. Angell, H.K.; Bruni, D.; Barrett, J.C.; Herbst, R.; Galon, J. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020, 15,
332–339. [CrossRef] [PubMed]

64. Galon, J.; Fridman, W.H.; Pagès, F. The Adaptive Immunologic Microenvironment in Colorectal Cancer: A Novel Perspective.
Cancer Res. 2007, 67, 1883–1886. [CrossRef] [PubMed]

65. Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat.
Rev. Cancer. 2020, 20, 662–680. [CrossRef]

66. Galon, J.; Lanzi, A. Immunoscore and its introduction in clinical practice. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 152–161.
[CrossRef] [PubMed]

67. Zeitoun, G.; Sissy, C.E.; Kirilovsky, A.; Anitei, G.; Todosi, A.M.; Marliot, F.; Haicheur, N.; Lagorce, C.; Berger, A.; Zinzindohoué, F.;
et al. The Immunoscore in the Clinical Practice of Patients with Colon and Rectal Cancers. Chirurgia (Bucur) 2019, 114, 152–161.
[CrossRef] [PubMed]

68. Liu, Q.; Luo, D.; Cai, S.; Li, Q.; Li, X. P-TNM staging system for colon cancer: Combination of P-stage and AJCC TNM staging
system for improving prognostic prediction and clinical management. Cancer Manag. Res. 2018, 10, 2303–2314. [CrossRef]

69. Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.;
et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313,
1960–1964. [CrossRef]

http://doi.org/10.1053/j.gastro.2009.12.064
http://www.ncbi.nlm.nih.gov/pubmed/20420947
http://doi.org/10.1093/jnci/djr153
http://doi.org/10.1200/JCO.2009.27.1825
http://doi.org/10.1200/JCO.2015.63.4238
http://doi.org/10.1158/1078-0432.CCR-12-0605
http://doi.org/10.1016/0092-8674(90)90186-I
http://doi.org/10.1038/nrc.2016.126
http://www.ncbi.nlm.nih.gov/pubmed/28050011
http://doi.org/10.1093/annonc/mdu464
http://www.ncbi.nlm.nih.gov/pubmed/25294886
http://doi.org/10.1093/annonc/mdm496
http://www.ncbi.nlm.nih.gov/pubmed/17998284
http://doi.org/10.15252/emmm.201606184
http://www.ncbi.nlm.nih.gov/pubmed/27221051
http://doi.org/10.1038/nm.3174
http://www.ncbi.nlm.nih.gov/pubmed/23584090
http://doi.org/10.1053/j.gastro.2008.10.086
http://doi.org/10.1002/ijc.28387
http://doi.org/10.1056/NEJMoa1403108
http://doi.org/10.1158/1078-0432.CCR-18-1851
http://www.ncbi.nlm.nih.gov/pubmed/31413009
http://doi.org/10.1158/0008-5472.CAN-06-4806
http://www.ncbi.nlm.nih.gov/pubmed/17332313
http://doi.org/10.1038/s41568-020-0285-7
http://doi.org/10.23736/S1824-4785.20.03249-5
http://www.ncbi.nlm.nih.gov/pubmed/32107902
http://doi.org/10.21614/chirurgia.114.2.152
http://www.ncbi.nlm.nih.gov/pubmed/31060646
http://doi.org/10.2147/CMAR.S165188
http://doi.org/10.1126/science.1129139


Cancers 2022, 14, 4834 35 of 45

70. Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International
validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 26,
2128–2139. [CrossRef]

71. Lanzi, A.; Pagès, F.; Lagorce-Pagès, C.; Galon, J. The consensus immunoscore: Toward a new classification of colorectal cancer.
Oncoimmunology 2020, 9, 1789032. [CrossRef]

72. Xu, Z.; Wang, X.; Zeng, S.; Ren, X.; Yan, Y.; Gong, Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm. Sin. B
2021, 11, 3393–3405. [CrossRef]

73. Reichling, C.; Taieb, J.; Derangere, V.; Klopfenstein, Q.; Le Malicot, K.; Gornet, J.M.; Becheur, H.; Fein, F.; Cojocarasu, O.; Kaminsky,
M.C.; et al. Artificial intelligence-guided tissue analysis combined with immune infiltrate assessment predicts stage III colon
cancer outcomes in PETACC08 study. Gut 2020, 69, 681–690. [CrossRef]

74. Mehrotra, S.; Galdieri, L.; Zhang, T.; Zhang, M.; Pemberton, L.F.; Vancura, A. Histone hypoacetylation-activated genes are
re-pressed by acetyl-CoA- and chromatin-mediated mechanism. Biochim. Biophys. Acta 2014, 1839, 751–763. [CrossRef]

75. Qin, J.; Wen, B.; Liang, Y.; Yu, W.; Li, H. Histone Modifications and their Role in Colorectal Cancer (Review). Pathol. Oncol. Res.
2020, 26, 2023–2033. [CrossRef]

76. Karczmarski, J.; Rubel, T.; Paziewska, A.; Mikula, M.; Bujko, M.; Kober, P.; Dadlez, M.; Ostrowski, J. Histone H3 lysine 27
acetylation is altered in colon cancer. Clin. Proteom. 2014, 11, 24. [CrossRef]

77. de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization
of the classical HDAC family. Biochem J. 2003, 370 (Pt 3), 737–749. [CrossRef]

78. Hashimoto, T.; Yamakawa, M.; Kimura, S.; Usuba, O.; Toyono, M. Expression of acetylated and Dimethylated histone H3 in
colorectal cancer. Dig. Surg. 2013, 30, 249–258. [CrossRef]

79. Benard, A.; Goossens-Beumer, I.J.; van Hoesel, A.Q.; Horati, H.; de Graaf, W.; Putter, H.; Zeestraten, E.C.M.; Liefers, G.; van de
Velde, C.J.H.; Kuppen, P.J.K. Nuclear expression of histone deacetylases and their histone modifications predicts clinical outcome
in colorectal cancer. Histopathology 2015, 66, 270–282. [CrossRef]

80. Ashktorab, H.; Belgrave, K.; Hosseinkhah, F.; Brim, H.; Nouraie, M.; Takkikto, M.; Hewitt, S.; Lee, E.L.; Dashwood, R.H.; Smoot,
D. Global histone H4 acetylation and HDAC2 expression in Colon adenoma and carcinoma. Dig. Dis. Sci. 2009, 54, 2109–2117.
[CrossRef]

81. Liu, Y.; Wang, D.; Chen, S.; Zhao, L.; Sun, F. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation
at lysine 56. J. Biol. Chem. 2012, 287, 41469–41480. [CrossRef]

82. Zhang, Y.; Wang, S.; Kang, W.; Liu, C.; Dong, Y.; Ren, F.; Wang, Y.; Zhang, J.; Wang, G.; To, K.F.; et al. CREPT facilitates colorectal
cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation. Oncogene 2018, 37,
3485–3500. [CrossRef]

83. Tamagawa, H.; Oshima, T.; Numata, M.; Yamamoto, N.; Shiozawa, M.; Morinaga, S.; Nakamura, Y.; Yoshihara, M.; Sakuma,
Y.; Kameda, Y.; et al. Global histone modification of H3K27 correlates with the outcomes in patients with metachronous liver
metastasis of colorectal cancer. Eur. J. Surg. Oncol. 2013, 39, 655–661. [CrossRef] [PubMed]

84. Kornblihtt, A.R. Epigenetics at the base of alternative splicing changes that promote colorectal cancer. J. Clin. Investig. 2017, 127,
3281–3283. [CrossRef] [PubMed]

85. Qin, J.; Zeng, Z.; Luo, T.; Li, Q.; Hao, Y.; Chen, L. Clinicopathological significance of G9A expression in colorectal carcinoma.
Oncol. Lett. 2018, 15, 8611–8619. [CrossRef] [PubMed]

86. Ding, J.; Zhang, Z.; Xia, Y.; Liao, G.; Pan, Y.; Liu, S.; Zhang, Y.; Yan, Z. LSD1-mediated epigenetic modification contributes to
proliferation and metastasis of colon cancer. Br. J. Cancer 2013, 109, 994–1003. [CrossRef] [PubMed]

87. Yu, D.; Li, Z.; Gan, M.; Zhang, H.; Yin, X.; Tang, S.; Wan, L.; Tian, Y.; Zhang, S.; Zhu, Y.; et al. Decreased expression of dual
specificity phosphatase 22 in colorectal cancer and its potential prognostic relevance for stage IV CRC patients. Tumor Biol. 2015,
36, 8531–8535. [CrossRef]

88. Lee, Y.C.; Yin, T.C.; Chen, Y.T.; Chai, C.Y.; Wang, J.Y.; Liu, M.C.; Lin, Y.C.; Kan, J.Y. High expression of phospho-H2AX predicts a
poor prognosis in colorectal cancer. Anticancer Res. 2015, 35, 2447–2453.

89. Iyer, S.P.; Foss, F.F. Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist 2015, 20, 1084–1091. [CrossRef]
90. Foss, F.; Advani, R.; Duvic, M.; Hymes, K.B.; Intragumtornchai, T.; Lekhakula, A.; Shpilberg, O.; Lerner, A.; Belt, R.J.; Jacobsen,

E.D.; et al. A phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma.
Br. J. Haematol. 2015, 168, 811–819. [CrossRef]

91. Jung, G.; Hernández-Illán, E.; Moreira, L.; Balaguer, F.; Goel, A. Epigenetics of colorectal cancer: Biomarker and therapeutic
potential. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 111–130. [CrossRef]

92. Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology 2015, 149,
1204–1225.e12. [CrossRef]

93. Esteller, M.; González, S.; Risques, R.A.; Marcuello, E.; Mangues, R.; Germà, J.R.; Herman, J.G.; Capellà, G.; Peinado, M.A. K-ras
and p16 aberrations confer poor prognosis in human colorectal cancer. J. Clin. Oncol. 2001, 19, 299–304. [CrossRef] [PubMed]

94. Esteller, M.; Tortola, S.; Toyota, M.; Capella, G.; Peinado, M.A.; Baylin, S.B.; Herman, J.G. Hypermethylation-associated
inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 2000, 60, 129–133.
[PubMed]

http://doi.org/10.1016/S0140-6736(18)30789-X
http://doi.org/10.1080/2162402X.2020.1789032
http://doi.org/10.1016/j.apsb.2021.02.007
http://doi.org/10.1136/gutjnl-2019-319292
http://doi.org/10.1016/j.bbagrm.2014.05.029
http://doi.org/10.1007/s12253-019-00663-8
http://doi.org/10.1186/1559-0275-11-24
http://doi.org/10.1042/bj20021321
http://doi.org/10.1159/000351444
http://doi.org/10.1111/his.12534
http://doi.org/10.1007/s10620-008-0601-7
http://doi.org/10.1074/jbc.M112.367847
http://doi.org/10.1038/s41388-018-0161-z
http://doi.org/10.1016/j.ejso.2013.02.023
http://www.ncbi.nlm.nih.gov/pubmed/23523318
http://doi.org/10.1172/JCI96497
http://www.ncbi.nlm.nih.gov/pubmed/28825597
http://doi.org/10.3892/ol.2018.8446
http://www.ncbi.nlm.nih.gov/pubmed/29805595
http://doi.org/10.1038/bjc.2013.364
http://www.ncbi.nlm.nih.gov/pubmed/23900215
http://doi.org/10.1007/s13277-015-3588-7
http://doi.org/10.1634/theoncologist.2015-0043
http://doi.org/10.1111/bjh.13222
http://doi.org/10.1038/s41575-019-0230-y
http://doi.org/10.1053/j.gastro.2015.07.011
http://doi.org/10.1200/JCO.2001.19.2.299
http://www.ncbi.nlm.nih.gov/pubmed/11208819
http://www.ncbi.nlm.nih.gov/pubmed/10646864


Cancers 2022, 14, 4834 36 of 45

95. Cunningham, J.M.; Christensen, E.R.; Tester, D.J.; Kim, C.Y.; Roche, P.C.; Burgart, L.J.; Thibodeau, S.N. Hypermethylation of the
hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998, 58, 3455–3460. [PubMed]

96. Liang, T.-J.; Wang, H.X.; Zheng, Y.Y.; Cao, Y.Q.; Wu, X.; Zhou, X.; Dong, S.X. APC hypermethylation for early diagnosis of
colorectal cancer: A meta-analysis and literature review. Oncotarget 2017, 8, 46468–46479. [CrossRef] [PubMed]

97. Nagai, Y.; Sunami, E.; Yamamoto, Y.; Hata, K.; Okada, S.; Murono, K.; Yasuda, K.; Otani, K.; Nishikawa, T.; Tanaka, T.; et al.
LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017, 8,
11906–11916. [CrossRef]

98. Pérez, R.F.; Tejedor, J.R.; Bayón, G.F.; Fernández, A.F.; Fraga, M.F. Distinct chromatin signatures of DNA hypomethylation in
aging and cancer. Aging Cell 2018, 17, e12744. [CrossRef]

99. Baba, Y.; Nosho, K.; Shima, K.; Huttenhower, C.; Tanaka, N.; Hazra, A.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Hypomethylation
of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology
2010, 139, 1855–1864. [CrossRef]

100. Luo, J.; Li, Y.-N.; Wang, F.; Zhang, W.-M.; Geng, X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the
hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int. J. Biol. Sci. 2010, 6, 784–795. [CrossRef]

101. Hur, K.; Cejas, P.; Feliu, J.; Moreno-Rubio, J.; Burgos, E.; Boland, C.R.; Goel, A. Hypomethylation of long interspersed nuclear
element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 2014, 63, 635–646. [CrossRef]

102. Baba, Y.; Yagi, T.; Sawayama, H.; Hiyoshi, Y.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Baba, H. Long interspersed
element-1 methylation level as a prognostic biomarker in gastrointestinal cancers. Digestion 2018, 97, 26–30. [CrossRef]

103. Ogino, S.; Kawasaki, T.; Nosho, K.; Ohnishi, M.; Suemoto, Y.; Kirkner, G.J.; Fuchs, C.S. LINE-1 hypomethylation is inversely
associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer 2008, 122,
2767–2773. [CrossRef] [PubMed]

104. Ashktorab, H.; Brim, H. DNA Methylation and Colorectal Cancer. Curr. Colorectal Cancer Rep. 2014, 10, 425–430. [CrossRef]
105. Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev.

Mol. Cell Biol. 2019, 20, 5–20. [CrossRef] [PubMed]
106. Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [CrossRef] [PubMed]
107. Balacescu, O.; Sur, D.; Cainap, C.; Visan, S.; Cruceriu, D.; Manzat-Saplacan, R.; Muresan, M.S.; Balacescu, L.; Lisencu, C.; Irimie, A.

The Impact of miRNA in Colorectal Cancer Progression and Its Liver Metastases. Int. J. Mol. Sci. 2018, 19, 3711. [CrossRef]
108. Segditsas, S.; Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006, 25, 7531–7537. [CrossRef]
109. Lai, Q.; Wang, S.; Cai, J.; Xiao, Z.; Deng, D.; He, L.; Jiao, H.; Ye, Y.; Liang, L.; Ding, Y.; et al. MicroRNA-224 sustains Wnt/β-catenin

signaling and promotes aggressive phenotype of colorectal cancer. J. Exp. Clin. Cancer Res. CR 2016, 35, 21. [CrossRef]
110. Hwang, W.L.; Jiang, J.K.; Yang, S.H.; Huang, T.S.; Lan, H.Y.; Teng, H.W.; Yang, C.Y.; Tsai, Y.P.; Lin, C.H.; Wang, H.W.; et al.

MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol. 2014, 16, 268–280,
Erratum in Nat. Cell Biol. 2014, 16, 383; Erratum in Nat. Cell Biol. 2019, 21, 664. [CrossRef]

111. Guo, C.; Sah, J.F.; Beard, L.; Willson, J.K.; Markowitz, S.D.; Guda, K. The noncoding RNA, miR-126, suppresses the growth of
neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes
Cancer 2008, 47, 939–946. [CrossRef]

112. Velho, S.; Oliveira, C.; Ferreira, A.; Ferreira, A.C.; Suriano, G.; Schwartz, S., Jr.; Duval, A.; Carneiro, F.; Machado, J.C.; Hamelin, R.;
et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer 2005, 41, 1649–1654. [CrossRef]

113. Arcaroli, J.J.; Quackenbush, K.S.; Powell, R.W.; Pitts, T.M.; Spreafico, A.; Varella-Garcia, M.; Bemis, L.; Tan, A.C.; Reinemann,
J.M.; Touban, B.M.; et al. Common PIK3CA mutants and a novel 3′ UTR mutation are associated with increased sensitivity to
saracatinib. Clin. Cancer Res. 2012, 18, 2704–2714. [CrossRef] [PubMed]

114. To, K.K.; Tong, C.W.; Wu, M.; Cho, W.C. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside.
World J. Gastroenterol. 2018, 24, 2949–2973. [CrossRef] [PubMed]

115. Sebio, A.; Paré, L.; Páez, D.; Salazar, J.; González, A.; Sala, N.; del Río, E.; Martín-Richard, M.; Tobeña, M.; Barnadas, A.; et al.
The LCS6 polymorphism in the binding site of let-7 microRNA to the KRAS 3′-untranslated region: Its role in the efficacy of
anti-EGFR-based therapy in metastatic colorectal cancer patients. Pharm. Genom. 2013, 23, 142–147. [CrossRef] [PubMed]

116. Tsang, W.P.; Kwok, T.T. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis
2009, 30, 953–959. [CrossRef] [PubMed]

117. Li, Y.; Zhou, J.; Wang, J.; Chen, X.; Zhu, Y.; Chen, Y. Mir-30b-3p affects the migration and invasion function of ovarian cancer cells
by targeting the CTHRC1 gene. Biol. Res. 2020, 53, 10. [CrossRef] [PubMed]

118. Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; et al. Role of miR-143 targeting KRAS
in colorectal tumorigenesis. Oncogene 2009, 28, 1385–1392. [CrossRef] [PubMed]

119. Pagliuca, A.; Valvo, C.; Fabrizi, E.; di Martino, S.; Biffoni, M.; Runci, D.; Forte, S.; De Maria, R.; Ricci-Vitiani, L. Analysis of the
combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene
repression. Oncogene 2013, 32, 4806–4813. [CrossRef] [PubMed]

120. Grady, W.M.; Myeroff, L.L.; Swinler, S.E.; Rajput, A.; Thiagalingam, S.; Lutterbaugh, J.D.; Neumann, A.; Brattain, M.G.; Chang, J.;
Kim, S.J.; et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers.
Cancer Res. 1999, 59, 320–324.

http://www.ncbi.nlm.nih.gov/pubmed/9699680
http://doi.org/10.18632/oncotarget.17576
http://www.ncbi.nlm.nih.gov/pubmed/28515349
http://doi.org/10.18632/oncotarget.14439
http://doi.org/10.1111/acel.12744
http://doi.org/10.1053/j.gastro.2010.07.050
http://doi.org/10.7150/ijbs.6.784
http://doi.org/10.1136/gutjnl-2012-304219
http://doi.org/10.1159/000484104
http://doi.org/10.1002/ijc.23470
http://www.ncbi.nlm.nih.gov/pubmed/18366060
http://doi.org/10.1007/s11888-014-0245-2
http://doi.org/10.1038/s41580-018-0059-1
http://www.ncbi.nlm.nih.gov/pubmed/30228348
http://doi.org/10.1016/j.cell.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29570994
http://doi.org/10.3390/ijms19123711
http://doi.org/10.1038/sj.onc.1210059
http://doi.org/10.1186/s13046-016-0287-1
http://doi.org/10.1038/ncb2910
http://doi.org/10.1002/gcc.20596
http://doi.org/10.1016/j.ejca.2005.04.022
http://doi.org/10.1158/1078-0432.CCR-11-3167
http://www.ncbi.nlm.nih.gov/pubmed/22553375
http://doi.org/10.3748/wjg.v24.i27.2949
http://www.ncbi.nlm.nih.gov/pubmed/30038463
http://doi.org/10.1097/FPC.0b013e32835d9b0b
http://www.ncbi.nlm.nih.gov/pubmed/23324806
http://doi.org/10.1093/carcin/bgp094
http://www.ncbi.nlm.nih.gov/pubmed/19372139
http://doi.org/10.1186/s40659-020-00277-4
http://www.ncbi.nlm.nih.gov/pubmed/32156314
http://doi.org/10.1038/onc.2008.474
http://www.ncbi.nlm.nih.gov/pubmed/19137007
http://doi.org/10.1038/onc.2012.495
http://www.ncbi.nlm.nih.gov/pubmed/23128394


Cancers 2022, 14, 4834 37 of 45

121. Grady, W.M.; Markowitz, S.D. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genom. Hum. Genet. 2002, 3, 101–128.
[CrossRef]

122. Itatani, Y.; Kawada, K.; Sakai, Y. Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvi-
ronment. Int. J. Mol. Sci. 2019, 20, 5822. [CrossRef]

123. Yu, Y.; Kanwar, S.S.; Patel, B.B.; Oh, P.S.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P. MicroRNA-21 induces stemness by downregu-
lating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 2012, 33, 68–76. [CrossRef]

124. Feng, B.; Dong, T.T.; Wang, L.L.; Zhou, H.M.; Zhao, H.C.; Dong, F.; Zheng, M.H. Colorectal cancer migration and invasion
initiated by microRNA-106a. PLoS ONE 2012, 7, e43452. [CrossRef]

125. Zhang, W.; Zhang, T.; Jin, R.; Zhao, H.; Hu, J.; Feng, B.; Zang, L.; Zheng, M.; Wang, M. MicroRNA-301a promotes migration and
invasion by targeting TGFBR2 in human colorectal cancer. J. Exp. Clin. Cancer Res. 2014, 33, 113. [CrossRef]

126. Li, Q.; Zou, C.; Zou, C.; Han, Z.; Xiao, H.; Wei, H.; Wang, W.; Zhang, L.; Zhang, X.; Tang, Q.; et al. MicroRNA-25 functions as a
potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 2013, 335, 168–174. [CrossRef] [PubMed]

127. Carstens, J.L.; Lovisa, S.; Kalluri, R. Microenvironment-dependent cues trigger miRNA-regulated feedback loop to facilitate the
EMT/MET switch. J. Clin. Investig. 2014, 124, 1458–1460. [CrossRef] [PubMed]

128. Zhang, J.X.; Mai, S.J.; Huang, X.X.; Wang, F.W.; Liao, Y.J.; Lin, M.C.; Kung, H.F.; Zeng, Y.X.; Xie, D. MiR-29c mediates epithelial-
tomesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling.
Ann. Oncol. 2014, 25, 2196–2204. [CrossRef] [PubMed]

129. Hur, K.; Toiyama, Y.; Takahashi, M.; Balaguer, F.; Nagasaka, T.; Koike, J.; Hemmi, H.; Koi, M.; Boland, C.R.; Goel, A. MicroRNA-
200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 2013, 62, 1315–1326.
[CrossRef]

130. Guo, Y.H.; Wang, L.Q.; Li, B.; Xu, H.; Yang, J.H.; Zheng, L.S.; Yu, P.; Zhou, A.D.; Zhang, Y.; Xie, S.J.; et al. Wnt/β-catenin pathway
transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 2016, 7,
42513–42526. [CrossRef]

131. Yu, G.; Tang, J.Q.; Tian, M.L.; Li, H.; Wang, X.; Wu, T.; Zhu, J.; Huang, S.J.; Wan, Y.L. Prognostic values of the miR-17-92 cluster
and its paralogs in colon cancer. J. Surg. Oncol. 2012, 106, 232–237. [CrossRef]

132. Peric, D.; Chvalova, K.; Rousselet, G. Identification of microprocessor-dependent cancer cells allows screening for growth-
sustaining micro-RNAs. Oncogene 2012, 31, 2039–2048. [CrossRef]

133. Liang, Z.; Li, Y.; Huang, K.; Wagar, N.; Shim, H. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN.
Pharm. Res. 2011, 28, 3091–3100. [CrossRef] [PubMed]

134. Olive, V.; Bennett, M.J.; Walker, J.C.; Ma, C.; Jiang, I.; Cordon-Cardo, C.; Li, Q.J.; Lowe, S.W.; Hannon, G.J.; He, L. miR-19 is a key
oncogenic component of mir-17-92. Genes Dev. 2009, 23, 2839–2849. [CrossRef]

135. Tili, E.; Michaille, J.J.; Liu, C.G.; Alder, H.; Taccioli, C.; Volinia, S.; Calin, G.A.; Croce, C.M. GAM/ZFp/ZNF512B is central to a
gene sensor circuitry involving cell-cycle regulators, TGFβ effectors, Drosha and microRNAs with opposite oncogenic potentials.
Nucleic Acids Res. 2010, 38, 7673–7688. [CrossRef]

136. Slaby, O.; Svoboda, M.; Fabian, P.; Smerdova, T.; Knoflickova, D.; Bednarikova, M.; Nenutil, R.; Vyzula, R. Altered expression of
miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007, 72, 397–402.
[CrossRef] [PubMed]

137. Shibuya, H.; Iinuma, H.; Shimada, R.; Horiuchi, A.; Watanabe, T. Clinicopathological and prognostic value of microRNA-21 and
microRNA-155 in colorectal cancer. Oncology 2010, 79, 313–320. [CrossRef]

138. Drusco, A.; Nuovo, G.J.; Zanesi, N.; Di Leva, G.; Pichiorri, F.; Volinia, S.; Fernandez, C.; Antenucci, A.; Costinean, S.; Bottoni, A.;
et al. MicroRNA profiles discriminate among colon cancer metastasis. PLoS ONE 2014, 9, e96670. [CrossRef] [PubMed]

139. Tang, W.; Zhu, Y.; Gao, J.; Fu, J.; Liu, C.; Liu, Y.; Song, C.; Zhu, S.; Leng, Y.; Wang, G.; et al. MicroRNA-29a promotes colorectal
cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br. J. Cancer 2014, 110, 450–458. [CrossRef]

140. Wang, J.; Huang, S.K.; Zhao, M.; Yang, M.; Zhong, J.L.; Gu, Y.Y.; Peng, H.; Che, Y.Q.; Huang, C.Z. Identification of a circulating
microRNA signature for colorectal cancer detection. PLoS ONE 2014, 9, e87451.

141. Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W.
Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 2011, 6,
e17745. [CrossRef] [PubMed]

142. Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma levels of microRNA-24,
microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86.
[CrossRef]

143. Ahmed, F.E.; Jeffries, C.D.; Vos, P.W.; Flake, G.; Nuovo, G.J.; Sinar, D.R.; Naziri, W.; Marcuard, S.P. Diagnostic microRNA markers
for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genom. Proteom. 2009, 6,
281–295.

144. Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; et al.
Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genom. Proteom.
2013, 10, 93–113.

145. Braicu, C.; Tomuleasa, C.; Monroig, P.; Cucuianu, A.; Berindan-Neagoe, I.; Calin, G.A. Exosomes as divine messengers: Are they
the Hermes of modern molecular oncology? Cell Death Differ. 2015, 22, 34–45. [CrossRef] [PubMed]

http://doi.org/10.1146/annurev.genom.3.022502.103043
http://doi.org/10.3390/ijms20235822
http://doi.org/10.1093/carcin/bgr246
http://doi.org/10.1371/annotation/cbf27742-b6c5-4e1a-a7a1-c8141415b2d8
http://doi.org/10.1186/s13046-014-0113-6
http://doi.org/10.1016/j.canlet.2013.02.029
http://www.ncbi.nlm.nih.gov/pubmed/23435373
http://doi.org/10.1172/JCI75239
http://www.ncbi.nlm.nih.gov/pubmed/24642461
http://doi.org/10.1093/annonc/mdu439
http://www.ncbi.nlm.nih.gov/pubmed/25193986
http://doi.org/10.1136/gutjnl-2011-301846
http://doi.org/10.18632/oncotarget.9893
http://doi.org/10.1002/jso.22138
http://doi.org/10.1038/onc.2011.391
http://doi.org/10.1007/s11095-011-0570-y
http://www.ncbi.nlm.nih.gov/pubmed/21853360
http://doi.org/10.1101/gad.1861409
http://doi.org/10.1093/nar/gkq637
http://doi.org/10.1159/000113489
http://www.ncbi.nlm.nih.gov/pubmed/18196926
http://doi.org/10.1159/000323283
http://doi.org/10.1371/journal.pone.0096670
http://www.ncbi.nlm.nih.gov/pubmed/24921248
http://doi.org/10.1038/bjc.2013.724
http://doi.org/10.1371/journal.pone.0017745
http://www.ncbi.nlm.nih.gov/pubmed/21445232
http://doi.org/10.1186/s13046-015-0198-6
http://doi.org/10.1038/cdd.2014.130
http://www.ncbi.nlm.nih.gov/pubmed/25236394


Cancers 2022, 14, 4834 38 of 45

146. Matsumura, T.; Sugimachi, K.; Iinuma, H.; Takahashi, Y.; Kurashige, J.; Sawada, G.; Ueda, M.; Uchi, R.; Ueo, H.; Takano, Y.; et al.
Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 2015, 113, 275–281.
[CrossRef]

147. Monzo, M.; Santasusagna, S.; Moreno, I.; Martinez, F.; Hernández, R.; Muñoz, C.; Castellano, J.J.; Moreno, J.; Navarro, A.
Exosomal microRNAs isolated from plasma of mesenteric veins linked to liver metastases in resected patients with colon cancer.
Oncotarget 2017, 8, 30859–30869. [CrossRef] [PubMed]

148. Xiao, G.; Tang, H.; Wei, W.; Li, J.; Ji, L.; Ge, J. Aberrant Expression of MicroRNA-15a and MicroRNA-16 Synergistically Associates
with Tumor Progression and Prognosis in Patients with Colorectal Cancer. Gastroenterol. Res. Pract. 2014, 2014, 364549. [CrossRef]

149. Schetter, A.J.; Leung, S.Y.; Sohn, J.J.; Zanetti, K.A.; Bowman, E.D.; Yanaihara, N.; Yuen, S.T.; Chan, T.L.; Kwong, D.L.; Au, G.K.;
et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008,
299, 425–436. [CrossRef]

150. Díaz, R.; Silva, J.; García, J.M.; Lorenzo, Y.; García, V.; Peña, C.; Rodríguez, R.; Muñoz, C.; García, F.; Bonilla, F.; et al. Deregulated
expression of miR-106a predicts survival in humancolon cancer patients. Genes Chromosomes Cancer 2008, 47, 794–802. [CrossRef]

151. Mokutani, Y.; Uemura, M.; Munakata, K.; Okuzaki, D.; Haraguchi, N.; Takahashi, H.; Nishimura, J.; Hata, T.; Murata, K.;
Takemasa, I.; et al. Down-Regulation of microRNA-132 is Associated with Poor Prognosis of Colorectal Cancer. Ann. Surg. Oncol.
2016, 23, 599–608. [CrossRef]

152. Ma, Y.; Zhang, P.; Wang, F.; Zhang, H.; Yang, J.; Peng, J.; Liu, W.; Qin, H. miR-150 as a potential biomarker associated with
prognosis and therapeutic outcome in colorectal cancer. Gut 2012, 61, 1447–1453. [CrossRef]

153. Nishimura, J.; Handa, R.; Yamamoto, H.; Tanaka, F.; Shibata, K.; Mimori, K.; Takemasa, I.; Mizushima, T.; Ikeda, M.; Sekimoto, M.;
et al. microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol. Rep. 2012, 28, 2221–2226. [CrossRef] [PubMed]

154. Pichler, M.; Winter, E.; Ress, A.L.; Bauernhofer, T.; Gerger, A.; Kiesslich, T.; Lax, S.; Samonigg, H.; Hoefler, G. miR-181a is
associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J. Clin. Pathol. 2014, 67,
198–203. [CrossRef]

155. Pichler, M.; Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Ivan, C.; Ling, H.; Winter, E.; Zhang, X.; Goblirsch, M.; Wulf-Goldenberg,
A.; Ohtsuka, M.; et al. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor
Involved in Colorectal Carcinogenesis. Clin. Cancer Res. 2017, 23, 1323–1333. [CrossRef]

156. Wang, X.; Wang, J.; Ma, H.; Zhang, J.; Zhou, X. Downregulation of miR-195 correlates with lymph node metastasis and poor
prognosis in colorectal cancer. Med. Oncol. 2012, 29, 919–927. [CrossRef]

157. Shen, Z.L.; Wang, B.; Jiang, K.W.; Ye, C.X.; Cheng, C.; Yan, Y.C.; Zhang, J.Z.; Yang, Y.; Gao, Z.D.; Ye, Y.J.; et al. Downregulation
of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1
signaling. Oncotarget 2016, 7, 35092–35105. [CrossRef]

158. Karaayvaz, M.; Pal, T.; Song, B.; Zhang, C.; Georgakopoulos, P.; Mehmood, S.; Burke, S.; Shroyer, K.; Ju, J. Prognostic significance
of miR-215 in colon cancer. Clin. Colorectal. Cancer 2011, 10, 340–347. [CrossRef]

159. Li, P.L.; Zhang, X.; Wang, L.L.; Du, L.T.; Yang, Y.M.; Li, J.; Wang, C.X. MicroRNA-218 is a prognostic indicator in colorectal cancer
and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis 2015, 36, 1484–1493. [PubMed]

160. Menéndez, P.; Padilla, D.; Villarejo, P.; Palomino, T.; Nieto, P.; Menéndez, J.M.; Rodríguez-Montes, J.A. miRNAs implicated in
CRC Prognostic implications of serum microRNA-21 in colorectal cancer. J. Surg. Oncol. 2013, 108, 369–373. [CrossRef] [PubMed]

161. Kou, C.H.; Zhou, T.; Han, X.L.; Zhuang, H.J.; Qian, H.X. Downregulation of mir-23b in plasma is associated with poor prognosis
in patients with colorectal cancer. Oncol. Lett. 2016, 12, 4838–4844. [CrossRef]

162. Miyoshi, J.; Toden, S.; Yoshida, K.; Toiyama, Y.; Alberts, S.R.; Kusunoki, M.; Sinicrope, F.A.; Goel, A. MiR-139-5p as a novel serum
biomarker for recurrence and metastasis in colorectal cancer. Sci. Rep. 2017, 7, 43393. [CrossRef]

163. Lv, Z.C.; Fan, Y.S.; Chen, H.B.; Zhao, D.W. Investigation of microRNA-155 as a serum diagnostic and prognostic biomarker for
colorectal cancer. Tumour Biol. 2015, 36, 1619–1625. [CrossRef] [PubMed]

164. Yuan, D.; Li, K.; Zhu, K.; Yan, R.; Dang, C. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer.
Cancer Biol. Ther. 2015, 16, 268–275. [CrossRef] [PubMed]

165. Hur, K.; Toiyama, Y.; Okugawa, Y.; Ide, S.; Imaoka, H.; Boland, C.R.; Goel, A. Circulating microRNA-203 predicts prognosis and
metastasis in human colorectal cancer. Gut 2017, 66, 654–665. [CrossRef]

166. Yu, H.; Gao, G.; Jiang, L.; Guo, L.; Lin, M.; Jiao, X.; Jia, W.; Huang, J. Decreased expression of miR-218 is associated with poor
prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 2013, 6, 2904–2911.

167. Pu, X.X.; Huang, G.L.; Guo, H.Q.; Guo, C.C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T.Y. Circulating miR-221 directly
amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression.
J. Gastroenterol. Hepatol. 2010, 25, 1674–1680. [CrossRef] [PubMed]

168. Hur, K.; Toiyama, Y.; Schetter, A.J.; Okugawa, Y.; Harris, C.C.; Boland, C.R.; Goel, A. Identification of a metastasis-specific
MicroRNA signature in human colorectal cancer. J. Natl. Cancer Inst. 2015, 107, dju492. [CrossRef]

169. Maierthaler, M.; Benner, A.; Hoffmeister, M.; Surowy, H.; Jansen, L.; Knebel, P.; Chang-Claude, J.; Brenner, H.; Burwinkel, B.
Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int. J. Cancer 2017, 140, 176–187. [CrossRef]

170. Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.;
et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE 2014, 9, e92921. [CrossRef]

http://doi.org/10.1038/bjc.2015.201
http://doi.org/10.18632/oncotarget.16103
http://www.ncbi.nlm.nih.gov/pubmed/28415718
http://doi.org/10.1155/2014/364549
http://doi.org/10.1001/jama.299.4.425
http://doi.org/10.1002/gcc.20580
http://doi.org/10.1245/s10434-016-5133-3
http://doi.org/10.1136/gutjnl-2011-301122
http://doi.org/10.3892/or.2012.2059
http://www.ncbi.nlm.nih.gov/pubmed/23023298
http://doi.org/10.1136/jclinpath-2013-201904
http://doi.org/10.1158/1078-0432.CCR-16-0497
http://doi.org/10.1007/s12032-011-9880-5
http://doi.org/10.18632/oncotarget.9042
http://doi.org/10.1016/j.clcc.2011.06.002
http://www.ncbi.nlm.nih.gov/pubmed/26442524
http://doi.org/10.1002/jso.23415
http://www.ncbi.nlm.nih.gov/pubmed/23970420
http://doi.org/10.3892/ol.2016.5265
http://doi.org/10.1038/srep43393
http://doi.org/10.1007/s13277-014-2760-9
http://www.ncbi.nlm.nih.gov/pubmed/25528214
http://doi.org/10.1080/15384047.2014.1002327
http://www.ncbi.nlm.nih.gov/pubmed/25629978
http://doi.org/10.1136/gutjnl-2014-308737
http://doi.org/10.1111/j.1440-1746.2010.06417.x
http://www.ncbi.nlm.nih.gov/pubmed/20880178
http://doi.org/10.1093/jnci/dju492
http://doi.org/10.1002/ijc.30433
http://doi.org/10.1371/journal.pone.0092921


Cancers 2022, 14, 4834 39 of 45

171. Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; Sato, K.; Tobo, T.; Hirata, H.; Kuroda, Y.; Nambara, S.; Hayashi, N.; et al.
Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in
colorectal cancer. Oncotarget 2017, 8, 78598–78613. [CrossRef]

172. Yan, S.; Han, B.; Gao, S.; Wang, X.; Wang, Z.; Wang, F.; Zhang, J.; Xu, D.; Sun, B. Exosome-encapsulated microRNAs as circulating
biomarkers for colorectal cancer. Oncotarget 2017, 8, 60149–60158. [CrossRef]

173. Rotelli, M.T.; Di Lena, M.; Cavallini, A.; Lippolis, C.; Bonfrate, L.; Chetta, N.; Portincasa, P.; Altomare, D.F. Fecal microRNA
profile in patients with colorectal carcinoma before and after curative surgery. Int. J. Colorectal. Dis. 2015, 30, 891–898. [CrossRef]
[PubMed]

174. Chen, C.C.; Chang, P.Y.; Chang, Y.S.; You, J.F.; Chan, E.C.; Chen, J.S.; Tsai, W.S.; Huang, Y.L.; Fan, C.W.; Hsu, H.C.; et al.
MicroRNA-Based Signature for Diagnosis and Prognosis of Colorectal Cancer using Residuum of Fecal Immunochemical Test.
Biomed. J. 2022. [CrossRef] [PubMed]

175. Ruzzo, A.; Graziano, F.; Vincenzi, B.; Canestrari, E.; Perrone, G.; Galluccio, N.; Catalano, V.; Loupakis, F.; Rabitti, C.; Santini, D.;
et al. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with
chemotherapyrefractory metastatic disease. Oncologist 2012, 17, 823–829. [CrossRef]

176. Suto, T.; Yokobori, T.; Yajima, R.; Morita, H.; Fujii, T.; Yamaguchi, S.; Altan, B.; Tsutsumi, S.; Asao, T.; Kuwano, H. MicroRNA-7
expression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation.
Carcinogenesis 2015, 36, 338–345. [CrossRef]

177. Mosakhani, N.; Lahti, L.; Borze, I.; Karjalainen-Lindsberg, M.L.; Sundström, J.; Ristamäki, R.; Osterlund, P.; Knuutila, S.; Sarhadi,
V.K. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with
wild-type KRAS and BRAF. Cancer Genet. 2012, 205, 545–551. [CrossRef]

178. Cappuzzo, F.; Sacconi, A.; Landi, L.; Ludovini, V.; Biagioni, F.; D’ Incecco, A.; Capodanno, A.; Salvini, J.; Corgna, E.; Cupini, S.;
et al. MicroRNA signature in metastatic colorectal cancer patients treated with anti-EGFR monoclonal antibodies. Clin. Colorectal.
Cancer 2014, 13, 37–45.e4. [CrossRef]

179. Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment
with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer 2015,
112, 624–629. [CrossRef]

180. Chen, J.; Wang, W.; Zhang, Y.; Chen, Y.; Hu, T. Predicting distant metastasis and chemoresistance using plasma miRNAs. Med.
Oncol. 2014, 31, 799. [CrossRef]

181. Schou, J.V.; Rossi, S.; Jensen, B.V.; Nielsen, D.L.; Pfeiffer, P.; Høgdall, E.; Yilmaz, M.; Tejpar, S.; Delorenzi, M.; Kruhøffer, M.; et al.
miR-345 in metastatic colorectal cancer: A non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated
with 3rd line cetuximab and irinotecan. PLoS ONE 2014, 9, e99886. [CrossRef]

182. Gomes, S.E.; Simões, A.E.; Pereira, D.M.; Castro, R.E.; Rodrigues, C.M.; Borralho, P.M. miR-143 or miR-145 overexpression
increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget 2016, 7, 9368–9387.
[CrossRef] [PubMed]

183. Kjersem, J.B.; Ikdahl, T.; Lingjaerde, O.C.; Guren, T.; Tveit, K.M.; Kure, E.H. Plasma microRNAs predicting clinical outcome
in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol. Oncol. 2014, 8, 59–67. [CrossRef]
[PubMed]

184. Han, J.; Sun, W.; Liu, R.; Zhou, Z.; Zhang, H.; Chen, X.; Ba, Y. Plasma Exosomal miRNA Expression Profile as Oxaliplatin-Based
Chemoresistant Biomarkers in Colorectal Adenocarcinoma. Front. Oncol. 2020, 10, 1495. [CrossRef] [PubMed]

185. Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; et al. CAFs secreted
exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in
colorectal cancer. Mol. Cancer 2019, 18, 91. [CrossRef] [PubMed]

186. Jin, G.; Liu, Y.; Zhang, J.; Bian, Z.; Yao, S.; Fei, B.; Zhou, L.; Yin, Y.; Huang, Z. A panel of serum exosomal microRNAs as predictive
markers for chemoresistance in advanced colorectal cancer. Cancer Chemother. Pharmacol. 2019, 84, 315–325. [CrossRef]

187. Yagi, T.; Iinuma, H.; Hayama, T.; Matsuda, K.; Nozawa, K.; Tsukamoto, M.; Shimada, R.; Akahane, T.; Tsuchiya, T.; Ozawa, T.;
et al. Plasma exosomal microRNA-125b as a monitoring biomarker of resistance to mFOLFOX6-based chemotherapy in advanced
and recurrent colorectal cancer patients. Mol. Clin. Oncol. 2019, 11, 416–424. [CrossRef]

188. Atkinson, S.R.; Samuel, M.; Jürg, B. Exploring long non-coding RNAs through sequencing. Semin. Cell Dev. Biol. 2012, 23, 200–205.
[CrossRef] [PubMed]

189. Yang, Y.; Du, Y.; Liu, X.; Cho, W.C. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. Adv. Exp.
Med. Biol. 2016, 937, 19–51.

190. Wu, Y.; Yang, X.; Tian, L.; Jiang, G.; Chen, F.; Li, J.; An, P.; Lu, L.; Luo, N.; Du, J.; et al. m6A-induced lncRNA RP11 triggers the
dissemination of colorectal cancer cells via upregulation of Zeb1. Mol. Cancer 2019, 18, 87. [CrossRef]

191. Xu, M.; Xu, X.; Pan, B.; Chen, X.; Lin, K.; Zeng, K.; Liu, X.; Xu, T.; Sun, L.; Qin, J.; et al. LncRNA SATB2-AS1 inhibits tumor
metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol. Cancer 2019, 18,
135. [CrossRef]

192. Zhou, L.; Li, J.; Tang, Y.; Yang, M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes
colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med. Vol. 2021, 19, 8. [CrossRef]

http://doi.org/10.18632/oncotarget.20009
http://doi.org/10.18632/oncotarget.18557
http://doi.org/10.1007/s00384-015-2248-0
http://www.ncbi.nlm.nih.gov/pubmed/25989926
http://doi.org/10.1016/j.bj.2022.01.011
http://www.ncbi.nlm.nih.gov/pubmed/35074584
http://doi.org/10.1634/theoncologist.2012-0081
http://doi.org/10.1093/carcin/bgu242
http://doi.org/10.1016/j.cancergen.2012.08.003
http://doi.org/10.1016/j.clcc.2013.11.006
http://doi.org/10.1038/bjc.2014.652
http://doi.org/10.1007/s12032-013-0799-x
http://doi.org/10.1371/journal.pone.0099886
http://doi.org/10.18632/oncotarget.7010
http://www.ncbi.nlm.nih.gov/pubmed/26824186
http://doi.org/10.1016/j.molonc.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24119443
http://doi.org/10.3389/fonc.2020.01495
http://www.ncbi.nlm.nih.gov/pubmed/33072545
http://doi.org/10.1186/s12943-019-1019-x
http://www.ncbi.nlm.nih.gov/pubmed/31064356
http://doi.org/10.1007/s00280-019-03867-6
http://doi.org/10.3892/mco.2019.1911
http://doi.org/10.1016/j.semcdb.2011.12.003
http://www.ncbi.nlm.nih.gov/pubmed/22202731
http://doi.org/10.1186/s12943-019-1014-2
http://doi.org/10.1186/s12943-019-1063-6
http://doi.org/10.1186/s12967-020-02648-7


Cancers 2022, 14, 4834 40 of 45

193. Xu, J.; Xiao, Y.; Liu, B.; Pan, S.; Liu, Q.; Shan, Y.; Li, S.; Qi, Y.; Huang, Y.; Jia, L. Exosomal MALAT1 sponges miR-26a/26b to
promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J. Exp. Clin.
Cancer Res. 2020, 39, 54. [CrossRef] [PubMed]

194. Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [CrossRef] [PubMed]
195. Taulli, R.; Loretelli, C.; Pandolfi, P.P. From pseudo-ceRNAs to circ-ceRNAs: A tale of cross-talk and competition. Nat. Struct. Mol.

Biol. 2013, 20, 541–543. [CrossRef] [PubMed]
196. Dragomir, M.; Calin, G.A. Circular RNAs in cancer—Lessons learned from microRNAs. Front. Oncol. 2018, 8, 179. [CrossRef]
197. Dragomir, M.P.; Kopetz, S.; Ajani, J.A.; Calin, G.A. Non-coding RNAs in GI cancers: From cancer hallmarks to clinical utility. Gut

2020, 69, 748–763. [CrossRef] [PubMed]
198. Lasda, E.; Parker, R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance.

PLoS ONE 2016, 11, e0148407. [CrossRef] [PubMed]
199. Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids—The mix of

hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [CrossRef] [PubMed]
200. Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014, 14, 195–208.

[CrossRef]
201. Zhang, M.; Xin, Y. Circular RNAs: A new frontier for cancer diagnosis and therapy. J. Hematol. Oncol. 2018, 11, 21. [CrossRef]
202. Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin

Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 10. [CrossRef]
203. Ren, C.; Zhang, Z.; Wang, S.; Zhu, W.; Zheng, P.; Wang, W. Circular RNA hsa_circ_0001178 facilitates the invasion and metastasis

of colorectal cancer through upregulating ZEB1 via sponging multiple miRNAs. Biol. Chem. 2020, 401, 487–496. [CrossRef]
[PubMed]

204. Zhao, H.; Chen, S.; Fu, Q. Exosomes from CD133+ cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal
cancer. J. Cell. Biochem. 2020, 121, 3286–3297. [CrossRef] [PubMed]

205. Zhong, D.; Li, P.; Gong, P.Y. Hsa_circ_0005075 promotes the proliferation and invasion of colorectal cancer cells. Int. J. Biol.
Markers 2019, 34, 284–291. [CrossRef] [PubMed]

206. Jin, Y.D.; Ren, Y.R.; Gao, Y.X.; Zhang, L.; Ding, Z. Hsa_circ_0005075 predicts a poor prognosis and acts as an oncogene in colorectal
cancer via activating Wnt/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3311–3319.

207. Hsiao, K.Y.; Lin, Y.C.; Gupta, S.K.; Chang, N.; Yen, L.; Sun, H.S.; Tsai, S.J. Noncoding Effects of Circular RNA CCDC66 Promote
Colon Cancer Growth and Metastasis. Cancer Res. 2017, 77, 2339–2350. [CrossRef]

208. Ju, H.-Q.; Zhao, Q.; Wang, F.; Lan, P.; Wang, Z.; Zuo, Z.X.; Wu, Q.N.; Fan, X.J.; Mo, H.Y.; Chen, L.; et al. A circRNA signature
predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol. Med. 2019, 11, e10168. [CrossRef]

209. Cao, J.Z.; Ma, L.M.; Zhang, Y.L.; Guo, H.C.; Niu, X.; Zhao, T.B. Circ-0104631 promotes cell proliferation and invasion in colorectal
cancer and predicts poor prognosis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4730–4737.

210. Zhou, C.; Liu, H.S.; Wang, F.W.; Hu, T.; Liang, Z.X.; Lan, N.; He, X.W.; Zheng, X.B.; Wu, X.J.; Xie, D.; et al. circCAMSAP1 Promotes
Tumor Growth in Colorectal Cancer via the miR-328-5p/E2F1 Axis. Mol. Ther. 2020, 28, 914–928. [CrossRef]

211. Huang, X.; Shen, X.; Peng, L.; Mai, W.; Wan, Y.; Zhang, H. CircCSNK1G1 Contributes to the Development of Colorectal Cancer by
Increasing the Expression of MYO6 via Competitively Targeting miR-455-3p. Cancer Manag. Res. 2020, 12, 9563–9957. [CrossRef]
[PubMed]

212. Xiao, Y.S.; Tong, H.Z.; Yuan, X.H.; Xiong, C.H.; Xu, X.Y.; Zeng, Y.F. CircFADS2: A potential prognostic biomarker of colorectal
cancer. Exp. Biol. Med. 2020, 245, 1233–1241. [CrossRef]

213. Lu, H.; Yao, B.; Wen, X.; Jia, B. FBXW7 circular RNA regulates proliferation, migration and invasion of colorectal carcinoma
through NEK2, mTOR, and PTEN signaling pathways in vitro and in vivo. BMC Cancer 2019, 19, 918. [CrossRef]

214. Zeng, K.; Chen, X.; Xu, M.; Liu, X.; Hu, X.; Xu, T.; Sun, H.; Pan, Y.; He, B.; Wang, S. CircHIPK3 promotes colorectal cancer growth
and metastasis by sponging miR-7. Cell Death Dis. 2018, 9, 4. [CrossRef] [PubMed]

215. Chen, H.Y.; Li, X.N.; Ye, C.X.; Chen, Z.L.; Wang, Z.J. Circular RNA circHUWE1 Is Upregulated and Promotes Cell Proliferation,
Migration and Invasion in Colorectal Cancer by Sponging miR-486. Onco Targets. Ther. 2020, 13, 423–434. [CrossRef]

216. Li, X.; Wang, J.; Zhang, C.; Lin, C.; Zhang, J.; Zhang, W.; Zhang, W.; Lu, Y.; Zheng, L.; Li, X. Circular RNA circITGA7 inhibits
colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J.
Pathol. 2018, 246, 166–179. [CrossRef] [PubMed]

217. Han, K.; Wang, F.W.; Cao, C.H.; Ling, H.; Chen, J.W.; Chen, R.X.; Feng, Z.H.; Luo, J.; Jin, X.H.; Duan, J.L.; et al. CircLONP2
enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of
microRNA-17. Mol. Cancer 2020, 19, 60. [CrossRef] [PubMed]

218. Tang, X.; Sun, G.; He, Q.; Wang, C.; Shi, J.; Gao, L.; Ye, J.; Liang, Y.; Qu, H. Circular noncoding RNA circMBOAT2 is a novel
tumor marker and regulates proliferation/migration by sponging miR-519d-3p in colorectal cancer. Cell Death Dis. 2020, 11, 625.
[CrossRef]

219. Chen, L.Y.; Zhi, Z.; Wang, L.; Zhao, Y.Y.; Deng, M.; Liu, Y.H.; Qin, Y.; Tian, M.M.; Liu, Y.; Shen, T.; et al. NSD2 circular RNA
promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signaling. J. Pathol. 2019, 248,
103–115. [CrossRef]

http://doi.org/10.1186/s13046-020-01562-6
http://www.ncbi.nlm.nih.gov/pubmed/32209115
http://doi.org/10.1038/nbt.2890
http://www.ncbi.nlm.nih.gov/pubmed/24811520
http://doi.org/10.1038/nsmb.2580
http://www.ncbi.nlm.nih.gov/pubmed/23649362
http://doi.org/10.3389/fonc.2018.00179
http://doi.org/10.1136/gutjnl-2019-318279
http://www.ncbi.nlm.nih.gov/pubmed/32034004
http://doi.org/10.1371/journal.pone.0148407
http://www.ncbi.nlm.nih.gov/pubmed/26848835
http://doi.org/10.1038/nrclinonc.2011.76
http://www.ncbi.nlm.nih.gov/pubmed/21647195
http://doi.org/10.1038/nri3622
http://doi.org/10.1186/s13045-018-0569-5
http://doi.org/10.3390/cells8101118
http://doi.org/10.1515/hsz-2019-0350
http://www.ncbi.nlm.nih.gov/pubmed/31747371
http://doi.org/10.1002/jcb.29600
http://www.ncbi.nlm.nih.gov/pubmed/31960989
http://doi.org/10.1177/1724600819872765
http://www.ncbi.nlm.nih.gov/pubmed/31476947
http://doi.org/10.1158/0008-5472.CAN-16-1883
http://doi.org/10.15252/emmm.201810168
http://doi.org/10.1016/j.ymthe.2019.12.008
http://doi.org/10.2147/CMAR.S262007
http://www.ncbi.nlm.nih.gov/pubmed/33061642
http://doi.org/10.1177/1535370220929965
http://doi.org/10.1186/s12885-019-6028-z
http://doi.org/10.1038/s41419-018-0454-8
http://www.ncbi.nlm.nih.gov/pubmed/29549306
http://doi.org/10.2147/OTT.S233338
http://doi.org/10.1002/path.5125
http://www.ncbi.nlm.nih.gov/pubmed/29943828
http://doi.org/10.1186/s12943-020-01184-8
http://www.ncbi.nlm.nih.gov/pubmed/32188489
http://doi.org/10.1038/s41419-020-02869-0
http://doi.org/10.1002/path.5238


Cancers 2022, 14, 4834 41 of 45

220. Chen, R.X.; Xia, L.P.; Zhang, J.X.; Pan, Z.Z.; Ma, X.D.; Han, K.; Chen, J.W.; Judde, J.G.; Deas, O.; Wang, F.; et al. N6-methyladenosine
modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat.
Commun. 2019, 10, 4695. [CrossRef] [PubMed]

221. Zheng, X.; Chec, L.; Zhou, Y.; Wang, Q.; Zheng, Z.; Xu, B.; Wu, C.; Zhou, Q.; Hu, W.; Wu, C.; et al. A novel protein encoded by a
circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer
2019, 18, 47. [CrossRef]

222. Wang, Z.; Su, M.; Xiang, B.; Zhao, K.; Qin, B. Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC. Biochem.
Biophys. Res. Commun. 2019, 512, 716–722. [CrossRef]

223. Fang, G.; Ye, B.-L.; Hu, B.-R.; Ruan, X.-J.; Shi, Y.-X. CircRNA_100290 promotes colorectal cancer progression through miR-516b-
induced downregulation of FZD4 expression and Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun. 2018, 504, 184–189.
[CrossRef] [PubMed]

224. Li, Y.; Pei, F.; Cao, M. CircRNA_101951 promotes migration and invasion of colorectal cancer cells by regulating the KIF3A-
mediated EMT pathway. Exp. Ther. Med. 2020, 19, 3355–3361. [CrossRef] [PubMed]

225. Li, X.N.; Wang, Z.J.; Ye, C.X.; Zhao, B.C.; Huang, X.X.; Yang, L. Circular RNA circVAPA is up-regulated and exerts oncogenic
properties by sponging miR-101 in colorectal cancer. Biomed. Pharmacother. 2019, 112, 108611. [CrossRef]

226. Weng, W.; Wei, Q.; Toden, S.; Yoshida, K.; Nagasaka, T.; Fujiwara, T.; Cai, S.; Qin, H.; Ma, Y.; Goel, A. Circular RNA ciRS-7-A
Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin. Cancer Res. 2017, 23, 3918–3928.
[CrossRef] [PubMed]

227. Zhang, J.; Liu, H.; Zhao, P.; Zhou, H.; Mao, T. Has_circ_0055625 from circRNA profile increases colon cancer cell growth by
sponging miR-106b-5p. J. Cell. Biochem. 2019, 120, 3027–3037. [CrossRef]

228. Li, J.; Ni, S.; Zhou, C.; Ye, M. The expression profile and clinical application potential of hsa_circ_0000711 in colorectal cancer.
Cancer Manag. Res. 2018, 10, 2777–2784. [CrossRef]

229. Wang, J.; Li, X.; Lu, L.; He, L.; Hu, H.; Xu, Z. Circular RNA hsa_circ_0000567 can be used as a promising diagnostic biomarker for
human colorectal cancer. J. Clin. Lab. Anal. 2018, 32, 5. [CrossRef]

230. Xing, L.; Xia, M.; Jiao, X.; Fan, L. Hsa_circ_0004831 serves as a blood-based prognostic biomarker for colorectal cancer and its
potentially circRNA-miRNA-mRNA regulatory network construction. Cancer Cell Int. 2020, 20, 1–9. [CrossRef]

231. Yang, N.; Xu, B.; Kong, P.; Han, M.; Li, B.H. Hsa_circ_0002320: A novel clinical biomarker for colorectal cancer prognosis. Medicine
(Baltimore) 2020, 99, e21224. [CrossRef] [PubMed]

232. Zhang, W.; Yang, S.; Liu, Y.; Wang, Y.; Lin, T.; Li, Y.; Zhang, R. Hsa_circ_0007534 as a blood-based marker for the diagnosis of
colorectal cancer and its prognostic value. Int. J. Clin. Exp. Pathol. 2018, 11, 1399.

233. Wang, F.; Wang, J.; Cao, X.; Xu, L.; Chen, L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by
promoting p16 expression. Biomed. Pharmacother. 2018, 98, 775–782. [CrossRef]

234. Liang, Y.; Shi, J.; He, Q.; Sun, G.; Gao, L.; Ye, J.; Tang, X.; Qu, H. Hsa_circ_0026416 promotes proliferation and migration in
colorectal cancer via miR-346/NFIB axis. Cancer Cell Int. 2020, 20, 1–15. [CrossRef] [PubMed]

235. Lu, X.; Yu, Y.; Liao, F.; Tan, S. Homo Sapiens Circular RNA 0079993 (hsa_circ_0079993) of the POLR2J4 Gene Acts as an Oncogene
in Colorectal Cancer Through the microRNA-203a-3p.1 and CREB1 Axis. Med. Sci. Monit. 2019, 25, 6872. [CrossRef]

236. Li, Y.; Zang, H.; Zhang, X.; Huang, G. circ_0136666 Facilitates the Progression of Colorectal Cancer via miR-383/CREB1 Axis.
Cancer Manag. Res. 2020, 12, 6795–6806. [CrossRef] [PubMed]

237. Zhang, J.; Wang, H.; Wu, K.; Zhan, F.; Zeng, H. Dysregulated circRNA_100876 contributes to proliferation and metastasis of
colorectal cancer by targeting microRNA-516b (miR-516b). Cancer Biol. Ther. 2020, 21, 733–740. [CrossRef]

238. Chen, Z.; Ren, R.; Wan, D.; Wang, Y.; Xue, X.; Jiang, M.; Shen, J.; Han, Y.; Liu, F.; Shi, J.; et al. Hsa_circ_101555 functions as a
competing endogenous RNA of miR-597-5p to promote colorectal cancer progression. Oncogene 2019, 38, 6017–6034. [CrossRef]

239. Wu, M.; Kong, C.; Cai, M.; Huang, W.; Chen, Y.; Wang, B.; Liu, X. Hsa_circRNA_002144 promotes growth and metastasis of
colorectal cancer through regulating miR-615-5p/LARP1/mTOR pathway. Carcinogenesis 2021, 42, 601–610. [CrossRef]

240. Li, C.; Zhou, H. Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through miR-761-
mediated Ras and Rab interactor 1 signaling. Cancer Med. 2020, 9, 6710–6725. [CrossRef]

241. Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J.
Gastroenterol. 2016, 22, 6876–6889. [CrossRef] [PubMed]

242. Wang, J.; Zhang, Y.; Liu, L.; Yang, T.; Song, J. Circular RNAs: New biomarkers of chemoresistance in cancer. Cancer Biol. Med.
2021, 18, 421. [CrossRef]

243. Hon, K.W.; Ab-Mutalib, N.S.; Abdullah, N.M.A.; Jamal, R.; Abu, N. Extracellular Vesicle-derived circular RNAs confers
chemoresistance in Colorectal cancer. Sci. Rep. 2019, 9, 1. [CrossRef] [PubMed]

244. Abu, N.; Hon, K.W.; Jeyaraman, S.; Yahaya, A.; Abdullah, N.M.; Mustangin, M.; Sulaiman, S.A.; Jamal, R.; Ab-Mutalib, N.S.
Identification of differentially expressed circular RNAs in chemoresistant colorectal cancer. Epigenomics 2019, 11, 875–884.
[CrossRef] [PubMed]

245. Chen, H.; Pei, L.; Xie, P.; Guo, G. Circ-PRKDC Contributes to 5-Fluorouracil Resistance of Colorectal Cancer Cells by Regulating
miR-375/FOXM1 Axis and Wnt/β-Catenin Pathway. Onco. Targets. Ther. 2020, 13, 5939–5953. [CrossRef] [PubMed]

http://doi.org/10.1038/s41467-019-12651-2
http://www.ncbi.nlm.nih.gov/pubmed/31619685
http://doi.org/10.1186/s12943-019-1010-6
http://doi.org/10.1016/j.bbrc.2019.03.121
http://doi.org/10.1016/j.bbrc.2018.08.152
http://www.ncbi.nlm.nih.gov/pubmed/30173892
http://doi.org/10.3892/etm.2020.8600
http://www.ncbi.nlm.nih.gov/pubmed/32266033
http://doi.org/10.1016/j.biopha.2019.108611
http://doi.org/10.1158/1078-0432.CCR-16-2541
http://www.ncbi.nlm.nih.gov/pubmed/28174233
http://doi.org/10.1002/jcb.27355
http://doi.org/10.2147/CMAR.S172388
http://doi.org/10.1002/jcla.22379
http://doi.org/10.1186/s12935-020-01651-8
http://doi.org/10.1097/MD.0000000000021224
http://www.ncbi.nlm.nih.gov/pubmed/32664176
http://doi.org/10.1016/j.biopha.2018.01.015
http://doi.org/10.1186/s12935-020-01593-1
http://www.ncbi.nlm.nih.gov/pubmed/33061846
http://doi.org/10.12659/MSM.916064
http://doi.org/10.2147/CMAR.S251952
http://www.ncbi.nlm.nih.gov/pubmed/32821160
http://doi.org/10.1080/15384047.2020.1776075
http://doi.org/10.1038/s41388-019-0857-8
http://doi.org/10.1093/carcin/bgaa140
http://doi.org/10.1002/cam4.3332
http://doi.org/10.3748/wjg.v22.i30.6876
http://www.ncbi.nlm.nih.gov/pubmed/27570424
http://doi.org/10.20892/j.issn.2095-3941.2020.0312
http://doi.org/10.1038/s41598-019-53063-y
http://www.ncbi.nlm.nih.gov/pubmed/31712601
http://doi.org/10.2217/epi-2019-0042
http://www.ncbi.nlm.nih.gov/pubmed/31020847
http://doi.org/10.2147/OTT.S253468
http://www.ncbi.nlm.nih.gov/pubmed/32606803


Cancers 2022, 14, 4834 42 of 45

246. Xiong, W.; Ai, Y.Q.; Li, Y.F.; Ye, Q.; Chen, Z.T.; Qin, J.Y.; Liu, Q.Y.; Wang, H.; Ju, Y.H.; Li, W.H.; et al. Microarray Analysis of
Circular RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells.
Biomed Res. Int. 2017, 2017, 8421614. [CrossRef]

247. Ren, T.J.; Liu, C.; Hou, J.F.; Shan, F.X. CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer
by regulating miR-31-5p/KANK1 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1743–1754. [PubMed]

248. Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; et al. Exosome-delivered circRNA
promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 2020, 14, 539–555.
[CrossRef] [PubMed]

249. Lai, M.; Liu, G.; Li, R.; Bai, H.; Zhao, J.; Xiao, P.; Mei, J. Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy
drug oxaliplatin through the TNF-α pathway in human colon cancer. J. Cell. Mol. Med. 2020, 24, 5021–5027. [CrossRef] [PubMed]

250. Lin, Y.C.; Yu, Y.S.; Lin, H.H.; Hsiao, K.Y. Oxaliplatin-Induced DHX9 Phosphorylation Promotes Oncogenic Circular RNA CCDC66
Expression and Development of Chemoresistance. Cancers 2020, 12, 697. [CrossRef]

251. Jian, X.; He, H.; Zhu, J.; Zhang, Q.; Zheng, Z.; Liang, X.; Chen, L.; Yang, M.; Peng, K.; Zhang, Z.; et al. Hsa_circ_001680 affects the
proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol. Cancer 2020, 19,
20. [CrossRef]

252. Mori, G.; Pasca, M. Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 1312.
[CrossRef]

253. Shanahan, F.; Ghosh, T.; O’Toole, P. The Healthy Microbiome—What Is the Definition of a Healthy Gut Microbiome? Gastroenterol-
ogy 2021, 160, 483–494. [CrossRef]

254. Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity
and cancer at major anatomical sites: Umbrella review of the literature. BMJ 2017, 356, j477. [CrossRef]

255. Scott, A.; Alexander, J.; Merrifield, C.; Cunningham, D.; Jobin, C.; Brown, R.; Alverdy, J.; O’Keefe, S.J.; Gaskins, H.R.; Teare, J.;
et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis.
Gut 2019, 68, 1624–1632. [CrossRef]

256. Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238.
[CrossRef] [PubMed]

257. Dekker, E.; Tanis, P.; Vleugels, J.; Kasi, P.; Wallace, M. Colorectal cancer. Lancet 2019, 394, 1467–1480. [CrossRef]
258. Kashyap, S.; Pal, S.; Chandan, G.; Saini, V.; Chakrabarti, S.; Saini, N.K.; Mittal, A.; Thakur, V.K.; Saini, A.K.; Saini, R.V.

Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and
prognostic biomarkers. Semin. Cancer Biol. 2021, 70, 112–125. [CrossRef]

259. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A
human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [CrossRef] [PubMed]

260. Lepage, P.; Leclerc, M.; Joossens, M.; Mondot, S.; Blottière, H.M.; Raes, J.; Ehrlich, D.; Doré, J. A metagenomic insight into our
gut’s microbiome. Gut 2012, 62, 146–158. [CrossRef] [PubMed]

261. Dalal, N.; Jalandra, R.; Bayal, N.; Yadav, A.K.; Harshulika Sharma, M.; Makharia, G.K.; Kumar, P.; Singh, R.; Solanki, P.R.; Kumar,
A. Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res. Clin. Oncol. 2021, 147, 3141–3155.
[CrossRef]

262. Zhang, H.; Sun, L. When human cells meet bacteria: Precision medicine for cancers using the microbiota. Am. J. Cancer Res. 2018,
8, 1157–1175. [CrossRef] [PubMed]

263. Dieterich, W.; Schink, M.; Zopf, Y. Microbiota in the Gastrointestinal Tract. Med. Sci. 2018, 6, 116. [CrossRef] [PubMed]
264. Gao, Z.; Guo, B.; Gao, R.; Zhu, Q.; Qin, H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015, 6, 20.

[CrossRef]
265. Vipperla, K.; O’Keefe, S. Diet, microbiota, and dysbiosis: A ‘recipe’ for colorectal cancer. Food Funct. 2016, 7, 1731–1740. [CrossRef]
266. Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Blay, M.; Terra, X. Effects of flavonoids on intestinal inflammation, barrier

integrity and changes in gut microbiota during diet-induced obesity. Nutr. Res. Rev. 2016, 29, 234–248. [CrossRef] [PubMed]
267. Solé, C.; Guilly, S.; Da Silva, K.; Llopis, M.; Le-Chatelier, E.; Huelin, P.; Carol, M.; Moreira, R.; Fabrellas, N.; De Prada, G.; et al.

Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship with Acute-on-Chronic
Liver Failure and Prognosis. Gastroenterology 2021, 160, 206–218.e13. [CrossRef] [PubMed]

268. Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol.
Hepatol. 2019, 16, 690–704. [CrossRef] [PubMed]

269. Onoue, M.; Kado, S.; Sakaitani, Y.; Uchida, K.; Morotomi, M. Specific species of intestinal bacteria influence the induction of
aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett. 1997, 113, 179–186. [CrossRef]

270. Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J.J.; Hayes, R.B.; Yang, L. Human gut microbiome and risk for
colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 1907–1911. [CrossRef]

271. Abdulamir, A.; Hafidh, R.; Bakar, F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and
the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 2011, 30, 11. [CrossRef] [PubMed]

272. Boleij, A.; Hechenbleikner, E.M.; Goodwin, A.C.; Badani, R.; Stein, E.M.; Lazarev, M.G.; Ellis, B.; Carroll, K.C.; Albesiano, E.; Wick,
E.C.; et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect Dis. 2015,
60, 208–215. [CrossRef]

http://doi.org/10.1155/2017/8421614
http://www.ncbi.nlm.nih.gov/pubmed/32141542
http://doi.org/10.1002/1878-0261.12629
http://www.ncbi.nlm.nih.gov/pubmed/31901148
http://doi.org/10.1111/jcmm.15122
http://www.ncbi.nlm.nih.gov/pubmed/32243061
http://doi.org/10.3390/cancers12030697
http://doi.org/10.1186/s12943-020-1134-8
http://doi.org/10.3390/ijms22031312
http://doi.org/10.1053/j.gastro.2020.09.057
http://doi.org/10.1136/bmj.j477
http://doi.org/10.1136/gutjnl-2019-318556
http://doi.org/10.1038/nrmicro2974
http://www.ncbi.nlm.nih.gov/pubmed/23435359
http://doi.org/10.1016/S0140-6736(19)32319-0
http://doi.org/10.1016/j.semcancer.2021.04.020
http://doi.org/10.1038/nature08821
http://www.ncbi.nlm.nih.gov/pubmed/20203603
http://doi.org/10.1136/gutjnl-2011-301805
http://www.ncbi.nlm.nih.gov/pubmed/22525886
http://doi.org/10.1007/s00432-021-03729-w
http://doi.org/10.1158/1538-7445.AM2018-1157
http://www.ncbi.nlm.nih.gov/pubmed/30094091
http://doi.org/10.3390/medsci6040116
http://www.ncbi.nlm.nih.gov/pubmed/30558253
http://doi.org/10.3389/fmicb.2015.00020
http://doi.org/10.1039/C5FO01276G
http://doi.org/10.1017/S0954422416000159
http://www.ncbi.nlm.nih.gov/pubmed/27841104
http://doi.org/10.1053/j.gastro.2020.08.054
http://www.ncbi.nlm.nih.gov/pubmed/32941879
http://doi.org/10.1038/s41575-019-0209-8
http://www.ncbi.nlm.nih.gov/pubmed/31554963
http://doi.org/10.1016/S0304-3835(97)04698-3
http://doi.org/10.1093/jnci/djt300
http://doi.org/10.1186/1756-9966-30-11
http://www.ncbi.nlm.nih.gov/pubmed/21247505
http://doi.org/10.1093/cid/ciu787


Cancers 2022, 14, 4834 43 of 45

273. Chew, S.; Lubowski, D. Clostridium septicum and malignancy. ANZ J. Surg. 2001, 71, 647–649. [CrossRef]
274. Shmuely, H.; Passaro, D.; Figer, A.; Niv, Y.; Pitlik, S.; Samra, Z.; Koren, R.; Yahav, J. Relationship between Helicobacter pylori

CagA status and colorectal cancer. Am. J. Gastroenterol. 2001, 96, 3406–3410. [CrossRef] [PubMed]
275. Kasper, S.; Morell-Perez, C.; Wyche, T.; Sana, T.; Lieberman, L.; Hett, E. Colorectal cancer-associated anaerobic bacteria proliferate

in tumor spheroids and alter the microenvironment. Sci. Rep. 2020, 10, 1–13. [CrossRef] [PubMed]
276. Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum

Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to
Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e24. [CrossRef] [PubMed]

277. Goodwin, A.C.; Destefano Shields, C.E.; Wu, S.; Huso, D.L.; Wu, X.; Murray-Stewart, T.R.; Hacker-Prietz, A.; Rabizadeh, S.; Woster,
P.M.; Sears, C.L.; et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis.
Proc. Natl. Acad. Sci. USA 2011, 108, 15354–15359. [CrossRef]

278. Ye, X.; Wang, R.; Bhattacharya, R.; Boulbes, D.R.; Fan, F.; Xia, L.; Adoni, H.; Ajami, N.J.; Wong, M.C.; Smith, D.P.; et al.
Fusobacterium Nucleatum Subspecies Animalis Influences Proinflammatory Cytokine Expression and Monocyte Activation in
Human Colorectal Tumors. Cancer Prev. Res. (Phila) 2017, 10, 398–409. [CrossRef]

279. Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer,
S.; et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from
immune cell attack. Immunity 2015, 42, 344–355. [CrossRef]

280. Martin, H.; Campbell, B.; Hart, C.; Mpofu, C.; Nayar, M.; Singh, R.; Englyst, H.; Williams, H.F.; Rhodes, J.M. Enhanced Escherichia
coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004, 127, 80–93. [CrossRef]

281. Lucas, C.; Barnich, N.; Nguyen, H.T.T. Microbiota, Inflammation and Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 1310. [CrossRef]
282. Nougayrède, J.P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.;

Oswald, E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006, 313, 848–851. [CrossRef]
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