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Abstract

Rates of trait evolution are known to vary across phylogenies; however,

standard evolutionary models assume a homogeneous process of trait

change. These simple methods are widely applied in small-scale phyloge-

netic studies, whereas models of rate heterogeneity are not, so the preva-

lence and patterns of potential rate variation in groups up to hundreds of

species remain unclear. The extent to which trait evolution is modelled

accurately on a given phylogeny is also largely unknown because studies

typically lack absolute model fit tests. We investigated these issues by apply-

ing both rate-static and variable-rates methods on (i) body mass data for 88

avian clades of 10–318 species, and (ii) data simulated under a range of

rate-heterogeneity scenarios. Our results show that rate heterogeneity is

present across small-scaled avian clades, and consequently applying only

standard single-process models prompts inaccurate inferences about the gen-

erating evolutionary process. Specifically, these approaches underestimate

rate variation, and systematically mislabel temporal trends in trait evolution.

Conversely, variable-rates approaches have superior relative fit (they are the

best model) and absolute fit (they describe the data well). We show that

rate changes such as single internal branch variations, rate decreases and

early bursts are hard to detect, even by variable-rates models. We also use

recently developed absolute adequacy tests to highlight misleading conclu-

sions based on relative fit alone (e.g. a consistent preference for constrained

evolution when isolated terminal branch rate increases are present). This

work highlights the potential for robust inferences about trait evolution

when fitting flexible models in conjunction with tests for absolute model fit.

Introduction

Phenotypic diversity represents a fundamental axis of

biodiversity, alongside variation in species richness.

Species diversify into a multitude of forms, and signifi-

cant differences in the magnitude and disparity of phe-

notypic traits occur across the tree of life. The speed at

which traits change (i.e. the rate of evolution) may

vary in numerous ways, including between groups of

species (e.g. Hawaiian honeycreepers vs. Hawaiian

thrushes, Lovette et al., 2002), across habitats (e.g. reef

vs. nonreef, Price et al., 2011) and between distinct spe-

ciation regimes (Rabosky & Adams, 2012; Hipsley et al.,

2014). Evolutionary rate heterogeneity has been attrib-

uted to a multitude of factors that are often taxon and/

or trait specific; for example, piscivorus sunfishes expe-

rience higher rates of evolution in jaw morphology

than nonpiscivorous relatives (Centrarchidae, Collar

et al., 2009), forests promote faster rates of avian song

divergence compared with open grassland areas (Weir

et al., 2012), and among shorebirds, offspring develop-

mental mode is associated with increased rates of evo-

lution for parental care and mating systems (Thomas

et al., 2006). At broader scales, geographic distributions

(e.g. islands vs. mainland, Thomas et al., 2009; temper-

ate vs. tropical areas, Martin et al., 2010) and geologic

events (impacts of the K-Pg mass extinction, Slater,
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2013) have also been shown to influence evolutionary

rates.

Although it is clear that rates of trait evolution vary

across phylogenetic, temporal and spatial contexts, the

prevalence of different forms of heterogeneity, espe-

cially within small clades, is not known. The most com-

monly used models on clades up to hundreds of species

assume that trait evolution can be described by a single

process across the whole group of interest. The earliest

and most straightforward such approach is the Brown-

ian motion or random walk model (BM) of trait evolu-

tion. Under the BM process, evolutionary rates are

constant, the mean expected trait change is 0, and vari-

ance accumulates linearly in time (Fig. 1a, Cavalli-

Sforza & Edwards, 1967; Felsenstein, 1985). The BM

model can describe processes including both genetic

drift and adaptation (Hansen & Martins, 1996). Several

other approaches build on the BM model, with added

parameters aimed to capture the complexities of trait

evolution (i.e. deviations from a simple BM process).

The Ornstein–Uhlenbeck (OU) model accounts for con-

strained trait evolution and nonindependence between

trait changes at each node in the phylogeny of interest

(e.g. when species share similar selection regimes, But-

ler & King, 2004). Under the simplest version of the

OU model (the single stationary peak model), evolu-

tionary rates are constant, but traits are always pulled

towards a single optimum value, so that, in time, the

phenotype is constrained (Fig. 1b). Other models relax

the assumption of a constant rate of evolution, for

example by allowing trait change to accelerate or decel-

erate through time across the whole phylogeny (e.g.

ACDC method, Blomberg et al., 2003 and d, Pagel,

1999). The most frequently used ACDC approach is the

early burst (EB) model, which is a derivation of the

BM approach with an extra parameter that models a

constant rate-decrease through time. Under an early

burst model, evolution peaks early in the phylogenetic

history of the group of interest, after which the mean

trait change exponentially decreases (e.g. expected

across adaptive radiations, Harmon et al., 2010; Fig. 1c).

If evolutionary rate heterogeneity is prevalent, and

potentially unpredictable across phylogenies, can we

still use single-process approaches to make inferences

about the underlying tempo of evolutionary processes

for a specific trait? The interpretation of single-process

models of evolution is apparently appealing and

straightforward, but fitting only these models may mask

complexity and may not adequately describe variation

in the data. The prevailing current approach when

studying trait evolution is to fit several models to the

data, and then choose the best relative fit based on

maximum likelihood or Akaike information criterion

(AIC, Burnham & Anderson, 2004). As the absolute

adequacy of models is not accounted for, one cannot

detect whether all alternative models are deficient. Fur-

ther, models cannot always differentiate between

alternative processes leading to the same trait distribu-

tion at the end of the phylogeny (Boettiger et al., 2012;

Kaliontzopoulou & Adams, 2016). Therefore, the pat-

tern of trait evolution can easily be misidentified. This

problem has been recognized (e.g. Freckleton & Harvey,

2006; Pennell et al., 2015), and more recently, models

have been developed that account for heterogeneity in

the tempo of evolution in flexible ways. Several

approaches, including Eastman et al. (2011) and Ven-

ditti et al. (2011), use reversible-jump MCMC to search

rate shifts across the phylogeny of interest, assuming a

BM mode of evolution between potential transitions

(Huelsenbeck et al., 2001), whereas others use paramet-

ric methods to model distributions of rates (e.g. Elliot &

Mooers, 2014). Such methods reveal that rate changes

can occur on isolated branches (Fig. 1d), throughout

the phylogeny or across whole clades (e.g. Fig. 1e,f;

also Baker et al., 2016). Changes in the rate of trait

evolution can also be modelled as heterogeneity in rate

regimes that are temporally variable, as implemented in

the Bayesian analysis of macroevolutionary mixture

model (BAMM, Rabosky et al., 2013; Grundler &

Rabosky, 2014; Rabosky, 2014; Rabosky et al., 2014a;

Shi & Rabosky, 2015).

Although the use of single-process models has tended

to focus on smaller scales (e.g. clade size in Harmon

et al. (2010) ranges from 6 to 179 species), to date most

applications of rate-variable models have been at rela-

tively large scales on phylogenies including thousands

of species (e.g. Venditti et al., 2011; Rabosky et al.,

2013; Baker et al., 2015). Consequently, the prevalence

of rate heterogeneity and its potential role in mislead-

ing single-process model inferences on trees of the

order of hundreds of species is unknown. The aim of

this study was to address this knowledge gap by resolv-

ing the following issues: (i) how prevalent is rate

heterogeneity at relatively small phylogenetic scales,

(ii) does the form of rate heterogeneity lead to pre-

dictable biases in favour of particular single-process

evolutionary models, and (iii) does accounting for rate

heterogeneity improve model fit and provide an ade-

quate description for the data?

To address the first question, we use single-process

and variable-rates approaches to examine body mass

evolution within 88 bird groups, summing up to a total

of over 6500 species. Heterogeneity in the rate of evo-

lution for several traits has been previously recorded

between avian clades (e.g. Lovette et al., 2002) and sis-

ter species (Martin et al., 2010; Weir & Wheatcroft,

2011). Early bursts of rapid evolution have also been

identified in some groups such as ovenbirds (Derryberry

et al., 2011), vangas (Reddy et al., 2012) and Hawaiian

honeycreepers (Lovette et al., 2002). Avian phylogeny

is resolved at the species level (Jetz et al., 2012; recent

discussions also in Jarvis et al., 2014; Prum et al., 2015);

moreover, body mass data are readily available for most

species (Dunning, 2008; Wilman et al., 2014), making
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this system appealing when investigating the preva-

lence of rate heterogeneity. We further investigate in

more detail when and how different forms of rate

heterogeneity incapacitate evolutionary models, using

simulated rate-variation scenarios informed by empiri-

cal observations. We anticipate that the extent and

form of evolutionary rate variability will mislead the

patterns of trait evolution quantified by single-process

methods and model choice, leading to spurious infer-

ences of macroevolutionary processes. Conversely, vari-

able-rates approaches should perform better both in

relative fit and in absolute adequacy.

Materials and methods

Models of trait evolution

We used the BM (Cavalli-Sforza & Edwards, 1967), OU

(Butler & King, 2004) and EB (Harmon et al., 2010)

models as representatives of popular single-process

approaches. The models were fitted using fitContinuous

() in the R package GEIGER (Pennell et al., 2014), using

100 iterations. For some clades (the accentors, olive

warbler and woodpeckers in the empirical analyses),

the likelihood surface for the OU alpha parameter con-

sisted of a flat ridge (similar to Harmon et al., 2010)

and could not be estimated reliably; therefore, we

excluded the OU analyses on these clades. The relative

fit of models was determined using the AICw selection

criteria (Burnham & Anderson, 2004). We are aware

that AIC can be biased towards models with increasing

number of parameters and provide a flawed relative

hierarchy between nested methods (e.g. Kaliont-

zopoulou & Adams, 2016); however, our objective was

to replicate and assess the common approach when

studying trait evolution, and for the BM, OU and

EB models, the number of parameters differs by a max-

imum of 1.

The Variable-Rates Model for Continuous Traits in

BayesTraits V2 (further referred to as BayesTraits for

simplicity; http://www.evolution.rdg.ac.uk/Bayes-

Traits.html) was used as a first representative of vari-

able-rates models. BayesTraits implements changes in

the rate of evolution using two scaling mechanisms that

can be added at any location in the tree: a single-

branch modification (modifies the rate on a target

branch) and a clade modification (adjusts a target

branch and all its descendants; Venditti et al., 2011).

The model outputs posterior configurations of rate

shifts that best predict the tip trait data on the phy-

logeny of interest. Uniform (default) priors with no

restrictions were used for alpha (phylogenetic mean)

and sigma (Brownian variance) parameters. Four chains

were run to ensure convergence between independent

runs. Within- and between-chains convergence was

assessed using trace and auto-correlation plots, effective

sample size and the Gelman–Rubin diagnostic, all tested

in the R package CODA (details in the supporting

dX(t) = σdB(t)

(a) BM

dX(t) = α[θ −X(t)]dt + σdB(t)

(b) OU

dX(t) = σ0e
rtB(t)

(c) EB

(d) Single branch

Branch length = proportion of evolutionary change

(e) Clade−event (f) Terminal branches

Fig. 1 Tree transformations showing how trait evolution is modelled by single-process approaches: the (a) Brownian motion (BM), (b)

Ornstein–Uhlenbeck (OU) and (c) early burst (EB; exemplified by a constant rate-deceleration process from root to tips) models. The

equations describe the process of trait change inferred by models, where dX(t) represents the change in the trait of interest, r is the rate of

change, dB(t) quantifies random noise by time t, a represents the ‘rubber band’ parameter acting to pull back the trait values to an

optimum phenotype h (OU-specific), r0 is the initial rate of trait change, and r is the constant rate-change parameter (EB-specific).

Hypothetical rate-heterogeneity scenarios captured by variable-rates models: rate changes (d) on a single, internal branch, (e) across a

whole clade and (f) on isolated tip branches.
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information; Plummer et al., 2006). We further used

BAMM version 2.3.0 (http://bamm-project.org/) as a

second example of methods allowing for variation in

the rate of trait evolution. Under BAMM, the process of

rate change is dependent on time, following:

r tð Þ ¼ r0 exp ðztÞ;
where r(t) represents the rate of gradual trait change in

time t, t is the elapsed time from the start of the regime,

r0 is the initial regime rate, and z is a rate parameter that

controls for the magnitude of trait change in time.

BAMM thus models multiple time-dependent, gradual

rate changes, giving an approximation of continuous

rate-variation processes with occasional jumps. For each

tree and associated tip data, the priors for the Poisson rate

(in BAMM 2.5.0, this is equivalent with the inverse of

the expected number of shifts), initial evolutionary rate

and rate-change parameter in each regime were calcu-

lated in R, using the function setBAMMpriors (Rabosky

et al., 2014b). Throughout, the function set the pois-

sonRatePrior = 1, whereas values for the betaInitPrior

and betaShiftPrior varied between trees. The model also

put a uniform prior density on the distribution of ances-

tral states, with bounds depending on the range of the

observed data (useObservedMinMaxAsTraitPriors = 1).

BAMM offers the possibility to switch between time-con-

stant and time-varying processes of trait evolution when

modelling rate variation via the time-flip proposal. We

performed BAMM analyses: (i) with the time-flip

proposal to allow both time-varying and time-constant

processes (betaIsTimeVariablePrior = 0.5 and updateRate

BetaTimeMode = 1), and (ii) limiting the model to time-

varying rate-heterogeneity processes (betaIsTimeVari-

ablePrior = 1 and updateRateBetaTimeMode = 0, the

default in BAMM 2.3.0). Four chains were run and con-

vergence between and within chains was assessed in

CODA (details in the supporting information).

Empirical data

We used maximum clade credibility trees for 88 avian

clades from the Jetz et al. (2012) stage 1 distribution

(trees include genetic data only; accessed via Bird-

tree.org). Tree size ranged from 10 to 318 species, cov-

ering a total of 6656 extant bird species. Bird body

mass data was taken from EltonTraits 1.0 (Wilman

et al., 2014). EltonTraits comprises specific body esti-

mates based on (i) the geometric mean of average val-

ues for both sexes from Dunning (2008), and (ii) genus

average from other sources. Body mass estimates (in

grams) for each species were log-transformed. We cal-

culated the median scaled trees from the outputs of

BayesTraits and BAMM, in which each branch length is

stretched and shortened proportional to the median

rate of evolution across the posterior scaled tree

distribution for that particular branch. Posterior scaled

trees are readily available in the output of BayesTraits.

For BAMM, we modified the function getMeanBran-

chLengthTree() in R (package BAMMtools, Rabosky

et al., 2014b), so that it computed the per-branch med-

ian rates across the posterior tree distribution (instead

of the mean; code deposited at doi: 10.5061/

dryad.qj367). Median scaled trees were used to visual-

ize and describe patterns of trait evolution, and further

as input for absolute model fit analyses (across both the

empirical and simulated data). For the avian data sets,

we also compared the fit of alternative models with

various number of supported shifts given by BAMM-

flip using BayesFactors (calculated with com-

puteBayesFactors() in BAMMtools, Rabosky et al.,

2014b).

Simulations

We simulated trees with 100 tips under a pure birth

model using TreeSim (Stadler, 2011), with a speciation

rate set to 1. We chose this specific tree size because

standard trait evolutionary models are typically applied

on relatively small phylogenies with 50–200 tips. The

root-to-tip distance was standardized to 1 in all trees.

Rate-heterogeneity scenarios were simulated by chang-

ing the length for specific branches of interest (discrete

shifts), or by generating gradual processes using the

function rescale() in GEIGER. Brownian motion trait

evolution with a variance rate of 1 was further simu-

lated on these transformed trees. The original tree and

the simulated trait data were used as input data for

alternative models of trait evolution. We simulated rate

variation as (i) a single, internal branch shift not passed

to descendants (Fig. 1d), (ii) a clade event, in which all

members of a particular group record a change in the

rate of evolution (Fig. 1e), (iii) rate shifts on nonclus-

tered terminal branches (Fig. 1f), (iv) a constant rate-

deceleration process from the root to tips (Fig. 1c) and

(v) a case when a single clade goes through an initial

increase in the rate of evolution (95) followed by a

constant-rate decay (same process as Fig. 1c, but con-

strained to a clade). The number of terminal branches

and the size of clades that recorded rate shifts were set

to 15–30 species. Combinations of the first three sce-

narios were also added. All code used for the simula-

tions is deposited at doi: 10.5061/dryad.qj367.

Parameter choices for the simulations were informed by

the rate-heterogeneity patterns observed on the empiri-

cal data and also by inference to the literature (discrete

branch shifts: Venditti et al., 2011; Revell et al., 2012;

Thomas & Freckleton, 2012; Puttick et al., 2014; Baker

et al., 2016; gradual rate decreases: Harmon et al., 2010;

Rabosky et al., 2014a; Slater & Pennell, 2014). Discrete

shifts were given magnitudes of 90.05, 90.1, 90.2,

90.5, 92, 95, 910 and 920. Gradual rate decreases

were set under a rate-deceleration parameter (a) of ln

(0.5), ln(0.2), ln(0.1) and ln(0.05). Each heterogeneity

scenario with its respective magnitude was simulated
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on 100 trees, resulting in a total of 6400 trees and trait

data. We used an additional 1000 constant-rate trees,

that is trees with a simulated BM process of trait evolu-

tion, and associated tip data, to assess model fit in the

absence of rate heterogeneity. We also investigated

whether the size of trees influences the ability of vari-

able-rates models (BayesTraits and BAMM-flip) to

detect heterogeneity. To do this, we simulated addi-

tional 400 trees with 25, 50, 100 and 200 tips (100

trees for each size), and we repeated the discrete rate-

variation scenarios. The size of clades and number of

terminal branches that recorded rate changes were set

to 10–15, in order to accommodate for trees of only 25

tips.

The probability of internal branch shifts, clade events

and terminal branch shifts to be detected by models

was also quantified using the simulated data. We fitted

the BM model: (i) on the simulated trees, that is trees

with incorporated rate heterogeneity, alongside the

simulated trait data, and (ii) on trees before applying

rate changes, alongside the simulated trait data. The dif-

ferences in log-likelihood between (ii) and (i) were cal-

culated; small differences in log-likelihood indicate that

a particular heterogeneity scenario does not leave much

signal in the tip data.

Absolute model fit

Freckleton & Harvey (2006) proposed bootstrapping

approaches to assess the adequacy of the Brownian

model as a descriptor of the data. More recently, Pen-

nell et al. (2015) extended this approach with a series

of parametric tests of the absolute adequacy of trait

evolutionary models implemented in the R package

ARBUTUS (Pennell et al., 2015). Briefly, the algorithm

works as follows: (i) an evolutionary model is fitted to

the data, (ii) a unit tree is built by transforming the

original tree according to the model parameters, (iii)

Felsenstein’s independent contrasts (Felsenstein, 1985)

are calculated on this unit tree, making up the ‘ob-

served data’, (iv) trait evolution is simulated on the

unit tree, following a BM process with variance = 1,

and the contrasts are calculated again (i.e. the ‘simu-

lated data’), and (iv) the observed and simulated distri-

bution of contrasts are compared. ARBUTUS takes a

phylogeny and the associated tip trait distribution as

input; therefore, for the variable-rates models, a BM

model was run on the median scaled tree at step (i),

and the unit tree was built according to the BM param-

eters on the scaled tree.

ARBUTUS provides six diagnostics that test model fit:

(i) the coefficient of variation of the absolute value of

contrasts (C.VAR) tests whether the candidate model

underestimates (C.VARobs > C.VARsim) or overestimates

(C.VARobs < C.VARsim) total rate heterogeneity, (ii) the

mean of the squared contrasts (M.SIG) assesses model

ability to quantify the overall rate of evolution, (iii) the

D statistic (Kolmolgorov–Smirnov test) compares the

distribution of the contrasts with the expected

X �N 0; r2ð Þ; D.CDF tests for deviations from the

expected normal distribution of contrasts. The last three

diagnostics represent the slopes of several linear models

fitted to the absolute value of contrasts (iv) against

node heights (S.HGT), which assesses model ability to

account for temporal variation (positive slopes show

rate overestimations late in the phylogeny and underes-

timations early on), (v) against the variances of con-

trasts (S.VAR), signalling if models account for

variation related to branch lengths (positive slopes

show rate underestimation on long branches and over-

estimation on short ones), and (vi) against the

weighted average values at each node (S.ASR), which

tests whether the model accounts for variation related

to ancestral states (positive slopes show overestimates

at smaller nodes and underestimates at larger nodes). A

candidate model is considered inadequate for a particu-

lar test when the observed and simulated test statistics

are significantly different (P < 0.05). We used the P-

values to calculate the frequency of inadequate trees

and associated trait data (referred as inadequacy levels)

given by each candidate model across our simulated

scenarios. The ability of variable-rates models to detect

rate shifts on simulated trees of different sizes was

assessed by calculating (i) the posterior probability for

the simulated branch and clade rate shifts (for Bayes-

Traits), and (ii) the relative odds of a clade shift (i.e.

marginal odds ratio) for BAMM-flip; currently, a proto-

col for assessing the probability of individual branch

shifts is not formally described for this model.

We used the simulated trees and data under various

heterogeneity scenarios to compare the rate estimates

from variable-rates models with the true, simulated

ones. Specifically, for each branch where a rate change

was simulated, we calculated the natural logarithm for

the proportion between the estimated and true rate of

evolution. Positive values indicated that models overes-

timated the evolutionary rate on branches. These differ-

ences were calculated for the branches without

simulated rate changes as well.

We also used constant-rate trees and associated trait

data to evaluate potential tendencies of variable-rates

models to infer false rate heterogeneity. BayesTraits has

revealed a wealth of rate changes in body mass evolu-

tion across the mammalian tree (Venditti et al., 2011);

therefore, we first calculated the prevalence of branch

rate changes inferred in constant-rate trees by Bayes-

Traits that could potentially be interpreted as shifts in

the rate of evolution. Secondly, BAMM has been used

to identify time-varying evolution within clades

(Grundler & Rabosky, 2014; Rabosky et al., 2014a). We

thus tested whether the default BAMM model (where

all rate regimes are modelled as time-varying) infers

false gradual rate-change processes, particularly early in

the phylogeny. We further tested whether any such
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biases are alleviated by using BAMM’s time-flip pro-

posal that allows both time-varying and time-constant

rates to be modelled. We used the function getEvent-

Data() in BAMMtools to extract the rate-change param-

eter (b) for the root process. These b parameters should

distribute normally around 0 if no rate-change regime

characterizes the root. We also plotted the b distribu-

tion for the simulations involving rate-discrete shifts, to

test for a potential link between specific rate-heteroge-

neity scenarios and falsely inferred gradual processes at

the root.

Results

Avian groups

Heterogeneity in the rate of body mass evolution was

prevalent across bird phylogenies (Fig. 2, considering

per-branch rate changes more substantial than 92 or

90.5 as evidence for rate variation), and the intensity

and patterns of rate changes varied across clades. Sev-

eral recurrent forms of rate heterogeneity stood out

(Fig. 2): rate changes affecting whole clades (e.g. Para-

doxornis genus, Fig. S71; Geospiza and Camarhynchus

genera, Fig. S78; Cinclodes genus, Fig. S84), rate

increases on isolated terminal branches (e.g. Figs S76,

S81, S83) and evolutionary rate increases on an inter-

nal branch not passed to descendants (referred to as

‘single-lineage ancestral bursts’ in Venditti et al., 2011

and Baker et al., 2016; e.g. Fig. S99a). There was also

evidence of time-dependent declining rates of evolution

within groups, and BAMM revealed fast rates early in

the phylogeny followed by declining rates in few cases

(e.g. Pachycephalidae Fig. S36b; Procellariidae, Fig. S99b).

Further, BAMM detected 35 groups that had strong evi-

dence for at least one regime shift (Bayes factors for

one or more shifts relative to the null model > 20), and

in 43 groups, there was at least some effect for one or
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Fig. 2 Patterns of rate heterogeneity in avian body mass evolution given by (a) BayesTraits and (b) BAMM-flip, plotted against clade size.

Rate variation is measured as: number of single-branch rate changes, number of clade events and proportion of isolated changes at the tips.

Rate decreases and increases are represented in blue and red, respectively.
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more rate regime changes (Bayes factors > 12;

Table S5). Highest extents of rate variation were typi-

cally inferred in the large clades, but there was no clear

relationship between the prevalence of heterogeneity

and clade size (Fig. 2). Rate shifts were found across

small groups (e.g. pheasants, quail, guineafowl, 11 spe-

cies, Fig. S91; orioles, allies, 32 species, Fig. S67), and

also some larger clades had little to no rate variation

throughout (e.g. cuckoos, 128 species, Fig. S53; bunt-

ings, American sparrows, brush–finches, 127 species,

Fig. S57). Typically, rate shifts did not exceed a 30-fold

increase or a five-fold decrease, but there were a lim-

ited number of exceptions (e.g. the Platysteiridae family

undergoes a 14-fold decrease in the amount of body

mass change relative to the length of the identical

branch in the input phylogeny, Fig. S100).

Variable-rates models generally represented an ade-

quate approach to model body mass evolution across

avian clades (Fig. 3). Conversely, single-process models

underestimated the total amount of rate variation in

almost 50% of the groups included in the analyses.

Further, the inadequacy of single-process approaches

was predominant across phylogenies that showed high

rate heterogeneity (as described by rate-variable mod-

els, Fig. S15). Most important, variable-rates models

were not just better at capturing the evolutionary pro-

cess relative to single-process approaches (expected, as

absolute fit does not penalize complexity), but they also

recorded high levels of absolute adequacy. Therefore,

such methods provide robust descriptions of the statisti-

cal patterns in the data, whereas single-process models

frequently do not. BAMM and the EB model described

the temporal aspect of evolution best (best adequacy in

the S.HGT diagnostic), as the rest of the models tended

to underestimate the rate of evolution early in the phy-

logeny, and/or overestimate it towards the tips (positive

S.HGT, Table S3). The BAMM version constrained to

time-varying processes typically produced stronger rate-

deceleration processes at the root compared with the

BAMM-flip alternative (Fig. S14), mostly in small

clades (< 50 tips).

The BM model had highest AICw in 54% of trees

(Figs S17–S63), followed by the OU (24%; Figs S64–
S86) and EB models (22%; Figs S87–S104). The rela-

tive and absolute adequacies of single-process models

were not tightly related. Rather, the prevalence of

highest AICw for the OU model increased as models

missed more and more sources of variation (Fig. 4).

Thus often a superior relative fit of the OU model was

not a result of best absolute fit, but of alternative evo-

lutionary processes that were not accounted for by any

of the single-process models included. We found 11

clades in which the OU model had over 90% support

from the AICw over the BM and EB, but all three mod-

els had poor absolute adequacy (select Pellorneidae and

Sylviidae, Fig. 71c; Alaudidae, Fig. S72c; select Anatidae,

Fig. S74c; Pycnonotidae, Fig. S76c; Lari, Fig. S77c; select

Thraupidae, Fig. S78c and Fig. S81c; Psittacidae,

Fig. S79c; Fringillidae, Fig. S80c; Muscicapidae, Fig. S83c;

Furnariidae, Fig. S84c); within these groups, variable-

rates models typically identified rate increases late in

the phylogeny, in the form of clade events and/or

increases on isolated terminal branches. Absolute ade-

quacy levels also helped distinguishing between the rel-

ative fit of models with similar AICw. We found 12

clades in which the BM and EB models were not

clearly separated by their AICw, but were assigned dif-

ferent adequacy levels by ARBUTUS (Trogonidae,

Fig. S35c; select Acanthizinae, Fig. S42c; Conopophagidae,

Fig. S87c; Melanocharitidae and Cnemophilidae, Fig. S88c;

Maluridae, Fig. S90c; Petroicidae, Fig. S92c; Cardinalidae,

Fig. S94c; Vireonidae, Fig. S95; Procellaridae, Fig. S99c;

select Psittacidae, Fig. S101c; Numididae, Fig. S102c;

Meliphagidae, Fig. S103c). Within these groups, the BM

(and BayesTraits) failed to account for temporal varia-

tion, and underestimated rates late in the phylogeny;
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Fig. 3 Inadequacy levels (quantified as

the frequency of trees and associated

trait data where the focal model was

inadequate) for evolutionary models

across avian clades, showing model

inability to account for total variation in

the rate of evolution (C.VAR), variation

related to branch lengths (S.VAR),

ancestral states (S.ASR) and node

heights (S.HGT). D.CDF inadequacy

refers to deviations in the distribution

of independent contrasts from the

expected normality under a BM. Single-

process (BM, OU and EB) and variable-

rates models (BayesTraits and BAMM

with time-flip proposal) are considered.
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conversely, the EB (and BAMM) was adequate across

all diagnostics.

Model fit in the presence of simulated rate
heterogeneity

In the absence of rate heterogeneity (constant-rate

trees), all models perform adequately. However, the

single-process models vary in their ability to capture

evolution on heterogeneous trees (Fig. 5). Similar to

results on the empirical data, variable-rates models gen-

erally performed better than single-process models, and

also recorded low levels of inadequacy overall. The

magnitude of rate changes affected the absolute fit of

models consistently across all simulated rate-heteroge-

neity scenarios. Specifically, the fit of single-process

models was better on simulations involving decreases

in the rate of evolution compared with rate increases.

On branches with simulated rate changes, variable-rates

models typically underestimated the magnitude of rate

changes (Fig. 6; also Fig. S3b). This effect was stronger

with increasing magnitudes of rate shifts, and ARBU-

TUS diagnostics also detected a poorer model fit as the

magnitude of rate shifts became bigger for both rate

increases and rate decreases (Fig. 5). The mean of the

squared contrasts (M.SIG) was very rarely inadequate

across our analyses, and this particular diagnostic has

been previously identified as having low power to

detect model inadequacy (Pennell et al., 2015). We

therefore do not report or discuss M.SIG further. Also,

we did not specifically model directional trends of rate

variation in relation to ancestral states or branch

lengths. Accordingly, these ARBUTUS diagnostics do

not reveal any specific problems related to the models

fitted; rather, inadequacy levels follow the trends pre-

dicted by the tests related to temporal and total rate

variation (Fig. S1).

Model ability to account for overall rate heterogeneity
Single-process models recorded particularly high levels

of inadequacy when heterogeneity is simulated as rate

increases on isolated terminal branches or on several

branches forming a clade (Fig. 5a). In addition, and as

expected, the BM and OU models frequently fail to

account for rate-deceleration processes across the whole

tree. Although designed to model rate heterogeneity,

BAMM also tended to underestimate total rate variation

(mostly positive C.VAR differences, Fig. S5a), and espe-

cially missed the rate increases on isolated terminal

branches. However, the inadequacy levels for BAMM

were typically lower than the single-process models.

Further, the time-flip proposal improved absolute ade-

quacy relative to the fixed time-varying prior in BAMM

(Fig. S4a). Overall, model adequacy in terms of captur-

ing rate heterogeneity was highest for BayesTraits;

however, it was also the only model that regularly

overinflated estimates of the total rate variation (nega-

tive C.VAR differences, Fig. S5a; also slightly higher dif-

ferences between true and estimated rates of evolution

compared with BAMM; Fig. 6).

Model ability to account for temporal rate variation
Not surprisingly, the BM and EB models described the

temporal aspect of rate variation poorly when rate

increases were simulated on terminal isolated branches

(Fig. 5b), as they underestimated these late shifts (neg-

ative S.HGT, Fig. S5b). BAMM also showed a ubiqui-

tous tendency to overestimate rates early on and

underestimate the late increases (all negative S.HGT;

Fig. S5). All models except BAMM were unable to

accurately account for rate-deceleration processes across

the whole phylogeny (Fig. 5b), as they underestimate

high initial rates and overestimate terminal rates (all

positive S.HGT, Table S1). The EB model performed

better than the BM and OU models (as expected), and
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BayesTraits, but still tended to miss fast decelerating

processes. Early bursts also led to the highest inade-

quacy levels for BayesTraits compared with all other

heterogeneity scenarios (Figs 5 and 6).

The influence of tree size on model ability to detect rate
shifts; tendency of variable-rates models to overfit;
likelihood tests
The ability of BayesTraits to detect a rate shift on indi-

vidual branches or across a whole clade was not influ-

enced by the size of the simulated trees (Figs S6–S8).
The ability of BAMM-flip to detect a clade rate shift did

not differ between trees of different sizes although on

average the model recovered rate increases better in

bigger trees (Fig. S9). Further, the ability of BayesTraits

to detect a clade shift in trees of 100 tips was little

influenced by the size of the heterogeneous clade

(Fig. S10). Similarly, BAMM-flip recovered clade rate

changes similarly well across different clade sizes

(Fig. S11). Universally, the main factor affecting model

ability to detect rate shifts was the shift magnitude, and

models recovered big shifts better than smaller ones, in

respect of both increases and decreases in the rate of

evolution.

BayesTraits commonly inferred rate increases up to

two-fold when fitted on constant-rate trees and associ-

ated data (26–33% frequency of trees with rate shifts);

however, the frequencies of trees with shifts dropped

considerably when considering rate changes bigger

than 95 (8.5%), 910 (0.5%) and 920 (0%,

Table S2). Further, the vast majority of rate increases

occurred on terminal branches. There was no clear

tendency for BAMM to infer false early rate-decelerat-

ing processes when fitted on constant-rate trees and

trait data, using either a time-flip proposal (b distribu-

tions average around a mean = �0.14 � 0.18 SD, and

a median = �0.08) or not (b mean = �0.12 � 0.43

SD, and a median = �0.07, Fig. S12). Per-branch com-

parisons between the estimated and true rates of evo-

lution across constant-rate trees also show no

worrying amount of overfit from variable-rates models;

however, rates inferred by BAMM-flip show more

noise around the true values compared with Bayes-

Traits (Fig. S2).

Fig. 5 Model inadequacy levels (quantified as the frequency of trees and associated trait data where the focal model was inadequate)

across a simulated Brownian motion process (no shifts, i.e. shift magnitude = 1) and rate-heterogeneity scenarios: internal branch shift;

clade event; rate changes on isolated, terminal branches; rate burst followed by gradual decreases within a clade, and constant rate-

deceleration process from root to tips. Single-process (BM, OU and EB) and variable-rates models (BayesTraits and BAMM with time-flip

proposal) are considered. Inadequacy levels measure model ability to account for (a) total rate variation and (b) temporal variation.

Inadequacy is quantified separately for rate increases (inc, up-pointing triangles) and decreases (dec, down-pointing triangles), and the

exact magnitude of each shift is highlighted by the white–black colour scheme. For scenarios involving gradual rate changes, the natural

logarithm of the shift magnitude represents the constant rate-change parameter.
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When considering the data simulated with single

branch, clade and terminal shifts, b values also dis-

tributed normally, but the central points and deviations

differed across heterogeneity scenarios (Fig. S13). When

evolution was constrained to time-varying processes

(Fig. S13b), b distributions were slightly shifted right

towards positive values for simulated rate increases;

that is, BAMM infers processes of slight gradual rate

increases at the root when some late rate increases are

present. This trend was, however, corrected by BAMM-

flip (Fig. S13a). Using the time-varying constrained

BAMM alternative also resulted in many weak deceler-

ation processes at the root, rectified by BAMM-flip (b
much narrowly distributed along the 0 line). Both

BAMM versions approximated slightly steeper rate-

deceleration processes as a response to discrete rate

decreases late in the clade (wider ranged b distribu-

tions). Per-branch differences between estimated and

simulated rates of evolution also showed a small ten-

dency for BAMM-flip to overestimate rates of evolution

on nonchanged branches as a response to big rate

increases at the tips (Fig. S2b). Conversely, BayesTraits

underestimated rates on nonchanged branches in these

trees (Fig. S2a).

As expected, single-branch shifts do not leave much

signal in the tip data, whereas clade events and shifts

on multiple isolated terminal branches have a high

likelihood of being detected by models. Similarly, rate

decreases are much less detectable compared with rate

increases, and, as the magnitude of a shift increases, so

does its signal in the tip data (Fig. 7).

Absolute vs. relative model fit selection criteria in the
presence of rate heterogeneity
Across scenarios simulated under a BM process with

discrete shifts (internal branch shift, clade event and

terminal rate shifts), the BM model was expectedly

most often favoured by model selection criteria, fol-

lowed by the OU and EB processes (Fig. 8). Similar to

the empirical data, the relative preference for the OU

model was not spread randomly across the heterogene-

ity scenarios considered; rather, the OU model was par-

ticularly favoured in scenarios involving big rate

increases on branches late in the phylogeny (Fig. 8b).

Further, relative model selection criteria did not reflect

the absolute fit of models, and the cases in which the

OU model was picked up as best across these simula-

tions were clearly linked with a high inadequacy of all

three single-process models fitted (Fig. 9).

Discussion

Patterns of rate heterogeneity in avian body mass
evolution and consequences to model fit

Generally, variable-rates models performed well in cap-

turing the phylogenetic distribution of the data, as high-

lighted by their low levels of inadequacy across

ARBUTUS diagnostics, on both simulated and empirical

data sets. Allowing for rate heterogeneity when mod-

elling trait evolution can thus provide a robust approach

to understanding trait evolution, both in the presence

and absence of variability in rates. Conversely, assuming

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●

●

●

●

●

●

●

Lo
g 

(e
st

im
at

ed
−r

at
e 

/ t
ru

e−
ra

te
)

Sg−branch
(a) Bayes traits

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●
●

●

● ● ●
●

Clade

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●

●

●

●

●

●
●

Terminal

−5
0

5
10

15

0.05 0.1 0.2 0.5

● ●

●

●

Clade
gradual

−5
0

5
10

15

0.05 0.1 0.2 0.5

●

●

●

●

Root

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●

●

●

●

●

●

●

Lo
g 

(e
st

im
at

ed
−r

at
e 

/ t
ru

e−
ra

te
)

Sg−branch
(b) BAMM−flip

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●
●

●

●
● ● ●

Cade

−5
0

5
10

15

0.05 0.1 0.2 0.5 2 5 10 20

●

●

●

●

●

●
● ●

Terminal

−5
0

5
10

15

0.05 0.1 0.2 0.5

●
●

●

●

Clade
gradual

−5
0

5
10

15

0.05 0.1 0.2 0.5

● ● ● ●

Root

Fig. 6 Distributions of log-proportions between rates estimated by variable-rates models and the true (simulated) rate changes on the

identical branches. Distributions are shown for various shift magnitudes (x-axis) and heterogeneity scenarios: internal branch shift; clade

event; rate changes on isolated, terminal branches; rate burst followed by gradual decreases within a clade, and constant rate-deceleration

process from root to tips. Results for BayesTraits (a) and BAMM-flip (b).

ª 2 0 1 6 T H E A U T HO R S . J . E V O L . B I O L . 2 9 ( 2 0 1 6 ) 2 5 0 2 – 2 5 1 8

J O U RN A L O F E V O L U T I O N A R Y B I O L OG Y PU B L I S H E D B Y J O HN W I L E Y & S ON S L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N AR Y B I O L OG Y

Modelling variable trait evolutionary rates 2511



a constant process can misguide the choice of best model

and generate poor inferences about the evolutionary

process across groups of interest. The intensity of body

mass rate variation fluctuated across avian phylogenetic

groups, but rate heterogeneity was prevalent. As a conse-

quence, single-process models commonly gave poor esti-

mates on the total amount of rate variation present in

these data sets and were highly inadequate compared

with the more flexible variable-rates approaches. In gen-

eral, evolutionary models recorded similar inadequacy

tendencies across simulated and empirical data sets, rul-

ing out biases such as phylogenetic or measurement

error as determinants of inadequacy differences between

models in favour of rate heterogeneity. Observations on

model inadequacy specific to the empirical data sets

likely signalled attributes of avian body mass evolution.

Several clades (e.g. albatrosses, shearwaters, petrels,

Fig. S99b; Whistlers, Fig. S36b) showed a characteristic

of high rates early in the phylogeny followed by rate-

decelerating processes, identified by BAMM and the EB

model. The simulation step highlighted the tendency of

BM, OU and BayesTraits to miss such patterns. There-

fore, where inferred, early bursts are likely an accurate

description of body mass evolution. Accordingly, the

distribution of the BAMM rate-decay parameters at the

root (b) across the empirical data was fat-tailed, with

the outliers signalling the burst processes (Fig. S14).

BAMM without the time-flip algorithm recorded more

powerful decelerating processes at the root (i.e. smaller

b values), alerting on a potential bias for this strict

time-varying alternative to infer false extreme early

rate-decay processes (especially in clades with < 50 spe-

cies). Additionally, variable-rates models identified rate

heterogeneity in the form of branch rate decreases or

increases that are not passed to descendants making up

a monophyletic group, recurrent whole-clade events
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and changes on nonclustered, terminal branches. Both

BayesTraits and BAMM reveal a similar prevalence of

rate variation in avian clades (Fig. 2). We are aware

that quantifying the extent of this variation based on

per-branch shifts is not particularly suitable for BAMM,

as it can miss or misinterpret gradual processes. How-

ever, the algorithm was generally robust, and there was

only one extreme case in our analyses: the fast rate-

deceleration process in albatrosses, shearwaters, petrels

was quantified as a BAMM-flip output of 15 single-

branch bursts (Fig. 2b). Some of the avian clades

identified in our analyses with a high degree of rate

heterogeneity in body mass evolution have also been

associated with high diversification rates and rapid radi-

ations (e.g. ovenbirds, select gulls, hummingbirds, ant

birds and tyrants; Jetz et al., 2012).

The forms of rate heterogeneity we report are most

likely not a statistical artefact, given the high preva-

lence of consistent rate-variation patterns and the gen-

eral low inadequacy levels of variable-rates models.

Moreover, similar patterns have also been reported

across a variety of phylogenetic groups: clade rate

increases (Pacific minnows, Martin & Bonett, 2015)

and decreases (Taphozous bats, Venditti et al., 2011),

similar group events, but involving a basal shift, propa-

gated then throughout the clade of interest (Ctenotus

lizards, Rabosky et al., 2014a), single-lineage internal

bursts restricted to the branches leading to Hominidae

(great apes), Chiroptera (bats, Venditti et al., 2011) or

Mysticeti (baleen whales, Baker et al., 2016). Such

phylogenetic distributions of rates reinforce the impor-

tance of allowing for lineage-specific rate changes when

modelling trait evolution, in order to avoid inaccurate

inferences about the evolutionary process. As pre-

sented, even for phylogenetic scales up to hundreds of

species one could attribute differences in the rate of

evolution between groups to a general clade event

rather than to considerable changes on a single or

restricted number of lineages.

We used the output of variable-rates models in con-

junction with adequacy checks to clarify the conclusions

on the tempo of trait evolution in some problematic

avian groups. For example, across tanagers and allies,

the OU model had a clear superior relative fit. However,

all single-process models were inadequate, and variable-

rates models further showed an exceptional burst of evo-

lution within the clade consisting of Galapagos finches

(Fig. S78). Thus, based on relative fit only, an interpreta-

tion of constrained evolution could have been preferred

to a completely different, limited island radiation

hypothesis. We identified the same issue even when the

number of radiating species was very small (like the case

of steamer ducks, a genus of only four flightless ducks,

Fig. S74). Absolute adequacy checks also guided output

interpretation for variable-rates models. For example, in

the clade Procelariidae, BayesTraits inferred a single-

branch shift increase ancestral to albatrosses, evolving

towards a big body size (Fig. S99a). BAMM, however,

inferred this ancestral increase as part of an early burst

process spanning across the whole phylogeny

(Fig. S99b). ARBUTUS signalled that BayesTraits inade-

quately described the temporal variation in this group

and missed early fast rates, thus favouring the BAMM

interpretation of rate variation on this tree. The EB

model also modelled temporal heterogeneity accurately

but missed the complexities of rate variation across the

whole clade (positive C.VAR, Fig. S99c).

We only used trees containing species where

sequence data was available, ruling out a potential over

inflation of rate heterogeneity (especially towards the

tips) or biased model preference towards an OU model

due to incorporating species based on taxonomic infor-

mation only (Rabosky, 2015). We did not, however,

incorporate measurement error into our empirical anal-

yses, which could potentially cause an overestimation

of rate heterogeneity across the body mass data (Silve-

stro et al., 2015). From the two variable-rates models

included in our analyses, BayesTraits can account for

measurement error by modelling many rate increases

on isolated terminal branches, but it cannot be distin-

guished whether the presence of such increases in the

outputted scaled trees is caused by noisy data or real

rate changes at the tips. However, our analyses on sim-

ulated data sets showed that the model rarely gives

false substantial rate changes at the tips. Still, we argue

that some rate variation across empirical data sets

should be interpreted with caution, if at all, and the
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above-mentioned considerations led us to not take into

account rate shifts smaller than 92 when quantifying

patterns of avian trait evolution (Fig. 2).

Heterogeneity patterns that mislead models

As a general rule, specific forms of heterogeneity and not

the general complexity of rate variation caused problems

for evolutionary models. That is, when a specific rate-

heterogeneity pattern caused a model to fit poorly, the

effect occurred frequently across all simulations. For

example, data simulated with a shift in rate across a

whole clade led to poor performance of candidate mod-

els, regardless of whether other types of shifts were also

simulated. Having simulated under a range of scenarios

and magnitudes enabled us to mark how models approx-

imate trait evolution in response to various heterogene-

ity cases, and also highlight which and to what extent

rate-variation scenarios mislead model inference.

There was a clear difference between how models

handled increases and decreases in the rate of evolu-

tion. Single-process models came out as more adequate

in the presence of rate decreases compared with

increases. This difference in model fit is probably a con-

sequence of the small likelihood that discrete branch

rate decreases leave any signal in the data (Fig. 7). That

is, single-process approaches do not approximate rate

decreases better; rather, this form of rate variation is

hardly tractable in the data, and many different pro-

cesses alongside rate shifts can theoretically lead to that

particular tip trait distribution. Similar to rate decreases,

single internal branch shifts were typically not flagged

up as being inadequately described across models,

because a single internal branch has little impact on the

likelihood of the model (except when the shifts have a

large magnitude, Fig. 7a). Variable-rates methods also

showed good absolute fit when ran on trees and tip

data simulated under single-branch shifts and rate-

decreases scenarios; however, models estimated these

rate changes with a similar true accuracy as other

heterogeneity scenarios (Fig. 6).

Multiple branch increases had a high negative impact

on model adequacy. Isolated terminal increases were

particularly troublesome compared with whole-clade

events, potentially because single-process models

accommodate rate variation by changing estimated r²
on several branches adjacent to the ones presenting

rate shifts. Thus, changes on nonclustered branches can

cause a wide spread of falsely inferred rates. Similarly,

BAMM shapes rate heterogeneity as a process across

multiple branches, and it is less able to capture single-

branch shifts (Rabosky & Huang, 2016). In BAMM,

detection of single-branch shifts requires two events

(i.e. nested rate shifts with modelling of an increase at

the start of a branch followed by a subsequent

decrease). In contrast, BayesTraits explicitly allows

changes on single branches with one event.

Accordingly, BAMM had poorer ARBUTUS diagnostics

in the presence of isolated tip increases (Fig. 5) and

overestimated rates of evolution on the untransformed

branches in trees with simulated terminal rate changes

(Fig. S2). However, the method accurately described

heterogeneity in the form of whole-clade rate increases.

Also, the accuracy of estimates improved when using

the more flexible BAMM-flip version.

The root-to-tip rate-decelerating process caused most

spurious results across all models except BAMM. Even

the EB model missed these processes in almost 20% of

cases, particularly when a steep decrease was involved

[a = log(0.05) or log(0.1)]. BayesTraits was also largely

unable to describe early bursts (Figs 5 and 6). The lack of

strength in modelling early bursts by models (except

BAMM) was highlighted in the empirical data sets as

well, and the EB was often not separated clearly from

the BM in terms of relative fit, despite its superior ade-

quacy in modelling temporal rate variation. These results

add to the body of ideas advocating that early bursts are

often not identified across data sets (Harmon et al., 2010;

Slater et al., 2010; Venditti et al., 2011; Alhajeri et al.,

2015) not necessarily because such scenarios are scarce

in nature, but because current models do not have the

power to detect them, and early shifts leave little signal

in the tip data (Slater & Pennell, 2014).

The size of simulated trees did not generally affect

the ability of variable-rates models to recover rate

shifts, and these methods were similarly robust for trees

of 25 to 200 species. The detectability of rate shifts was

largely influenced by the shift magnitude, and by

whether a shift was on isolated branches or as part of a

clade (for BayesTraits, grouped events were more easily

detected). These results hence mirror the patterns of

absolute adequacy seen throughout the main analyses,

and variable-rates models prove suitable for detecting

heterogeneity even when the group of interest is fairly

small. Similarly, we did not find the number of species

involved in a clade event to affect the shift detectabil-

ity; however, we only had data for clades ranging

between 10 and 30 species. Conversely, the magnitude

of the regime shift had a substantial effect on the model

ability to recover the event, and most likely potential

effects of a larger variability in clade sizes wane when

the shift magnitude is taken into account; that is, small

clades with a big magnitude shift will be successfully

recovered by models (e.g. body mass evolution in the

steamer ducks, Fig. S74), but for small magnitudes, a

bigger clade might be needed. Of the two variable-rates

models included, BAMM-flip showed some sensitivity

to both tree and clade size, specifically regarding its

ability to detect the larger rate shifts.

Other limitations of variable-rates models

BayesTraits generally approximated trait evolution with

low inadequacy levels; however, the model did tend to
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overestimate total rate heterogeneity, mostly because it

inferred multiple false terminal rate increases. We

repeated the adequacy analyses on the simulated hetero-

geneity scenarios using the mean (rather than the med-

ian) branch lengths to summarize the posterior scaled

trees from the variable-rates models. Following this

approach, BayesTraits clearly registered higher inade-

quacy levels (Table S4, Fig. S16), mostly determined by

cases of extreme terminal increases with a low probabil-

ity in the posterior that caused additional untrue termi-

nal branch shifts in the averaged scaled trees.

Approaches such as BayesTraits have been accused of

overinflating rate variation before (Ho et al., 2014),

mainly because of the relaxed/permissive nature of (de-

fault) priors. Further, our analyses on trees and trait data

simulated with no rate shifts showed that although con-

siderable rate shifts (i.e. > five-fold) inferred using

BayesTraits are probably supported by the data, more

caution is needed when making inferences about smaller

(< two-fold) rate changes at the tips.

BAMM was prone to underestimations of total rate

variation and an inability to account for isolated tip

increases, expected as heterogeneity is modelled in a

less flexible framework compared with BayesTraits

(Rabosky & Huang, 2016). Allowing the model to flip

between time-varying and time-constant processes did,

however, improve fit in comparison with the con-

strained time-varying version (Fig. S4a). Further,

BAMM showed an inclination towards rate-decelerating

processes, as shown by (i) a negative S.HGT ubiqui-

tously across the analyses, (ii) the distributions of the

rate-change parameters governing the root regime (b)
and (iii) the comparison between estimated and true

rates on branches with no simulated rate shifts. There-

fore, BAMM tends to infer some false early bursts in

both the presence and absence of rate heterogeneity,

but the intensity and prevalence of these erroneous

inferences is low. Using a BAMM-flip alternative also

reduces the occurrence of false rate bursts; however,

BayesTraits still showed best true fit under the assump-

tion of homogeneity in rates (Fig. S2).

There are several other approaches to rate hetero-

geneity in trait evolution, and a notable body of such

models use parametric methods to model a distribution

of evolutionary rates that allows jumps (e.g. Landis

et al., 2013; Elliot & Mooers, 2014). Elliot & Mooers

(2014) method is readily available in StableTraits; how-

ever, the outputted scaled tree (i.e. a tree with

branches scaled by the rate of trait evolution) cannot

be equated with a parameterized global transformation

of the branch lengths. Hence, we could not use the

output of StableTraits to build the unit tree in ARBU-

TUS. Pennell et al. (2015) also warn that jump methods

are not (yet) compatible with the ARBUTUS frame-

work. Further, BayesTraits is a nonparametric

approach, and the single-lineage bursts are likely a

good approximation of a rate jump. Thus, we believe

that jump methods would produce similar patterns in

the evolutionary process, and record similar adequacy

levels with BayesTraits.

Absolute vs. relative model fit in the presence of
rate heterogeneity

A relative preference for the OU model (and deriva-

tives) over other single-process models is widespread in

the literature (e.g. Collar et al., 2009; Harmon et al.,

2010; Blackburn et al., 2013; Knope & Scales, 2013;

Price & Hopkins, 2015), but there are many challenges

attributed to estimation and interpretation of this model

(Ho et al., 2014; Cooper et al., 2016). Pennell et al.

(2015) found the OU method is largely inadequate

even though it predominantly scored highest AICw

over the BM and EB models on angiosperm data sets.

Our adequacy analyses also linked high relative fit for

OU methods with cases of high inadequacy for all sin-

gle-process models included, across both simulated and

empirical data sets. Particularly, when species record

very high rates of evolution late in the phylogeny

(especially nonclustered species), the OU model is

favoured by relative selection criteria over other

approaches. The link between inadequacy levels and

model relative fit was stronger across the simulated

compared with the empirical data, likely due to the

existence of other evolutionary processes besides rate

shifts that affect relative fit across avian data sets.

Nonetheless, often a high relative fit for the OU model

was a consequence of rate heterogeneity, and not of

body mass evolution under an OU-type process. Not

accounting for measurement error could have also

caused a biased preference for the OU model across the

empirical data sets (Silvestro et al., 2015); however, the

link between late rate heterogeneity and a bias for the

OU model clearly emerges from the results on the sim-

ulated data sets, ruling out the possibility that measure-

ment error is solely responsible for the biased selection

criteria across the avian data sets.

Conclusions

Evolutionary models continue to be developed to

approximate the macroevolutionary process with a

higher degree of realism, by dealing with increasingly

complex deviations from a simple process. Here we

used a large data set of avian body mass to show that

variation in the rate at which traits change can be a

common event in relatively small phylogenetic clades

(up to hundreds of species). We further used both

empirical data and simulated rate-heterogeneity scenar-

ios to show that allowing rates of evolution to vary in

the absence of a priori assumptions about the magni-

tude or location of shifts represents a reliable method

to pattern trait evolution. Variable-rates approaches do

have limitations; heterogeneity in the form of rate

ª 2 0 1 6 T H E A U T HO R S . J . E V O L . B I O L . 2 9 ( 2 0 1 6 ) 2 5 0 2 – 2 5 1 8

J O U RN A L O F E V O L U T I O N A R Y B I O L OG Y PU B L I S H E D B Y J O HN W I L E Y & S ON S L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N AR Y B I O L OG Y

Modelling variable trait evolutionary rates 2515



decreases and single-branch changes is hard to detect

and generates poor method fit. Further, rate increases

on terminal branches can be poorly approximated even

when allowing for rate variation, and early bursts in

particular are often misquantified by BayesTraits. How-

ever, we show that interpretation can be guided by the

use of absolute adequacy tests. We also underline the

potential for misleading inferences when using relative

model selection criteria only, for example missing early

bursts or favouring OU-type processes when late rate

variation is present. This work does not invalidate the

concepts behind standard single-process methods;

rather, we advise using the more flexible applications

of these approaches (e.g. implementation of EB and OU

models in a Bayesian framework; Pennell et al., 2014;

Uyeda & Harmon, 2014).
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BAMM models.

Table S1 Model inadequacy levels across a simulated

constant rate-deceleration process from root to tips, and

a simulated rate-burst followed by a gradual decrease

within a clade.

Table S2 Frequency at which BayesTraits infers rate

shifts in the absence of rate-heterogeneity (i.e. on trees

and associated tip-data simulated under a BM mode of

evolution).
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