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Summary
For well over half of the 150 years since the discovery of the neural crest, the special ability of

these cells to function as a source of species-specific pattern has been clearly recognized. Ini-

tially, this observation arose in association with chimeric transplant experiments among differen-

tially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted.

Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific informa-

tion on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its

differentiation became readily apparent. Since then, what has emerged is a deeper understand-

ing of how the neural crest accomplishes such a presumably difficult mission, and this includes a

more complete picture of the molecular and cellular programs whereby neural crest shapes the

face of each species. This review covers studies on a broad range of vertebrates and describes

neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific

pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of

cell-autonomous and non-autonomous signaling interactions through which neural crest gener-

ates species-specific pattern in the craniofacial integument, skeleton, and musculature. By con-

trolling size and shape throughout the development of these systems, the neural crest underlies

the structural and functional integration of the craniofacial complex during evolution.
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1 | INTRODUCTION

The notion that neural crest cells generate species-specific pattern has

a long and colorful history. Some of the earliest indications first arose

from surgical transplantation experiments designed to exploit pigment

variations in amphibian embryos. Around the beginning of the 20th

Century, embryologists such as Born (1896), Harrison (1898, 1903),

and Spemann (1918) pioneered the use of chimeras, that is combining

embryonic components from distinct animal species, to follow the

movements and fates of cells, and understand the inductive properties

of tissues (Harrison, 1935; Mangold, 1923; Mangold & Seidel, 1927;

Noden, 1984; Spemann, 1938; Spemann & Mangold, 1924). Their reli-

ance on intrinsic differences in the number, distribution, and color of

intracellular pigment granules as a means to keep track of donor versus

host tissues was actually a proxy for a neural crest-derived lineage

(i.e., melanocytes), something which was suggested by Harrison (1910)

and others but which remained debatable at the time (Dorris, 1938;

DuShane, 1934, 1935, 1938, 1939; Harrison, 1969; Holtfreter, 1933;

Raven, 1931). Soon thereafter, numerous efforts were underway to

determine the extent to which neural crest cells establish inter- and

intra-specific pigment patterns and to sort out the effects and/or role

of interactions with epidermis (Clark Dalton, 1950; Harrison, 1935;

Hörstadius, 1950; Macmillan, 1976). For example, neural crest trans-

plants among the tiger salamander, spotted salamander, or white and

black strains of the Mexican salamander revealed that the “characteris-

tic adult spots of the graft are in most cases distinctly different from

those of the host, and are similar to those of donor adults” (DuShane,

1935, p. 25). Other interspecific transplants also confirmed this finding

(Twitty, 1936, 1945; Twitty & Bodenstein, 1939). Thus, what became

evident was that “the type of pattern as a whole depends upon
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qualities intrinsic to the crest-cells” (Hörstadius, 1950, p. 75). What

remained unknown was if the neural crest was playing a comparable

role in providing species-specific patterning information for any of its

other derivatives, something that chimeras could help resolve.

Chimerism was all the rage at the dawn of experimental embryol-

ogy given its great potential to reveal morphogenetic mechanisms

during normal development that lead to the progressive integration of

ectoderm, mesoderm, and endoderm; but also, because chimerism

could provide a window into the developmental basis for evolutionary

variation among species. In his comprehensive review, “Heteroplastic

Grafting in Embryology” Harrison (1935) claimed with regard to mak-

ing chimeras that, “the applicability of the method rests upon the fact

that there are related species that differ from one another in pigmen-

tation, rate of growth and development, ultimate size, relative time of

appearance of organs, or even in the presence or absence of organs,

while at the same time their tissues show a mutual tolerance when

combined in one organism” (Harrison, 1969, p. 216). Results of these

chimeric transplants among different taxa (i.e., species, genera, fami-

lies, and even orders such as frogs and salamanders) indicated that

some donor tissues did not convey species-specific information.

Harrison (1935) further described conclusions from a broad range

of studies and stated that, “In general, inducers are not specific.…But

the induced organ has entirely the character of the species from

which it is developed” (Harrison, 1969, p. 217). For example, in classic

“organizer” studies (Spemann, 1918, 1938; Spemann & Schotte,

1932), where some of the donor tissues were from salamander endo-

derm, the induced mouth parts remained frog-like leading to Spe-

mann's purported description of the conversation between the host

ectoderm tissue and its endoderm inducer, “you tell me to make a

mouth; all right, I'll do so, but I can't make your kind of mouth; I can

make my own and I'll do that” (Harrison, 1933, p. 318).

In contrast, when entire limb buds were exchanged between two

species of salamanders with very different rates of development or

where the limbs themselves varied greatly in size, the resultant chi-

meras always had limbs like that of the donor in terms of timing of mat-

uration and morphology (Detwiler, 1930; Harrison, 1915, 1917, 1924;

Schwind, 1932; Swett, 1930). Grafts of other embryonic rudiments and

whole organs such as the eye, ear, heart, teeth, or gills produced equiv-

alent results (Copenhaver, 1930; Harrison, 1929, 1935; Huxley, 1932;

Kaan, 1930; Richardson, 1932; Stone, 1930; Twitty, 1930, 1932, 1934;

Twitty & Schwind, 1931), with the conclusion being that somewhere

within a composite organ resided the source of species-specific

pattern.

Subsequent explorations of the relative contributions of the con-

stituent parts of these composite organs began to shed light on this

issue, particularly with regard to the requisite role for derivatives of

each of the three germ layers. In the case of the eye, the lens (from

surface ectoderm) and the optic cup (from neural ectoderm) were

mutually regulating (Harrison, 1929, 1935; Stone & Dinnean, 1940;

Twitty, 1930, 1932), whereas host eye muscles (from paraxial meso-

derm) were subservient to the eye itself and would accommodate the

size, orientation, and location of the donor eye (Twitty, 1930, 1932,

1934, 1966). In the case of the forelimb, the mesoderm, which pro-

duces the muscles and skeleton, would always determine its size,

shape, and growth rate, whereas the ectoderm had limited influence

(Harrison, 1935; Rotmann, 1931, 1933; Schwind, 1931, 1932).

Like what had been observed for pigment patterns, the gills or

branchial system of the pharynx provided clear evidence for a domi-

nant role of neural crest-derived mesenchyme not only in generating

the jaw and gill cartilages themselves (Landacre, 1921; Platt, 1891,

1893, 1898; Stone, 1922, 1926, 1929) but also in determining their

species-specific pattern (De Beer, 1947; Harrison, 1935). In addition to

the neural crest skeletal derivatives, the gill arches contain a pouch

lined by endoderm, muscles from the mesoderm, and an outer epithe-

lium from the ectoderm (De Beer, 1937; Goodrich, 1913, 1918, 1930).

Numerous grafting experiments of each of these constituents either

separately or in various combinations (Adams, 1931; Harrison, 1921,

1935; Holtfreter, 1936; Rotmann, 1931, 1933; Severinghaus, 1930;

Spemann, 1921; Stone, 1932) showed that the ectoderm, mesoderm,

and endoderm had mixed and inconsistent effects on the size, shape,

and rate of development of the external gills.

In stark contrast, were the neural crest cells, which according to

Harrison (1935) were “Far more conclusive” and had “a profound

effect upon the development of the branchial system, particularly the

visceral skeleton” (Harrison, 1969, p. 233). For example, transplants of

neural crest from a larger species of salamander in place of neural

crest from a smaller species gave rise to pharyngeal arches with the

size and shape of the donor species (De Beer, 1947; Harrison, 1933;

Hörstadius, 1950). Other neural crest transplants among frogs and sal-

amanders also produced donor-like cartilages in the pharyngeal arches

and jaw skeleton (Andres, 1949; Fassler, 1996; Hall & Hörstadius,

1988; Hörstadius & Sellman, 1941, 1946; Noden & Schneider, 2006;

Raven, 1931, 1933, 1935; Spemann & Schotte, 1932; Wagner, 1959).

Early on, such work suggested to scientists like Raven (1933), as con-

veyed by Hörstadius (1950) that, “the neural crest in the head might

have a special task in connection with its movements, as a carrier of

inductive influences” (p. 93). This classic body of literature demon-

strated clearly that, “transplanted neural crest cells express a species-

specific patterning that is an intrinsic property of the skeletogenic

cells” (Hall, 1999, p. 71). Moreover, this initial work garnered a much

deeper appreciation for the hierarchical levels of organization within

these complex developmental organ systems and pointed to the key

role for neural crest cells in the evolution of species-specific

morphology.

By the turn of the 21th Century, other transplant experiments in

non-amphibian taxa such as among mouse, human, chick, or quail

(Cohen et al., 2016; Fontaine-Perus, 2000; Fontaine-Perus & Cheraud,

2005; Fontaine-Perus, Cheraud, & Halgand, 1996; Fontaine-Perus

et al., 1997; Kirby, Stadt, Kumiski, & Herlea, 2000; Lwigale &

Schneider, 2008; Mitsiadis, Caton, & Cobourne, 2006; Mitsiadis, Cher-

aud, Sharpe, & Fontaine-Perus, 2003; Pudliszewski & Pardanaud,

2005; Serbedzija & McMahon, 1997); among divergent species of

birds including quail, chick, duck, and emu (Ealba et al., 2015; Eames &

Schneider, 2005, 2008; Fish & Schneider, 2014a, 2014b; Fish, Sklar,

Woronowicz, & Schneider, 2014; Hall et al., 2014; Jheon & Schneider,

2009; Le Douarin, Dieterlen-Lievre, Teillet, & Ziller, 2000; Merrill,

Eames, Weston, Heath, & Schneider, 2008; Schneider, 2005, 2015;

Schneider & Helms, 2003; Sohal, 1976; Solem, Eames, Tokita, &

Schneider, 2011; Tokita & Schneider, 2009; Tucker & Lumsden, 2004;
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Woronowicz, Gline, Herfat, Fields, & Schneider, 2018; Yamashita &

Sohal, 1986); as well as between Mexican cavefish and surface fish

(Yoshizawa, Hixon, & Jeffery, 2018), reinforced the conclusion that

species-specific pattern in the craniofacial complex is largely driven by

the neural crest. Harrison (1969) argued that such an ability is due to

“congenital specific factors” that “control the relative growth rate”

(p. 31) of grafts. Noden (1984) correspondingly observed that, “while

quail tissues differentiate more rapidly, they generally form smaller

skeletal structures than do chick tissues” (p. 274), which in the case of

quail-chick chimeras leads to the formation of shorter quail-like upper

and lower portions of the beak, depending on from where along the

neural tube the quail donor neural crest cells are derived. In other

words, donor neural crest cells keep track of their intrinsic rates of

development, and that appears to have direct implications for the gen-

eration of species-specific size and shape in the craniofacial complex.

Discerning exactly how neural crest accomplishes such a seem-

ingly complicated task and pinpointing precise morphogenetic mecha-

nisms that ultimately function as determinants of species-specific

pattern, has been a goal of work from our lab over the past 15 years.

Somewhat systematically, we have been investigating the extent to

which the cranial neural crest directs the patterning of its own deriva-

tives (e.g., cartilages, bones, tendons), as well as those arising from

ectoderm (e.g., feathers and egg teeth) and mesoderm (e.g., muscles,

blood vessels, osteoclasts) in order to understand how the major sys-

tems of the craniofacial complex become structurally and functionally

integrated during development and how they become modified during

evolution (Figure 1a). Such work, which has helped illuminate the ori-

gin of species-specific pattern, is summarized and contextualized in

the sections below.

2 | ORIGIN OF SPECIES-SPECIFIC VERSUS
SPECIES-GENERIC ASPECTS OF PATTERN

When describing species-specific pattern, what is typically meant are

those relatively unique morphological or behavioral features of an

organism that often appear well-suited to meet certain functional, eco-

logical, sexual, or other kinds of selective pressures. Moreover, such

features can be defining and used to distinguish one species (or higher

taxonomic level) from another. In this context, and in terms of morphol-

ogy, a type of species-specific pattern that has long been of central

concern pertains to changes in size and shape during development and

evolution (Fish & Schneider, 2014b; Schneider, 2015, 2018). This focus

was most significantly catalogued and detailed over 100 years ago by

Thompson (1917) in his celebrated tome, On Growth and Form. Using a

geometric system of Cartesian coordinates, Thompson strove to

describe transformations in the size and shape of organs and organisms

during the growth of individuals and across different species. In so

doing, he helped spawn an entire discipline of morphometrics that con-

tinues to this day (Arthur, 2006; Benson, Chapman, & Siegel, 1982;

Bookstein, 1978, 1990; Gayon, 2000; Hallgrimsson et al., 2015; Mar-

cus, 1996; Schneider, 2018; Siegel & Benson, 1982; Stern & Emlen,

1999; Zelditch, 2004).

Since Thompson, many other scientists have endeavored to

address the origins of species-specific size and shape through

mathematical, theoretical, and experimental means, ultimately in

search of underlying genetic, molecular, cellular, or other developmen-

tal mechanisms including allometry and heterochrony (Alberch, 1982a,

1985, 1989; Alberch, Gould, Oster, & Wake, 1979; Anderson & Busch,

1941; Atchley, Rutledge, & Cowley, 1981; Bertalanffy & Pirozynski,

1952; Clark & Medawar, 1945; Coppinger & Coppinger, 1982; Cop-

pinger & Schneider, 1995; De Beer, 1930; De Renzi, 2009; Drake,

2011; Godfrey & Sutherland, 1995; Gould, 1966, 1971, 1977; Hersh,

1934; Huxley, 1932, 1950; Huxley & Teissier, 1936; Kermack &

Haldane, 1950; Klingenberg, 1998; Lande, 1979; Lord, Schneider, &

Coppinger, 2016; Lumer, 1940; Minot, 1908; Needham & Lerner,

1940; Oster & Alberch, 1982; Oster, Shubin, Murray, & Alberch,

1988; Reeve, 1950; Rensch, 1948; Roth & Mercer, 2000; Shea, 1985;

Smith et al., 2015; Smith, 2003; Stern & Emlen, 1999; Von Bonin,

1937; Waddington, 1950, 1957). A common theme for much of the

research on size and shape relates to those changes that occur with

respect to developmental time either as a function of age or growth.

Minot (1908) laid the groundwork for this perspective by emphasizing

the importance of cell number, differentiation, and rates of growth in

the regulation of the size of animals and/or their organs. Thompson

(1952) later elaborated on this idea when stating that, “the form of an

organism is determined by its rate of growth in various directions;

hence rate of growth deserves to be studied as a necessary prelimi-

nary to the theoretical study of form, and organic form itself is found,

mathematically speaking, to be a function of time” (p. 79). Thus, given

that the neural crest generates species-specific pattern in the cranio-

facial complex, and this pattern can be defined primarily as the size

and shape of structures, then a critical insight could be gained by

understanding the extent to which the neural crest controls the timing

of events during development. A further question also remains, which

is from where do other aspects of craniofacial pattern (i.e., those that

are not necessarily species-specific) arise?

In addition to their species-specific pattern, structures likewise

possess many more “species-generic” aspects of pattern. These

include their axial orientation (e.g., dorsal-ventral, medial-lateral,

proximal-distal, oral-aboral), anatomical identity (e.g., upper versus

lower jaw, eye versus ear), and tissue type (e.g., cartilage, bone, mus-

cle, tendon, nerve). For the most part, epithelia in the craniofacial

complex appear to supply the cues required for the establishment of

generic pattern and express the factors necessary to maintain out-

growth of individual components. For example, signaling by ectoder-

mal epithelium around the frontonasal process (i.e., the primordium

that gives rise to the mid- and upper-face) is essential for proper

expansion and orientation of skeletal elements along the dorsoventral,

mediolateral, and proximodistal axes (Foppiano, Hu, & Marcucio,

2007; Hu & Marcucio, 2009b; Hu, Marcucio, & Helms, 2003). Experi-

mentally rotating epithelium in the frontonasal process can lead to

mirror image duplications of upper beak structures along the dorsal–

ventral axis (Helms & Schneider, 2003; Hu et al., 2003; Marcucio,

Cordero, Hu, & Helms, 2005).

Similarly, endodermal epithelium that lines the pharynx is needed

for the proper axial orientation, anatomical identity, and growth of

cartilage and bone in the lower jaw and hyoid skeleton (Brito, Teillet, &

Le Douarin, 2006; Couly, Creuzet, Bennaceur, Vincent, & Le Douarin,

2002; Crump, Maves, Lawson, Weinstein, & Kimmel, 2004; David,
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FIGURE 1 (a) Pseudocolored scanning electron micrograph of a chick in cross-section [modified from Tosney (1982)] through the midbrain/

hindbrain boundary and first pharyngeal arch showing progenitors of tissues in the jaw and face. Modified from Ealba et al. (2015). (b) Skull and
lower jaw (mandible) of an adult quail and (c) duck in lateral view. Modified from Tokita and Schneider (2009). (d) Unilateral transplant of
presumptive quail neural crest from the posterior forebrain (fb), midbrain (mb), and anterior hindbrain (hb) into a duck host. Non-neural surface
ectoderm (se) and mesodermal mesenchyme (mm) are shown in dorsal view. Modified from Eames and Schneider (2008). (e) Distinct maturation
rates of quail (pink squares) versus duck (purple circles) after being stage-matched at HH9.5 for surgery (red triangle on the Y-axis) result in quail
donor cells remaining accelerated by approximately three stages within 2 days after surgery relative to the duck host [modified from Eames &
Schneider (2005)]. (f ) By stage 25, the frontonasal (fn), maxillary (mx), and mandibular (ma) primordia of quail and (g) duck appear similar in shape
but not in size (frontal view). Modified from Schneider (2005). (h) Sagittal section (in plane of white dashed line in panel g) in a chimeric quck
through the maxillary (mx) and mandibular (ma) region showing quail donor cells labeled with Q¢PN (black nuclei). Duck-host surface ectoderm
(se), pharyngeal endoderm (pe), mesodermal mesenchyme (mm) are unlabeled. The hyoid arch (hy) is also negative since its precursors were not
transplanted. Modified from Ealba and Schneider (2013). (i) By HH25, the frontonasal (fn), maxillary (mx), mandibular (ma), and hyoid
(hy) primordia (sagittal view) are surrounded by surface ectoderm (se), pharyngeal endoderm (pe) and forebrain neuroepithelium (fb), and contain
contributions from the neural crest, nasal placode (np), and cranial ganglia (V, VII, IX). Mesodermal mesenchyme (mm) produces muscles, vascular
endothelium, and some skeletal tissues. Modified from Schneider (2005)
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Saint-Etienne, Tsang, Schilling, & Rosa, 2002; Delloye-Bourgeois,

Rama, Brito, Le Douarin, & Mehlen, 2014; Graham, 2003; Haworth

et al., 2007; Kikuchi et al., 2001; Kimmel et al., 1998; Miller, Schilling,

Lee, Parker, & Kimmel, 2000; Piotrowski & Nusslein-Volhard, 2000;

Ruhin et al., 2003; Veitch, Begbie, Schilling, Smith, & Graham, 1999).

When endodermal epithelium is rotated surgically or removed, the

associated neural crest-derived skeleton follows accordingly (Couly

et al., 2002; Haworth et al., 2007). Therefore, both ectodermal and

endodermal epithelia function as local sources of signals for generic

pattern that elicit and/or maintain programmatic responses from the

adjacent neural crest-derived mesenchyme (Creuzet, Couly, & Le

Douarin, 2005; Ferguson, Tucker, & Sharpe, 2000; Higashihori, Buch-

tova, & Richman, 2010; Langille & Hall, 1993; Le Douarin, Creuzet,

Couly, & Dupin, 2004; Mitsiadis et al., 2003; Richman & Tickle, 1989;

Santagati & Rijli, 2003; Tak, Park, Piao, & Lee, 2017; Tucker, Yamada,

Grigoriou, Pachnis, & Sharpe, 1999; Wilson & Tucker, 2004). As will

be discussed later, such programmatic responses are in fact species-

specific, and they also reciprocally influence the temporal and spatial

domains of expression in adjacent epithelia (Eames & Schneider,

2005; Schneider & Helms, 2003).

Pharyngeal endoderm, and neural and non-neural ectoderm func-

tion as key epithelial signaling centers by releasing complex combina-

tions of secreted molecules from well-characterized pathways

including Bone Morphogenetic Protein (BMP), Sonic Hedgehog (SHH),

Fibroblast Growth Factor (FGF), and Wingless-Related (WNT) that are

indispensable to the proper patterning and differentiation of neural

crest mesenchyme (Alvarado-Mallart, 2005; Anderson, Lawrence,

Stottmann, Bachiller, & Klingensmith, 2002; Barlow & Francis-West,

1997; Benouaiche, Gitton, Vincent, Couly, & Levi, 2008; Cela et al.,

2016; Crump et al., 2004; Ekker et al., 1995; Francis-West, Ladher,

Barlow, & Graveson, 1998; Gitton et al., 2010; Graham, 2003; Marcu-

cio et al., 2005; Marcucio, Young, Hu, & Hallgrimsson, 2011; Pera,

Stein, & Kessel, 1999; Piotrowski & Nusslein-Volhard, 2000; Sasai &

De Robertis, 1997; Schneider, Hu, Rubenstein, Maden, & Helms, 2001;

Shimamura, Hartigan, Martinez, Puelles, & Rubenstein, 1995; Veitch

et al., 1999; Wilson & Tucker, 2004; Withington, Beddington, &

Cooke, 2001; Xu et al., 2015). Various members and targets of these

pathways also become differentially regulated not only as a mechanism

to support the outgrowth of the jaw and facial skeletons (Abzhanov &

Tabin, 2004; Ashique, Fu, & Richman, 2002a; Chong et al., 2012;

Cordero, Schneider, & Helms, 2002; Couly et al., 2002; Doufexi &

Mina, 2008; Geetha-Loganathan, Nimmagadda, Fu, & Richman, 2014;

Havens et al., 2008; Helms & Schneider, 2003; Hu, Colnot, &

Marcucio, 2008; Hu et al., 2003; Liu et al., 2005; MacDonald, Abbott, &

Richman, 2004; Melnick, Witcher, Bringas, Carlsson, & Jaskoll, 2005;

Miller et al., 2000; Mina, Wang, Ivanisevic, Upholt, & Rodgers, 2002;

Nimmagadda et al., 2015; Richman, Herbert, Matovinovic, & Walin,

1997; Rowe, Richman, & Brickell, 1992; Schneider, Hu, & Helms,

1999; Schneider et al., 2001; Szabo-Rogers, Geetha-Loganathan, Nim-

magadda, Fu, & Richman, 2008; Wada et al., 2005; Young, Chong, Hu,

Hallgrimsson, & Marcucio, 2010) but also as a component of regulating

species-specific size and shape (Abramyan, Leung, & Richman, 2014;

Abzhanov et al., 2006; Abzhanov, Protas, Grant, Grant, & Tabin, 2004;

Bhullar et al., 2015; Brugmann et al., 2007; Brugmann et al., 2010;

Cheng et al., 2017; Foppiano et al., 2007; Grant, Grant, & Abzhanov,

2006; Hu & Marcucio, 2009b, 2012; Hu, Young, Li, et al., 2015; Hu,

Young, Xu, et al., 2015; Wu, Jiang, Shen, Widelitz, & Chuong, 2006;

Wu, Jiang, Suksaweang, Widelitz, & Chuong, 2004; Young et al., 2014).

Other epithelial tissues that are derived from surface (i.e., non-

neural) ectoderm also function as critical patterning centers in con-

junction with cranial neural crest. In particular, cranial placodes that

contribute to sensory ganglia and sense organs such as the olfactory,

optic, otic, trigeminal, and epibranchial systems require repeated and

reciprocal interactions with adjacent neural crest mesenchyme

for their proper morphogenesis (Baker & Bronner-Fraser, 2001;

Bancroft & Bellairs, 1977; Couly & Le Douarin, 1988; Francis-West,

Ladher, & Schoenwolf, 2002; Ladher, O'Neill, & Begbie, 2010; Lwigale,

2001; Pispa & Thesleff, 2003; Song, Hui, Fu, & Richman, 2004; Szabo-

Rogers et al., 2008; Webb & Noden, 1993).

Members and targets of the FGF, BMP, WNT, and other pathways

mediate complex signaling interactions among the developing placodes,

mesoderm, endoderm, and the neural crest, which in turn lead to the dif-

ferential activation of placode-specific sets of transcription factors

(Anwar, Tambalo, Ranganathan, Grocott, & Streit, 2017; Baker, Stark,

Marcelle, & Bronner-Fraser, 1999; Brunskill et al., 2014; Depew et al.,

1999; Grocott, Johnson, Bailey, & Streit, 2011; Groves & Bronner-Fra-

ser, 2000; Hintze et al., 2017; Jourdeuil & Taneyhill, 2018; Ladher,

2017; Ladher, Wright, Moon, Mansour, & Schoenwolf, 2005; McLarren,

Litsiou, & Streit, 2003; Moody & LaMantia, 2015; Saint-Jeannet &

Moody, 2014; Steventon, Mayor, & Streit, 2014; Yang et al., 2013). In

almost all of these cases, the neural crest plays an obligatory role during

proper patterning and differentiation.

As neural crest cells migrate throughout the craniofacial complex

and settle adjacent to these different types of epithelia they respond by

expressing a broad range of transcription factors and other genes that

affect their anatomical identity (Balling, Mutter, Gruss, & Kessel, 1989;

Clouthier et al., 2000; Creuzet, Couly, Vincent, & Le Douarin, 2002;

Depew, Lufkin, & Rubenstein, 2002; Gendron-Maguire, Mallo, Zhang, &

Gridley, 1993; Grammatopoulos, Bell, Toole, Lumsden, & Tucker, 2000;

Hunt, Clarke, Buxton, Ferretti, & Thorogood, 1998; Kimmel et al., 2005;

Lufkin et al., 1992; Pasqualetti, Ori, Nardi, & Rijli, 2000; Qiu et al., 1997;

Rijli et al., 1993; Ruest, Xiang, Lim, Levi, & Clouthier, 2004; Schilling,

1997; Smith & Schneider, 1998; Tavares, Cox, Maxson, Ford, & Clou-

thier, 2017). Modulating the levels of various molecules expressed by

these epithelia, such as retinoic acid and the BMP antagonist Noggin,

can for example, transform one facial primordium into another (Lee, Fu,

Hui, & Richman, 2001; Richman & Lee, 2003) ostensibly by altering the

gene regulatory networks within the responding neural crest cells.

Moreover, combinatorial expression of homeobox genes such as

those in the Hox cluster and other transcription factors affect the abil-

ity of neural crest cells from the posterior hindbrain to form appropri-

ate anatomical pattern in the hyoid and subsequent arches (Couly &

Le Douarin, 1990; Trainor & Krumlauf, 2000; Trainor & Krumlauf,

2001). In contrast, neural crest cells from the midbrain and anterior

hindbrain that migrate into the frontonasal, maxillary, and mandibular

primordia do not rely on Hox genes (Couly et al., 2002; Couly, Grapin-

Botton, Coltey, Ruhin, & Le Douarin, 1998; Hunt & Krumlauf, 1991;

Hunt, Wilkinson, & Krumlauf, 1991). If these midbrain and anterior

hindbrain populations of neural crest cells are surgically rotated by

180� in order to transpose frontonasal and mandibular precursors,
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they generate facial and jaw skeletons that are appropriate for their

new location, which reinforces the idea that anatomical identity is

established locally (Noden, 1983) in response to epithelial signals.

Along similar lines, if the Hox code is deleted from neural crest cells

destined to form the hyoid arch either by grafting non-Hox-expressing

mandibular or frontonasal neural crest in place of hyoid arch neural crest

cells, or by knocking down Hoxa2, then hyoid arch skeletal elements

become replaced by mandibular structures (Gendron-Maguire et al.,

1993; Noden, 1983; Rijli et al., 1993; Trainor, Ariza-McNaughton, &

Krumlauf, 2002; Trainor, Melton, & Manzanares, 2003). Conversely,

over-expressing Hoxa2 in mandibular arch neural crest cells gives rise to

hyoid skeletal structures instead of mandibular ones (Grammatopoulos

et al., 2000; Pasqualetti et al., 2000). Also illustrating the necessity of

signaling interactions between the neural ectoderm and the adjacent

neural crest, Hoxa2 is downregulated by FGF8, and ectopic expression

of Fgf8 in the hindbrain disrupts the pattern of hyoid arch structures

(Creuzet et al., 2002; Trainor, Ariza-McNaughton, et al., 2002). Thus,

ongoing and reciprocal interactions between epithelia derived from the

ectoderm and endoderm, and neural crest mesenchyme lead to the acti-

vation of intrinsic transcription factor modules that establish a more

species-generic type of pattern, specifically the axial orientation and

anatomical identity of craniofacial structures.

Such a conclusion is further supported by experiments that alter

combinatorial codes of transcription factors including the Dlx genes, and

that genetically manipulate signaling pathways such as endothelin, which

affect the axial pattern, outgrowth, and in some instances switch the

anatomical identify of the maxillary and the mandibular primordia

(Depew et al., 2002; Kuraku, Takio, Sugahara, Takechi, & Kuratani,

2010; Miller, Yelon, Stainier, & Kimmel, 2003; Sato et al., 2008; Tavares

et al., 2012; Tavares et al., 2017). Notably, these molecular mechanisms

and gene regulatory networks that pattern the axes and impart anatomi-

cal identity within the pharyngeal arches and other regions of the cra-

niofacial complex have remained highly conserved across vertebrates

(Cerny, Lwigale, et al., 2004; Cerny, Meulemans, et al., 2004; Depew &

Compagnucci, 2008; Kuraku et al., 2010; Kuratani, 2004, 2005a, 2005b,

2012; Kuratani, Adachi, Wada, Oisi, & Sugahara, 2013; Kuratani, Nobu-

sada, Horigome, & Shigetani, 2001; Kuratani, Oisi, & Ota, 2016; Medei-

ros & Crump, 2012; Minarik et al., 2017; Myojin et al., 2001; Nikitina,

Sauka-Spengler, & Bronner-Fraser, 2008; Oisi, Ota, Fujimoto, & Kura-

tani, 2013; Oisi, Ota, Kuraku, Fujimoto, & Kuratani, 2013; Olsson, Erics-

son, & Cerny, 2005; Ota, Kuraku, & Kuratani, 2007; Sauka-Spengler,

Meulemans, Jones, & Bronner-Fraser, 2007; Shigetani et al., 2002;

Shone & Graham, 2014; Square, Jandzik, Romasek, Cerny, & Medeiros,

2017; Sugahara et al., 2011; Takio et al., 2004; Yao, Ohtani, Kuratani, &

Wada, 2011). This level of conservation indicates that all vertebrates

more or less deploy the same gene regulatory networks, signaling path-

ways, and developmental modules to specify their axes and determine

the anatomical identity of the homologous structures from which their

craniofacial complexes get built.

Epithelial–mesenchymal interactions also contribute to another

generic aspect of pattern, which is the establishment of tissue type,

and in particular the differentiation of craniofacial cartilage and bone

(Balczerski et al., 2012; Bee & Thorogood, 1980; Cela et al., 2016;

Couly et al., 2002; Dunlop & Hall, 1995; Ferguson et al., 2000; Francis-

West, Robson, & Evans, 2003; Hall, 1980, 1982, 1987; MacDonald &

Hall, 2001; Merrill et al., 2008; Richman & Tickle, 1989; Richman &

Tickle, 1992; Schowing, 1968; Shigetani, Nobusada, & Kuratani, 2000;

Shigetani et al., 2002; Thorogood, 1987; Thorogood, Bee, & von der

Mark, 1986; Tyler, 1978, 1983). For example one prominent hypothe-

sis, originally deemed the “flypaper model” (Garrod, 1986; Thorogood,

1988, 1993) suggested that epithelial-mesenchymal interactions pro-

mote the production of extracellular matrix, which acts as an adhesive

that “traps” migrating neural crest cells at their site of differentiation

and results in mesenchymal condensation and cartilage induction. Such

epithelia would include the pharyngeal endoderm and surface ecto-

derm around the facial primordia, as well as the brain and sensory cap-

sules, all of which have been shown to initiate and/or direct

chondrogenesis at various stages of development (Hall, 1980, 1981,

2000, 2005; Hall & Miyake, 2000; Mina, Upholt, & Kollar, 1994;

Miyake, Cameron, & Hall, 1996; Thorogood et al., 1986).

What has become apparent from the many types of experimental

strategies undertaken and vertebrate models studied, is that the recip-

rocal interactions during craniofacial development between neural crest

mesenchyme and surrounding epithelia are highly dynamic, hierarchical,

and likely involve both cell-autonomous and non-autonomous signals

(Noden & Schneider, 2006). But the penultimate morphological out-

come for a majority of components throughout the craniofacial com-

plex, especially in the jaws and face, arises as a function of the special

intrinsic ability of neural crest cells to propagate species-specific pat-

tern by superimposing parameters like size and shape onto more

generic aspects of pattern such as axial orientation, anatomical identity,

and tissue type (Fish & Schneider, 2014b). This capacity has most likely

enhanced the evolutionary plasticity and potential (i.e., adaptability) of

structures that contain or rely upon neural crest derivatives (Donoghue,

Graham, & Kelsh, 2008; Jheon & Schneider, 2009; Le Douarin et al.,

2004; Schneider, 2005; Young et al., 2014) in the pharyngeal and ros-

tral regions of the vertebrate head (Gans & Northcutt, 1983; Northcutt,

2005; Northcutt & Gans, 1983), the lateral wall of the mammalian skull

(Schneider, 1999; Smith & Schneider, 1998), and during the process of

domestication (Lord et al., 2016; Sanchez-Villagra, Geiger, & Schneider,

2016; Wilkins, Wrangham, & Fitch, 2014).

In fact, as described below, the degree to which neural crest cells

convey species-specific patterning information, and the intrinsic

mechanisms that they use, have been made most evident by leverag-

ing chimeric transplant systems that exploit evolutionary differences

among birds. Recent research in this area has begun to paint a clearer

picture of how individual structures within the craniofacial complex

acquire their species-specific pattern, and notably, such work illus-

trates how developmental programs can become modified internally

on the molecular and cellular levels so that morphological variation

can be generated in a manner essential for evolution.

3 | ORIGIN OF SPECIES-SPECIFIC PATTERN
AS REVEALED BY AVIAN CHIMERAS

Much like prior studies involving chimeras between different amphib-

ian species, a well-established and very useful experimental approach

for investigating the developmental origins and patterning of craniofa-

cial structures in amniote embryos has been the use of the quail-chick
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chimeric system (Baker, Bronner-Fraser, Le Douarin, & Teillet, 1997;

Borue & Noden, 2004; Cobos, Shimamura, Rubenstein, Martinez, &

Puelles, 2001; Couly & Le Douarin, 1990; Couly, Coltey, & Le Douarin,

1992; Couly, Coltey, & Le Douarin, 1993; Köntges & Lumsden, 1996;

Le Douarin, 1973; Le Lièvre, 1978; Le Lièvre & Le Douarin, 1975;

Noden, 1978b, 1983, 1986a; Noden & Schneider, 2006; Olivera-

Martinez, Coltey, Dhouailly, & Pourquie, 2000; Schneider, 1999; Schnei-

der et al., 2001; Selleck & Bronner-Fraser, 1995). Quail and chick are

closely related birds with similar rates of growth and morphology

(Ainsworth, Stanley, & Evans, 2010; Fitzgerald, 1969; Hamburger &

Hamilton, 1951; Nakane & Tsudzuki, 1999; Padgett & Ivey, 1960; Smith

et al., 2015; Zacchei, 1961). Surgical transplants between them have

enabled the fates, functions, and behaviors of different cells and tissues

to be observed throughout embryogenesis, and this has been indispens-

able to understanding countless facets of developmental biology

(Abramyan&Richman, 2018; LeDouarin&McLaren, 1984; LeDouarin&

Dieterlen, 2013; Le Douarin, Dieterlen-Lievre, & Teillet, 1996; Noden,

1984; Noden& Schneider, 2006).

The success of the quail-chick chimeric system stems from the

fact that in general, avian embryos are easily accessible in ovo for all

kinds of experimental manipulations. This includes grafting or extirpa-

tion of tissues through microsurgery, labeling of cells for lineage analy-

sis, implantation of reagent-soaked beads, injection of biochemicals,

and manipulation of gene expression via retroviral infection or electro-

poration (Cerny, Lwigale, et al., 2004; Chen et al., 1999; Ealba et al.,

2015; Eichele, Tickle, & Alberts, 1984; Fekete & Cepko, 1993; Fish &

Schneider, 2014a; Fish et al., 2014; Hall et al., 2014; Johnston, 1966;

Krull, 2004; Kulesa, Bronner-Fraser, & Fraser, 2000; Larsen, Zeltser, &

Lumsden, 2001; Logan & Tabin, 1998; Lwigale, Conrad, & Bronner-

Fraser, 2004; Lwigale, Cressy, & Bronner-Fraser, 2005; Lwigale &

Schneider, 2008; Momose et al., 1999; Nakamura & Funahashi, 2001;

Noden, 1975; Schneider et al., 2001; Serbedzija, Bronner-Fraser, &

Fraser, 1989; Stocker, Brown, & Ciment, 1993; Woronowicz et al.,

2018). One advantage of working in birds is that after surgery or other

manipulations, eggs can simply be resealed and incubated until the

embryos reach stages appropriate for further analysis.

Another factor contributing to the success of avian chimeric sys-

tems is that embryos from different avian species can be readily

stage-matched using an approach that relies on external morphologi-

cal characters and that is independent of body size and incubation

time (Hamilton, 1965; Ricklefs & Starck, 1998; Starck & Ricklefs,

1998). The Hamburger and Hamilton (HH) staging system, initially cre-

ated for chick, is the accepted standard (Hamburger & Hamilton,

1951). Other staging systems have been published for quail

(Ainsworth et al., 2010; Nakane & Tsudzuki, 1999; Padgett & Ivey,

1960; Zacchei, 1961) and duck (Koecke, 1958), but embryos of these

birds can also be staged using the HH system for chicken (Ainsworth

et al., 2010; Le Douarin et al., 1996; Lwigale & Schneider, 2008; Mit-

gutsch, Wimmer, Sanchez-Villagra, Hahnloser, & Schneider, 2011;

Schneider & Helms, 2003; Smith et al., 2015; Starck, 1989; Yama-

shita & Sohal, 1987; Young et al., 2014). The ease at which embryos

of diverse types of birds can be stage-matched has advanced the

study of species-specific patterning.

During her early and pioneering neural crest transplant work Le

Douarin observed that, “Quail and chick cells, experimentally

associated, definitively retain their species characteristics in the chi-

maera” (Le Douarin & Teillet, 1974, p. 163). Yet, while some examples

related to patterning and pigmentation of epidermal appendages, as

well as hatching behavior continued to be noted (Balaban, 1997;

Balaban, Teillet, & Le Douarin, 1988; Sengel, 1990), for the most part

because quail and chick are relatively similar, subtle species-specific

differences that may have been induced by donor cells have gone

largely undetected. Moreover, determining mechanisms of species-

specific pattern was not really the primary goal of most studies that

employed quail-chick chimeras. In contrast, other experiments using

avian chimeras have included domestic duck as a way to identify

those patterning mechanisms that generate species-specific differ-

ences (Dhouailly, 1967, 1970; Hampe, 1957; Lwigale & Schneider,

2008; Pautou, 1968; Schneider & Helms, 2003; Sohal, 1976; Sohal

et al., 1990; Sohal et al., 1985; Tucker & Lumsden, 2004; Waddington,

1930; Waddington, 1932; Yamashita & Sohal, 1986, Yamashita &

Sohal, 1987; Zwilling, 1959). Additional studies on species-specific

size and control of scaling have also included chimeras between quail

and emu (Hall et al., 2014), quail and zebra finch (Chen, Balaban, & Jar-

vis, 2012), and chick and zebra finch (Uygur et al., 2016).

The quail-duck chimeric transplant system has been especially use-

ful for identifying the molecular and cellular basis for species-specific

aspects of pattern and for illuminating the mechanistic contributions of

neural crest cells during tissue interactions that facilitate the structural

and functional integration of the craniofacial complex (Figure 1b,c). The

system itself combines classical grafting techniques and tools in verte-

brate embryology that have already been mentioned (e.g., Andres,

1949; Hamburger, 1942; Harrison, 1917, 1921, 1924, 1929, 1935; Spe-

mann, 1918, 1921, 1938; Spemann & Mangold, 1924; Spemann &

Schotte, 1932; Twitty, 1934, 1945; Twitty & Schwind, 1931; Wadding-

ton, 1930, 1932; Wagner, 1959) with modern molecular and cellular

methods and assays (Ealba & Schneider, 2013; Fish & Schneider,

2014a; Lwigale & Schneider, 2008). In short, presumptive neural crest

cells from the midbrain and anterior hindbrain are transplanted from

either quail to duck to create chimeric “quck” or from duck to quail to

make chimeric “duail” (Ealba & Schneider, 2013; Fish & Schneider,

2014a; Lwigale & Schneider, 2008; Schneider & Helms, 2003)

(Figure 1d). In this experimental framework, the ability to exploit chi-

meras between quail and duck embryos is predicated on three features

that distinguish these species of birds.

First, quail and duck embryos and their constituent parts are

noticeably different in size and shape, which offers a direct way to

resolve if species-specific features are mediated by donor- or host-

derived tissues. Second, quail and duck embryos develop at distinct

rates (17 versus 28 days) (Figure 1e), which allows the effects of

donor cells on the host to be readily assessed simply by looking for

species-specific changes to the timing of gene expression, tissue dif-

ferentiation, and/or other events throughout the embryogenesis of

the facial primordia (Figure 1f,g). Moreover, by examining the effects

of intrinsic rates of maturation (i.e., differences in developmental time)

on changes in morphology (i.e., evolutionary differences in size and

shape), the quail-duck chimeric system can help advance the study of

the relationship between ontogeny and phylogeny, vis-à-vis the cra-

nial neural crest (Schneider, 2018). Third, as is the case for the quail-

chick chimeric system (Le Douarin et al., 1996), there is an antibody
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(Q¢PN) that recognizes only quail cells, which permanently discrimi-

nates donor versus host derivatives (i.e., Q¢PN-positive versus Q¢

PN-negative). Among other neural crest-mediated outcomes, detec-

tion of this antibody enables species-specific changes in gene expres-

sion patterns to be correlated with the distribution of donor cells in

both donor- and host-derived tissues (Figure 1h,i). Similarly, using

species-specific primers to amplify ubiquitously expressed housekeep-

ing genes allows the ratio of quail versus duck cells, as well as any

neural crest-dependent changes to genes of interest, to be quantified

on the molecular level using a PCR-based strategy (Ealba & Schneider,

2013). Therefore, as designed, the quail-duck chimeric system permits

the role of the neural crest (and other cell populations) to be charac-

terized during development and provides a powerful tool for ascer-

taining precisely when and where morphogenetic events and gene

regulatory networks become modified as a means to generate

species-specific pattern in the craniofacial complex.

4 | ORIGIN OF SPECIES-SPECIFIC PATTERN
IN THE CRANIOFACIAL INTEGUMENT

Like what has been described earlier for studies on the pigmentation

of amphibians, the ability of neural crest cells to mediate species-

specific pattern is most readily apparent in the integument of quail-

duck chimeras (Eames & Schneider, 2005; Schneider, 2005; Schnei-

der & Helms, 2003). Moreover, in many ways the integument can

serve as a microcosm for understanding how reciprocal epithelial-

mesenchymal interactions drive the patterning of a broad range of

vertebrate organ systems including the limbs, facial primordia, hair,

glands, teeth, and bone (Dunlop & Hall, 1995; Fisher, 1987; Francis-

West et al., 1998; Hu et al., 2003; Hughes et al., 2018; Lumsden,

1988; Mitsiadis, Hirsinger, Lendahl, & Goridis, 1998; Pispa & Thesleff,

2003; Richman & Tickle, 1992; Salaun, Salzgeber, & Guenet, 1986;

Saunders & Gasseling, 1968; Schneider et al., 1999; Schneider et al.,

2001; Sharpe & Ferguson, 1988; Shigetani et al., 2000; Thesleff &

Sharpe, 1997; Tonegawa, 1973; Tucker, Al Khamis, & Sharpe, 1998;

Wang, Upholt, Sharpe, Kollar, & Mina, 1998; Wedden, 1987). The

integument is composed partly of epidermis, which is derived from

the non-neural ectoderm and is stratified into multiple layers

(Hamilton, 1965; Romanoff, 1960; Yasui & Hayashi, 1967). In amni-

otes, the uppermost layer of epidermis generally produces the kerati-

nized components associated with epidermal appendages such as

feathers, scales, hair, horns, beaks, and egg teeth (Couly & Le Douarin,

1988; Kingsbury, Allen, & Rotheram, 1953; Lucas & Stettenheim,

1972; Pera et al., 1999; Pispa & Thesleff, 2003; Sawyer, O'Guin, &

Knapp, 1984; Yu et al., 2004).

Beneath the epidermis lies the dermis, which in the trunk and

posterior regions of the head comes from mesodermal mesenchyme,

whereas in the face and aspects of the neck the dermis originates

from neural crest mesenchyme (Couly et al., 1992; Matsuoka et al.,

2005; Noden, 1978b, 1986b, 1988; Olivera-Martinez et al., 2000;

Olivera-Martinez, Thelu, & Dhouailly, 2004). As discussed already,

neural crest cells also generate the pigment-producing melanocytes

that infiltrate the epidermis and supply color to the skin and epidermal

appendages (Bronner-Fraser, 1994; Cramer, 1991; Hirobe, 1995;

Le Douarin & Dupin, 1993; Noden, 1978a; Rawles, 1944, 1948). Pat-

terning and differentiation of the integument relies upon a series of

reciprocal signaling interactions between the mesenchyme of the der-

mis and the epithelium of the epidermis (Dhouailly, 1973, 1975;

Lucas & Stettenheim, 1972; Pispa & Thesleff, 2003; Widelitz &

Chuong, 1999; Widelitz et al., 1997). Feather development starts

when mesenchyme aggregates into a thin layer called “dense dermis”

beneath the epithelium (Brotman, 1977; Mayerson & Fallon, 1985;

Wessells, 1965). Subsequently, the overlying epithelium thickens into

a series of epidermal placodes, the dense dermis forms discrete mes-

enchymal condensations, the mesenchyme and placodes emerge out

of the surface of the integument as feather buds (Figure 2a), and both

tissues grow and differentiate into discrete feathers (Olivera-Martinez,

Viallet, Michon, Pearton, & Dhouailly, 2004; Pispa & Thesleff, 2003).

Together, feathers form in continuous rows that make up tracts

(Lucas & Stettenheim, 1972).

The timing of induction as well as species-specific characteristics

such as the location, number, distribution, pigmentation, and size of

epidermal appendages like feathers is determined by dermis (Cairns &

Saunders, 1954; Dhouailly, 1967, 1970, 1973; Dhouailly & Sawyer,

1984; Eames & Schneider, 2005; Fliniaux, Viallet, & Dhouailly, 2004;

Linsenmayer, 1972; Prin & Dhouailly, 2004; Rawles, 1963; Saunders &

Gasseling, 1957; Schneider, 2005; Song & Sawyer, 1996; Wessells,

1965). In other instances and depending on the stage of development,

the epithelium can provide patterning information on anatomical iden-

tity such as specifying whether epidermis produces feathers or scales

(Chuong, Chodankar, Widelitz, & Jiang, 2000; Prin & Dhouailly, 2004;

Rawles, 1963; Widelitz, Jiang, Lu, & Chuong, 2000) or in controlling

late-stage branching patterns (Harris, Fallon, & Prum, 2002; Yu, Wu,

Widelitz, & Chuong, 2002). But both tissues collaborate to form

feathers. For instance, when dermis and epidermis from different-

staged wild type and featherless chicken mutants are recombined, the

dermis is able to induce epidermal placodes, although this ability goes

away quickly without proper epidermal interactions (Viallet et al.,

1998). The dominant role of the dermis can be most clearly appreci-

ated using quail-duck chimeras.

The embryos of Japanese quail (Coturnix coturnix japonica) have

large, widely spaced, and pigmented feather buds whereas the

embryos of white Pekin duck (Anas platyrhynchos) have relatively

smaller, tightly arranged, and un-pigmented feather buds (Lucas &

Stettenheim, 1972; Schneider, 2005) (Figure 2b,c). In quail-duck chi-

meras, where quail donor neural crest cells generate the dermis and

duck host ectoderm gives rise to the epidermis, cranial feather pattern

acquires the identity of the donor species (Eames & Schneider, 2005).

Coincident with the distribution of quail donor neural crest-derived

dermis, these chimeric “quck” contain long brown and black quail-like

feathers assembled among short white duck host feather buds

(Figure 2d). Conversely, when duck donor neural crest cells are trans-

planted into quail hosts, the chimeric “duail” embryos have unpigmen-

ted duck-like feathers. Thus, quail-duck chimeras corroborate the role

of the neural crest (and by extension the dermis throughout the integ-

ument) as the principal source of species-specific patterning informa-

tion for cranial feathers. These results align with data from other

tissue recombination experiments in the trunk between duck and

chick, which also indicated that the dermis was a source of species-

8 of 33 SCHNEIDER



b c duck

stage 33

dermis
(donor)

epidermis
(host)

feather buda

stage 36

dermal
condensation

placode

d quckquail duck

2 mm

quck

mandible
Meckel's cartilage stage 40

duck

4 mm

l

lower jaw

neural crest
mesoderm

ih

j k

quail duck

quck

*

stage 37

stage 37

stage 37

quck

4 mm

host donor
m

lower jaw
stage 35

quail

4 mm

n

lower jaw
stage 38stage 35

stage 37

e gfduck quck quailstage 33 stage 33 stage 36
epidermis

dermis100 µm Bmp2 Bmp2 Bmp2100 µm 100 µm

FIGURE 2 (a) Cranial feather buds form through interactions between neural crest-derived dermis and overlying epidermis, which in chimeras are

derived from donor and host, respectively. At stage 33, there is little evidence for feather development, but by stage 36, feather buds contain
dermal condensations and they begin to rise above the surface of the integument. (b) Quail cranial feather buds are large and widely spaced
whereas those of (c) duck are smaller and more closely spaced. (d) In chimeric quck, quail-like feathers appear at the long bud stage while those
derived from the duck host are still short buds. (e) At stage 33, Bmp2 is not expressed in either the dermis or epidermis. However, in (f) chimeric
quck at stage 33 Bmp2 is expressed prematurely in donor-derived dermis as well as in host-derived epidermis like what is observed three stages
later in (g) control quail (and duck). Modified from Schneider (2005), Eames and Schneider (2005), and Fish and Schneider (2014b). (h) The beaks
of quail embryos are short and blunt whereas those of (i) duck are long and broad. (j) Transplants of presumptive cranial neural crest cells, which
are destined to form the beak, from quail donors to duck hosts produce chimeric “quck” embryos with quail-like beak size and shape (asterisk).
Note that the quail-like quck has webbed feet (arrow), which is indicative of the duck host. Modified from Schneider (2005). (k) The extent of
transformation in chimeras corresponds to the boundary that exists in the skull between those bones and cartilages derived from the cranial
neural crest and those formed from mesoderm. Based on a drawing from D. Noden. (l) By stage 35, Meckel's cartilage and the lower jaw are
slightly curved in duck as seen in dorsal view. (m) This curved morphology is maintained on the duck host side of chimeric quck whereas Meckel's
cartilage and the lower jaw appear to straighten out on the donor side and achieve a larger size like that observed in a (n) quail embryo three
stages later at stage 38. Modified from Fish and Schneider (2014b)
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specific pattern for the feathers (Dhouailly, 1967, 1970). But exactly

how does neural crest-derived dermis impose its species-specific will

on the epidermis?

To accomplish this task, neural crest-derived dermis executes an

autonomous molecular feather program that is not only intrinsic to

the donor genome, but also that overrides the epidermal feather pro-

gram of the host. This phenomenon becomes most readily apparent

when examining changes to the spatial and temporal domains of gene

expression, and rates of feather bud development in quck and duail

chimeras (Eames & Schneider, 2005). In particular, donor neural crest

modifies the expression of members and targets of the SHH, BMP,

and Delta/Notch pathways, which are well known to regulate normal

feather morphogenesis (Ashique, Fu, & Richman, 2002b; Chuong

et al., 2001; Chuong, Patel, Lin, Jung, & Widelitz, 2000; Crowe, Henri-

que, Ish-Horowicz, & Niswander, 1998; Morgan, Orkin, Noramly, &

Perez, 1998; Patel, Makarenkova, & Jung, 1999; Pispa & Thesleff,

2003; Ting-Berreth & Chuong, 1996; Widelitz et al., 1997; Yu et al.,

2002). In chimeras, each of these signaling pathways shows a signifi-

cant change in the timing and domains of expression in both the der-

mis and epidermis corresponding to the species and stage of the

donor neural crest.

For example, Bmp2 is one of the earliest genes to be expressed

wherever the epidermis begins to thicken into placodes along the pre-

sumptive feather tracts as well as in the underlying condensations of

dermis; likewise, Bmp4 expression is restricted to the dermis as the

mesenchyme begins to condense and thereafter (Chuong, Widelitz,

Ting-Berreth, & Jiang, 1996; Jung et al., 1998; Nohno et al., 1995;

Noramly & Morgan, 1998; Scaal et al., 2002; Widelitz et al., 1997). In

chimeric quck, the timing of Bmp2 and Bmp4 expression is accelerated

by three stages not only in the faster-developing quail donor-derived

dermis, but also Bmp2 is expressed prematurely in the normally

slower-developing duck host-derived epidermis (Figure 2e–g). The

same is observed for all other genes examined, which become spatially

and temporally regulated by donor dermis. In other words, the dermis

specifies the pattern through which epidermis forms feather buds by

adhering to the timetable of the donor species and by defining the

expression domains of members and targets of the SHH, BMP, and

Delta/Notch pathways (Eames & Schneider, 2005).

This remarkable capacity holds true in reverse as evidenced by

duail chimeras where slower-developing duck dermis acts out its

feather program on a delayed timetable relative to quail host epider-

mis and produces duck-like feathers. Extrapolating these results, we

would predict that the dermis (of both neural crest and mesodermal

origin) most likely regulates in a species-specific manner many other

genes known to function during feather morphogenesis such as mem-

bers and targets of the FGF, Epidermal Growth Factor, and WNT

pathways (Atit, Conlon, & Niswander, 2003; Chang et al., 2004; Cho-

dankar et al., 2003; Mandler & Neubuser, 2004; Noji et al., 1993; Nor-

amly, Freeman, & Morgan, 1999; Olivera-Martinez, Thelu, Teillet, &

Dhouailly, 2001; Rouzankina, Abate-Shen, & Niswander, 2004; Song,

Wang, & Goetinck, 1996; Song, Lee, & Goetinck, 2004; Tanda, Ohu-

chi, Yoshioka, Noji, & Nohno, 1995; Tao et al., 2002; Widelitz, Jiang,

Chen, Stott, & Chuong, 1999; Widelitz, Jiang, Noveen, Chen, &

Chuong, 1996). Thus, neural crest cells exert their species-specific will

by presiding at the top of hierarchical conversations with their

neighbors (e.g., epidermis), autonomously implementing their own

molecular and cellular agendas, and dictating the terms of morphoge-

netic events in space and time.

5 | ORIGIN OF SPECIES-SPECIFIC PATTERN
IN THE BEAK

As is the case for the integument, quail-duck transplants likewise dem-

onstrate that neural crest cells provide species-specific information

for patterning the beak and underlying jaw skeleton, which differ sub-

stantially between quail and duck in conjunction with their highly spe-

cialized modes of feeding (Figure 2h,i). Quail neural crest cells

destined to form the beak skeleton make quail-like beaks on duck

hosts and reciprocal transplants of duck neural crest cells generate

duck-like bills on quail hosts (Schneider & Helms, 2003) (Figure 2j,k).

Equivalent species-specific transformations are observed when neural

crest cells fated to become cartilages in the jaw joint are transplanted

between quail and duck (Tucker & Lumsden, 2004). Overall, these

studies using quail-duck chimeras reinforce the key role for neural

crest in establishing species-specific morphology of the beak and jaw

apparatus.

However, such results are not really surprising given that the jaw

skeleton is derived entirely from the neural crest (Couly et al., 1993;

Köntges & Lumsden, 1996; Le Lièvre, 1978; Le Lièvre & Le Douarin,

1975; Noden, 1978b), and also because the long history of chimeric

grafting experiments discussed earlier had already revealed the special

species-specific properties of this lineage. But gaining the ability to

distinguish between beak tissues that arise from the donor versus the

host with a high degree of certainty, as well as possessing tools to

assay for donor-mediated changes in gene expression, is what sets

this modern chimeric strategy apart from earlier studies (Ealba &

Schneider, 2013; Fish & Schneider, 2014a; Lwigale & Schneider,

2008; Schneider & Helms, 2003). A first critical insight in this regard

came from examining changes to beak tissues derived from the host.

For instance, at the tip of their bill, duck have an egg tooth that is a

flat epidermal nail, whereas quail develop an egg tooth that is a conical

protrusion of hard keratin (Lucas & Stettenheim, 1972). The quck egg

tooth, despite arising entirely from non-transplanted duck host epi-

dermis, resembles that found in quail. Similarly, the duail egg tooth

looks like that of the duck. This clear transfer of patterning informa-

tion from donor neural crest to non-neural crest host-derived tissues

reveals that the transformation of the beak in chimeras is more-or-less

comprehensive and helps explain how the beak can become modified

as an integrated morphological unit in its entirety during the course of

evolution (Schneider, 2005).

A second important discovery arose after analyzing genes that

are known to pattern the face and that also show well-defined periods

of expression during development. Because quail and duck have dis-

tinct rates of maturation, the initiation and cessation of expression of

such genes differ in absolute time. For example, twenty-four hours

after surgery, control quail embryos express the transcription factors

Barx1 and Msx1 in neural crest-derived mesenchyme of the develop-

ing beak primordia, but control duck embryos do not yet express

these genes because they require a longer period of time to reach an
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equivalent stage. Correspondingly and quite strikingly in quck chi-

meras, these genes are expressed in mesenchyme derived from the

quail donor but not from the duck host. Similarly, 48 hr after surgery,

control quail express Shh but not Pax6 in facial ectoderm whereas

control duck express Pax6 but not Shh. In quck chimeras, Shh is found

in duck host facial ectoderm but Pax6 is not, which is the pattern

observed in quails. As already discussed, Shh expression in the facial

ectoderm for instance, is not only mediated by the neural crest (Hu &

Marcucio, 2012; Schneider et al., 2001), but also plays a critical role in

specifying the axial orientation and maintaining the outgrowth of the

facial skeleton (Abzhanov & Tabin, 2004; Ahlgren & Bronner-Fraser,

1999; Chong et al., 2012; Delloye-Bourgeois et al., 2014; Helms et al.,

1997; Hu & Helms, 1999; Hu & Marcucio, 2009a; Hu, Young, Li, et al.,

2015; Jeong, Mao, Tenzen, Kottmann, & McMahon, 2004; Lan &

Jiang, 2009; Young et al., 2010). Thus, such temporal shifts in the

onsets and offsets of gene expression supply stark evidence that quail

neural crest cells produce quail-like beaks on duck by sustaining their

own molecular programs and by modulating the spatial and temporal

patterns of gene expression in non-neural crest host tissues such as

the adjacent epithelium.

Again, as noted by Raven (1933) and conveyed by Hörstadius

(1950), part of the special ability of neural crest to regulate species-

specific pattern likely arises “in connection with its movements, as a

carrier of inductive influences” (p. 93). Simple parameters such as the

amount and distribution of donor neural crest cells throughout the

facial primordia appears to modulate gene expression in host epithe-

lium in a dose-dependent manner (Ealba & Schneider, 2013; Merrill

et al., 2008; Schneider & Helms, 2003). Once a certain threshold is

reached (Woronowicz et al., 2018), neural crest cells ultimately endow

structures with species-specific size and shape presumably because

their “inductive influences” are mediated at the population level. This

scenario is also substantiated by our observation that significant dif-

ferences exist in the number of jaw precursors that migrate into the

mandibular primordia of duck versus quail (Fish & Schneider, 2014c;

Fish et al., 2014). During neurulation, duck generate about 15% more

pre-migratory neural crest cells at the levels of the midbrain and ros-

tral hindbrain, and these are the cells that will ultimately enable them

to build their long bills. Only a few stages later, duck have twice as

many cells in their mandibular primordia as do quail due to specific-

specific variation in cell proliferation dynamics and cell cycle length.

Cell cycle length in duck mandibular mesenchyme is longer (13.5

hr) than in quail (11 hr), and this might seem counterintuitive given

that duck make more cells, but when the total duration of each

embryonic stage during this developmental window is considered in

terms of absolute time (i.e., 45 hr for duck versus 32 hr for quail), then

duck cells wind up proliferating more in total than those of quail.

Therefore, by sustaining their slower intrinsic maturation rate over a

longer period of time, duck implement a cellular mechanism that pro-

gressively increases jaw size during development (Fish & Schneider,

2014b; Fish et al., 2014; Schneider, 2015, 2018). In this way, duck

seem to rely on time as one means to control size, which supports

prior observations in birds on the correlation between innate rates of

growth and body size (Ricklefs & Starck, 1998; Starck, 1989; Starck &

Ricklefs, 1998).

6 | ORIGIN OF SPECIES-SPECIFIC PATTERN
IN THE CARTILAGINOUS SKELETON

To explain more precisely how differences in the rates of develop-

ment and the numbers of neural crest cells that get allocated to the

mandibular primordia become species-specific determinants of size

and shape, we focused on the differentiation and growth of Meckel's

cartilage in the lower jaw skeleton (Eames & Schneider, 2008). Meck-

el's cartilage develops from neural crest mesenchyme into a cylindrical

rod that rarely ever ossifies except in the proximal-most region

(De Beer, 1937; Eames, Sharpe, & Helms, 2004; Ekanayake & Hall,

1994; Helms & Schneider, 2003; Kavumpurath & Hall, 1990; Noden,

1978b). During cartilage formation, pre-chondrogenic cells first

undergo condensation and then begin overt differentiation, where

they secrete extracellular matrix (Eames, de la Fuente, & Helms, 2003;

Hall, 2005). There is a well-documented relationship between conden-

sation size and skeletal size (Hall & Miyake, 1992, 1995, 2000; Miyake

et al., 1996; Smith & Schneider, 1998), and from the earliest stages of

chondrogenesis, we observe smaller condensations in quail relative to

duck (Eames & Schneider, 2008). When we transplant presumptive

neural crest from quail embryos into stage-matched duck we do so

unilaterally (Figure 1d), which allows these quail donor neural crest

cells to fill one side of the duck host mandible and enables us to com-

pare the development of donor quail-derived versus host duck-

derived Meckel's cartilage in the same chimeric quck. While the

sequential stages of chondrogenesis are comparable in quail and duck,

in quck chimeras, we find that quail donor neural crest cells make

smaller condensations and differentiate into cartilage on a faster time-

table (i.e., three stages ahead of the duck).

Accompanying these changes in quck chimeras is the premature

expression of chondrogenic genes by quail donor cells relative to duck

host cells on the contralateral side. For example, Sox9, which is an

early molecular marker of chondrogenic condensations (Eames et al.,

2003; Eames et al., 2004; Healy, Uwanogho, & Sharpe, 1996; Zhao,

Eberspaecher, Lefebvre, & De Crombrugghe, 1997), and Col2a1,

which is directly regulated by Sox9 (Bell et al., 1997) are both upregu-

lated coincident with the presence of quail donor neural crest mesen-

chyme. Additionally, we find that FGF signaling, which operates

upstream of Sox9 and chondrogenesis (Bobick, Thornhill, & Kulyk,

2007; De Crombrugghe et al., 2000; Eames et al., 2004; Govindara-

jan & Overbeek, 2006; Healy, Uwanogho, & Sharpe, 1999; Murakami,

Kan, McKeehan, & de Crombrugghe, 2000; Petiot, Ferretti, Copp, &

Chan, 2002) is also regulated by neural crest mesenchyme as evi-

denced by analyzing expression of the ligands Fgf4 and Fgf8, and the

receptor Fgfr2. While FGF ligands are known to be expressed continu-

ously in mandibular epithelium from the earliest embryonic stages

onward (Havens, Rodgers, & Mina, 2006; Mina et al., 2002; Shigetani

et al., 2000; Wall & Hogan, 1995), we find that in chimeras the recep-

tor Fgfr2 is expressed three stages earlier by quail donor neural crest

mesenchyme. If FGF signaling is blocked during this discrete temporal

window when Fgfr2 becomes activated, then Meckel's cartilage fails

to form.

Ultimately, by exerting control over the timing of FGF signaling

and the expression of downstream targets such as Sox9 and Col2a1,
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neural crest mesenchyme likely provides cues on the molecular level

that impart Meckel's cartilage with species-specific size and shape.

Such a conclusion is also based on our observation that on the mor-

phological level Meckel's cartilage displays obvious stage-specific and

species-specific differences in size and shape throughout develop-

ment in quail and duck, and that these differences are maintained by

quail donor neural crest mesenchyme in quck chimeras (Figure 2l–n).

For example, Meckel's initially forms in both duck and quail as a

slightly curved cartilage that becomes more S-shaped. Shortly thereaf-

ter, Meckel's in duck remains curved while Meckel's in quail

straightens out. Meckel's continues to grow in both quail and duck,

but increasingly gets larger in duck. In quck chimeras, quail donor neu-

ral crest maintains its faster maturation rate within the relatively

slower duck host, and the differentiation of Meckel's cartilage gets

accelerated by approximately three stages on the donor side. Further-

more, the size and shape of Meckel's cartilage on the donor side

becomes consistently more quail-like compared with that observed on

the contralateral duck host side.

So, while surrounding endodermal and ectodermal epithelia seem

to define “where” cartilage condensations form along an axis, which is

most likely equivalent between quail and duck, our chimeric transplant

experiments reveal that neural crest defines “when” and “what” by

responding through intrinsic programs that control both stage-specific

and species-specific size and shape. Significantly, this ability to keep

track of stage-specific and species-specific size and shape simulta-

neously indicates that the neural crest cells themselves can function

as a potent mechanism linking ontogeny and phylogeny. Such were

the predictions made by proponents of heterochrony who argued that

changes in the timing of developmental events and/or rates of growth

had direct implications for the evolution of size and shape (Alberch

et al., 1979; De Beer, 1930; Foster & Kaesler, 1988; Gould, 1977;

Hall, 1984; Klingenberg & Spence, 1993; McKinney, 1988; Raff, 1996;

Roth, 1984; Russell, 1916; Schneider, 2018). In this regard, faster-

developing quail donor neural crest mesenchyme not only induces a

heterochrony by altering the rates of growth in chimeras, but also, the

presence of these cells appears to introduce shifts in the relative

onsets, cessations, or durations of molecular and cellular events,

which is an additional process through which changes in time can

affect size and shape (Smith, 2001–2003), especially in the context of

reciprocal epithelial–mesenchymal interactions underlying skeletal

evolution (Smith & Hall, 1990). Our transplants in birds with even

larger disparities in growth rates like quail and emu (i.e., 17

versus 58 days from fertilization to hatching), which are separated by

about seven embryonic stages during chondrogenesis, reveal that

there are very few developmental constraints that prevent the host

from supporting the execution of neural crest mesenchyme-

dependent programs for skeletogenesis (Hall et al., 2014).

7 | ORIGIN OF SPECIES-SPECIFIC PATTERN
IN THE BONY SKELETON

Akin to what we have found with cartilage, neural crest mesenchyme

likewise communicates species-specific information on size and shape

to bone in the jaws and facial skeleton by establishing the timing of

major events during osteogenesis. In quck chimeras, quail donor neu-

ral crest mesenchyme upholds its faster timetable for maturation and

autonomously executes molecular and cellular programs that promote

and orchestrate each individual step of osteogenesis including the

induction, proliferation, differentiation, mineralization, and remodeling

of bone (Ealba et al., 2015; Hall et al., 2014; Merrill et al., 2008). Such

a capacity by neural crest mesenchyme to function as a developmen-

tal timekeeper supports earlier theoretical predictions (Alberch,

1982a; Oster & Alberch, 1982; Oster et al., 1988) about how quantita-

tive changes to parameters within ontogenetic systems can drive mor-

phological evolution (Schneider, 2018). For example, genetic or

epigenetic modifications to “biochemical, cell–cell, or tissue interac-

tions” (Alberch, 1985, p. 50) can in turn alter “rates of diffusion,

mitotic rate, cell adhesion, etc.” (Alberch, 1989, p. 27), which can then

cause evolutionary changes in size and shape. Similarly, our work

reveals that such quantitative changes to cellular parameters like neu-

ral crest-mediated differences between quail and duck in the number

of progenitors, rate of proliferation, length of the cell cycle, and timing

of differentiation leads to morphological outcomes in the bony skele-

ton that are species-specific.

Along these lines and as a case in point, we find that neural crest

mesenchyme establishes the timing of osteogenesis in the jaw by reg-

ulating cell cycle progression (Hall et al., 2014). Seemingly, neural crest

mesenchyme controls the cell cycle through stage- and species-

specific expression of cyclin and cyclin-dependent kinase inhibitors

(CKI) including p27 (cdkn1b), which is a CKI that can decrease prolifer-

ation in differentiating osteoblasts; Cyclin E (Ccne1), which is needed

for G1/S phase transition; and Cyclin B1 (Ccnb1), which is essential for

G2/M phase transition (Coats, Flanagan, Nourse, & Roberts, 1996;

Drissi et al., 1999; Zavitz & Zipursky, 1997). We find species-specific

differences in the expression and post-translational processing of

these cell cycle regulators, which we predict could permit birds like

quail to shorten their period of mesenchymal proliferation and lead to

faster-differentiating and smaller beak skeletons. For example, in quail

and on the donor side of quck, we find that p27 is up-regulated rela-

tive to that observed in duck. Previous experiments have demon-

strated that p27 is associated with size, including p27-deficient mice,

which are much larger than their wild-type littermates yet have no

obvious defects in their skeletons (Drissi et al., 1999). Likewise, the

frontonasal process of duck has lower p27 levels than that observed

in chick (Powder et al., 2012), and furthermore the mandibular primor-

dia shows tissue-specific post-translational regulation of p27, like

what has been reported in other systems (Hirano et al., 2001; Zhang,

Bergamaschi, Jin, & Lu, 2005). Therefore, changing p27 levels may

affect tissue- and species-specific size and/or total growth. This direct

connection between the regulation of cell cycle progression and the

timing of events throughout bone development offers a mechanism

through which neural crest mesenchyme might be able to generate

changes in skeletal size and shape during evolution.

The potential for such a mechanism is further supported by

experiments in which we can mimic the results observed in quck chi-

meras by prematurely inducing cell cycle exit. In this scenario, we find

that the molecular program for osteogenesis becomes accelerated

(Hall et al., 2014). Specifically, we observe early and elevated expres-

sion of genes such as Runx2, which is known to be a “master

12 of 33 SCHNEIDER



regulator” of bone formation that can direct osteoblast differentiation,

influence skeletal size, and control the timing of mineralization (Ducy

et al., 1999; Ducy, Zhang, Geoffroy, Ridall, & Karsenty, 1997; Eames

et al., 2004; Galindo et al., 2005; Komori et al., 1997; Maeno et al.,

2011; Otto et al., 1997; Pratap et al., 2003; Thomas et al., 2004). Neu-

ral crest mesenchyme in the mandibular primordia normally expresses

Runx2 during a tightly controlled temporal window and at well-

defined levels (Eames et al., 2004; Merrill et al., 2008), but by over-

expressing Runx2 prematurely and at higher levels in chick embryos,

we can markedly reduce the size of the beak skeleton (Hall et al.,

2014). This in effect, reflects the relationship normally observed

between endogenous Runx2 levels and species-specific beak size. In

fact, when the quail jaw skeleton begins to mineralize, its Runx2 levels

are more than twice that found in duck. Along these lines, other stud-

ies have hypothesized that there is a mechanistic link between pre-

dicted differential levels of Runx2 expression (based on ratios of

tandem repeats in DNA) and the length of the face among dogs and

other mammals (Fondon and Garner, 2004; Pointer et al., 2012; Sears,

Goswami, Flynn, & Niswander, 2007).

That neural crest mesenchyme regulates the timing and levels of

Runx2 expression, and that this in turn has a direct effect on skeletal

size, fulfills predictions made more than 75 years ago by embryolo-

gists such as Huxley (1932) and Goldschmidt (1938, 1940) with regard

to the existence of genes that establish the time and rate of develop-

ment (Schneider, 2018). Along similar lines, De Beer (1954) argued

that, “by acting at different rates, the genes can alter the time at which

certain structures appear” (p. 20). Data from in vitro experiments also

help explain how Runx2 could function in this capacity whereby Runx2

expression both depends upon and regulates cell cycle progression

through mechanisms such as the repression of rRNA synthesis and

the up-regulation of p27 (Galindo et al., 2005; Pratap et al., 2003;

Thomas et al., 2004; Young et al., 2007). Collectively, these observa-

tions indicate that neural crest mesenchyme establishes species-

specific size and shape in the bony skeleton by mediating the timing

of the transition from proliferation to differentiation and by modulat-

ing the expression levels of osteogenic transcription factors such as

Runx2.

Neural crest mesenchyme also appears to exert control over

species-specific size and shape during osteogenesis upstream of

Runx2 by governing the temporal and spatial expression of members

and targets of the BMP pathway (Merrill et al., 2008). BMP ligands

can induce bone formation both embryonically (Kingsley et al., 1992;

Luo et al., 1995; Solloway et al., 1998) and postnatally (Urist, 1965;

Wang et al., 1990; Wozney et al., 1988). During jaw development,

Bmp2, Bmp4, and Bmp7, as well as their receptors (Bmpr1a, Bmpr1b,

and Alk2) are expressed in mandibular mesenchyme and/or epithe-

lium (Ashique et al., 2002a; Bennett, Hunt, & Thorogood, 1995;

Francis-West, Tatla, & Brickell, 1994; Wall & Hogan, 1995), and they

play critical roles during osteogenesis (Ashique et al., 2002b; Francis-

West et al., 1998; Wang et al., 1998). For example, BMP4 helps neu-

ral crest mesenchyme differentiate into bone (Abzhanov, Rodda,

McMahon, & Tabin, 2007) and the lower jaw fails to form when

Bmp4 is conditionally eliminated from mandibular epithelium (Liu

et al., 2005). BMP signaling regulates osteogenesis via a highly con-

served pathway (Derynck, Piek, Schneider, Choy, & Alliston, 2008;

Heldin, Miyazono, & ten Dijke, 1997; Kawabata, Imamura, & Miya-

zono, 1998; Massague & Wotton, 2000) involving Smad activation,

which in turn affects Runx2 expression (Ducy, 2000; Ducy et al.,

1997; Kang, Alliston, Delston, & Derynck, 2005; Karsenty et al.,

1999; Komori et al., 1997) and mandibular osteogenesis (Otto et al.,

1997). Moreover, physical interactions between SMAD proteins and

Runx2 drive osteoblast-specific gene expression (Alliston, Choy,

Ducy, Karsenty, & Derynck, 2001; Ito et al., 2002; Lee et al., 2000).

Other targets of BMP signaling including Msx1 (Tribulo, Aybar,

Nguyen, Mullins, & Mayor, 2003) play a role during the epithelial–

mesenchymal interactions of the mandible (Bei & Maas, 1998; Chen &

Struhl, 1996; Han et al., 2007), are neural crest-mediated

(Schneider & Helms, 2003), and affect bone formation (Roybal et al.,

2010; Satokata & Maas, 1994).

As part of its osteo-inductive role, BMP signaling likely shapes

the avian beak by creating domains of differential growth within the

mesenchyme. For instance, distinct domains of Bmp4 expression in

the frontonasal primordium contribute to beak width and depth

among birds including Darwin's finches, cockatiels, chicks, and ducks

(Abzhanov et al., 2004; Schneider, 2007; Wu et al., 2004, 2006).

Likewise, over-expressing Bmp4 in cichlid fish that usually form elon-

gated jaws, shortens and widens the jaw and in effect phenocopies

features that are coupled with the evolution of distinct feeding strat-

egies (Albertson, Streelman, Kocher, & Yelick, 2005). This salient

ability of neural crest mesenchyme to control the timing of osteo-

genesis by autonomously executing molecular programs involving

BMP signaling as well as transcriptional targets such as Msx1 and

Runx2, likely serves as a key developmental mechanism facilitating

the evolution of species-specific size and shape in the craniofacial

skeleton.

8 | ORIGIN OF SPECIES-SPECIFIC PATTERN
DURING BONE RESORPTION

While much of the work we have performed has demonstrated that

neural crest mesenchyme conveys species-specific size and shape to

the craniofacial skeleton by regulating molecular and cellular programs

for the induction and deposition of cartilage and bone, we have also

discovered that a previously underappreciated but potentially just as

important mechanism affecting species-specific size and shape lies in

the ability of neural crest mesenchyme to direct the process of bone

resorption (Ealba et al., 2015; Schneider, 2015). Usually, bone resorp-

tion is tied to bone deposition as a metabolic function for maintaining

homeostasis in the adult skeleton (Buckwalter, Glimcher, Cooper, &

Recker, 1996; Filvaroff & Derynck, 1998; Hall, 2005; Nguyen, Tang,

Nguyen, & Alliston, 2013; O'Brien et al., 2008; Teitelbaum, 2000; Tei-

telbaum, Tondravi, & Ross, 1997). In contrast, little is known about

the role of resorption during skeletal patterning in embryos, except

for a few hypotheses about the effects of differential fields of bone

resorption on the size and shape of the developing human jaw skele-

ton (Enlow, Moyers, & Merow, 1975; Moore, 1981; Radlanski & Klar-

kowski, 2001; Radlanski, Renz, Lajvardi, & Schneider, 2004) and

recent work on the remodeling of Meckel's cartilage by chondroclasts

in mammals (Anthwal, Urban, Luo, Sears, & Tucker, 2017).
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When we assay for molecular and enzymatic markers of bone

resorption we observe significantly higher levels and distinct spatial

domains in quail versus duck that correlate with species-specific dif-

ferences in beak size and shape. There are two populations of cells

that resorb bone in the craniofacial skeleton. Osteoclasts arise from

the mesodermal hematopoietic lineage (Couly, Coltey, Eichmann, & Le

Douarin, 1995; Couly et al., 1992; Jotereau & Le Douarin, 1978; Kahn

et al., 2009), and osteocytes (Akil et al., 2014; Belanger, 1969; Fowler

et al., 2017; Jauregui et al., 2016; O'Brien et al., 2008; Qing et al.,

2012; Tang, Herber, Ho, & Alliston, 2012; Xiong & O'Brien, 2012;

Xiong et al., 2014) are derived entirely from neural crest mesenchyme

(Helms & Schneider, 2003; Le Lièvre, 1978; Noden, 1978b). There-

fore, in our quail-duck chimeras, all osteoclasts form exclusively from

the host mesoderm whereas all osteocytes come from the donor neu-

ral crest.

Osteoclasts and osteocytes secrete tartrate-resistant acid phos-

phatase (TRAP) when they are actively resorbing bone (Minkin, 1982;

Qing et al., 2012; Tang et al., 2012). Also, osteoclasts express Matrix

Metalloproteinase 9 (Mmp9) (Engsig et al., 2000; Reponen, Sahlberg,

Munaut, Thesleff, & Tryggvason, 1994) and osteocytes express

Mmp13 (Behonick et al., 2007; Johansson et al., 1997; Sasano et al.,

2002). Accordingly, in the lower jaw of chimeric quck, Mmp9 is

expressed by duck host-derived osteoclasts while Mmp13 is

expressed by quail donor-derived osteocytes. We find that control

quail express substantially higher levels of TRAP, Mmp9, and Mmp13

than do duck, suggesting that increased resorption may relate to

shorter beaks (Ealba et al., 2015). Similarly, chimeric quck have greatly

elevated TRAP, Mmp9, and Mmp13 expression in association with the

donor-mediated transformation into quail-like beaks, which implies

that quail donor neural crest mesenchyme executes an autonomous

species-specific program that controls bone resorption by its own

derivatives (i.e., osteoclasts) as well as by those of the duck host

(i.e., osteoclasts). This provides another neural crest-dependent mech-

anism that contributes to the shorter beaks of quail and chimeric quck.

In support of this conclusion, we find that when we experimentally

apply small molecules, pharmacologic agents, or recombinant proteins

to inhibit resorption we can lengthen the beak, whereas if we activate

resorption we can shorten the beak.

By extension then, our work reveals that beak size in birds is

inversely proportional to levels of bone resorption, and that such

levels are established by neural crest mesenchyme. Prior work on Dar-

win's finches and other species, have correspondingly argued that the

calcium binding protein Calmodulin is a key determinant of beak length

(Abzhanov et al., 2006; Gunter, Koppermann, & Meyer, 2014; Schnei-

der, 2007). Quite interestingly, Calmodulin is known to regulate osteo-

clasts and osteocytes (Choi, Ann, et al., 2013; Choi, Choi, Oh, & Lee,

2013; Seales, Micoli, & McDonald, 2006; Zayzafoon, 2006), calcium

signaling is important for bone resorption (Hwang & Putney, 2011;

Kajiya, 2012; Xia & Ferrier, 1996; Xiong et al., 2014), and this pathway

can affect jaw size (Gunter et al., 2014; Parsons & Albertson, 2009).

Thus, taken together, all of these studies imply that bone resorption

may function like a rheostat during skeletal evolution, and in this

capacity might be especially tuned to the availability of dietary cal-

cium, to the effects of calcium-dependent hormones, and to gradients

of calcium signaling within the beak primordia (Schneider, 2007,

2018). Such spatial and temporal regulation of resorption by neural

crest mesenchyme likely acts as a determinant of species-specific size

and shape by creating local zones of resorption in quail versus duck

that more-or-less sculpt the bone and inhibit or promote directional

growth.

Overall, we have discovered that neural crest mesenchyme wields

precise spatial and temporal control over each step of osteogenesis

including the induction, differentiation, deposition, mineralization, and

resorption of bone (Ealba et al., 2015; Eames & Schneider, 2008; Hall

et al., 2014; Merrill et al., 2008; Schneider & Helms, 2003). This con-

trol appears to be integrated and implemented on multiple interacting

genetic and epigenetic levels (Alberch, 1982a) such that neural crest

can orchestrate species-specific programs for skeletal size and shape

throughout development and serve as a source for morphological vari-

ation in the craniofacial complex during evolution. Most likely, the

mechanisms that distinguish the species-specific programs of quail

from those of duck are multifactorial and based on intrinsic and emer-

gent differences in genome organization, cis-regulation of individual

genes, epigenetic activities of non-coding RNA at the transcriptional

and post-transcriptional level, connectivity at nodes within gene regu-

latory networks, biochemical interactions among gene products

(e.g., enzymes and other proteins), post-translational modification of

proteins, diffusion-reaction gradients and thresholds that affect induc-

tion and developmental potential, properties and movements of cells,

and/or physical and signaling interactions among tissues (Schneider,

2018). Changes at any of these hierarchical levels of organization dur-

ing development could undoubtedly be a means to affect species-

specific morphology. By investigating such changes in quail versus

duck we aspire to rise to the challenge set forth by Alberch

et al. (1979) when they expressed their hope that their “attempts to

construct a quantitative theory will stimulate others to delve more

deeply below the level of pure phenomenology and come to grips

with the central issue underlying evolutionary diversification of size

and shape—that is, the morphogenetic unfolding of genetic programs

in ontogeny and their alteration in the course of phyletic evolu-

tion” (p. 297).

9 | ORIGIN OF SPECIES-SPECIFIC PATTERN
IN THE JAW MUSCULATURE

In addition to cartilage and bone, cranial neural crest mesenchyme

also produces skeletal and muscle connective tissues such as tendons,

ligaments, fascia, and epi- and endomysia (Couly et al., 1993;

Köntges & Lumsden, 1996; Le Lièvre & Le Douarin, 1975; Noden,

1978b, 1983; Noden & Schneider, 2006). Head and jaw muscles how-

ever, form from mesodermal mesenchyme (Couly et al., 1992; Evans &

Noden, 2006; Noden, 1983; Noden & Francis-West, 2006; Noden &

Trainor, 2005; Scaal & Marcelle, 2018; Wachtler & Jacob, 1986).

Given these differences in embryonic origin, the quail-duck chimeric

system provides a means to examine the extent to which donor neural

crest mesenchyme regulates species-specific pattern in host muscle

(Fish & Schneider, 2014b; Solem et al., 2011; Tokita & Schneider,

2009). A broad range of prior investigations have revealed that cranial

neural crest mesenchyme plays a critical role during muscle
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development. In particular, the early migration, differentiation, and

spatial patterning of myogenic mesenchyme in the head relies on

interactions with surrounding muscle connective tissues (Borue &

Noden, 2004; Ericsson, Cerny, Falck, & Olsson, 2004; Francis-West

et al., 2003; Grammatopoulos et al., 2000; Grenier, Teillet, Grifone,

Kelly, & Duprez, 2009; Hall, 1950; Knight, Mebus, & Roehl, 2008;

Knight & Schilling, 2006; Köntges & Lumsden, 1996; McGurk et al.,

2017; Nassari, Duprez, & Fournier-Thibault, 2017; Noden, 1983,

1986a, 1988; Noden, Marcucio, Borycki, & Emerson, 1999; Noden &

Schneider, 2006; Noden & Trainor, 2005; Olsson, Falck, Lopez,

Cobb, & Hanken, 2001; Pasqualetti et al., 2000; Rinon et al., 2007;

Schilling et al., 1996; Schnorrer & Dickson, 2004; Subramanian &

Schilling, 2015; Sugii et al., 2017; Tokita, Nakayama, Schneider, &

Agata, 2013; Trainor & Krumlauf, 2000; Trainor, Sobieszczuk, Wilkin-

son, & Krumlauf, 2002; Tzahor et al., 2003).

With regard to the species-specific patterning of the muscles, a

clear example of the effects of neural crest mesenchyme can be seen

in the resultant jaw complex of quail-duck chimeras. Quail and duck

have highly specialized jaw morphologies associated with their

species-specific modes of feeding. Quail use their sharp, pointed

beaks like forceps to peck at seed on the ground whereas duck use a

suction-pump mechanism and apply leverage across their long, broad

bills to strain water and sediment. Such differences in feeding behav-

ior are mirrored in the size, shape, and attachment sites of their jaw

muscles as well as in their jaw kinetics and mechanics (Bout &

Zweers, 2001; Dawson, Metzger, Baier, & Brainerd, 2011; Fisher,

1955; Soni, 1979; Zweers, 1974; Zweers, Gerritsen, & Kranenburg-

Voogd, 1977; Zweers, Kunz, & Mos, 1977) (Figure 3a–d). In quail-

duck chimeras we find that quail donor neural crest mesenchyme

imparts quail-like pattern on the duck host mesoderm-derived jaw

muscles (Solem et al., 2011; Tokita & Schneider, 2009). These trans-

formations are not only species-specific but also stage-specific, in

that the muscle anatomy on the donor side is more like that found in

control quail three stages later. For example, in duck, the mandibular

adductor muscle inserts on the lateral side of the mandible (Zweers,

1974; Zweers, Kunz, et al., 1977), whereas in quail, the same muscle

inserts on the dorsal surface of the mandible (Baumel, 1993; Van den

Heuvel, 1992). In quck chimeras, these species-specific differences in

the shape, orientation, and insertion point of the mandibular adductor

muscle are patterned by neural crest mesenchyme. In particular, we

find that quail donor neural crest mesenchyme is distributed through-

out the skeletal and muscular connective tissues that surround the

developing host muscle precursors and causes the duck host jaw

muscles to elongate rostrally and attach dorsally as in quail (Solem

et al., 2011; Tokita & Schneider, 2009; Woronowicz et al., 2018)

(Figure 3e–j).

Preceding these dramatic morphological transformations are

changes to the spatial and temporal patterns of gene expression for

muscle connective tissue markers such as Tcf4, which is a transcrip-

tion factor that functions downstream of the WNT pathway, and

which plays an essential role during muscle development (Anakwe

et al., 2003; Bonafede, Kohler, Rodriguez-Niedenfuhr, & Brand-Saberi,

2006; Mathew et al., 2011; Miller et al., 2007) including ordaining the

spatial pattern of limb muscles (Kardon, Harfe, & Tabin, 2003).

Another transcription factor, Scleraxis (Scx), which is expressed by and

required for the differentiation of tendon and ligament progenitors in

the trunk and head (Berthet et al., 2013; Blitz, Sharir, Akiyama, & Zel-

zer, 2013; Blitz et al., 2009; Brent, Braun, & Tabin, 2005; Cserjesi

et al., 1995; Grenier et al., 2009; Murchison et al., 2007; Pryce, Brent,

Murchison, Tabin, & Schweitzer, 2007; Schweitzer et al., 2001; Shuku-

nami, Takimoto, Oro, & Hiraki, 2006), is also up-regulated on the

donor side of quck chimeras in quail-like patterns. Thus, these neural

crest-mediated changes in gene expression appear to direct the

species-specific shape and attachment sites of the jaw muscles. This

in turn, alters the functional morphology and the associated mechani-

cal force environment such that the duck host side of quck chimeras

induces Sox9 expression and a robust secondary cartilage at the inser-

tion of the mandibular adductor muscle on the coronoid process of

the mandible, whereas the quail donor side fails to express Sox9 or

form a secondary cartilage just like in control quail (Solem et al., 2011;

Woronowicz et al., 2018) (Figure 3k–n).

Interestingly, donor neural crest mesenchyme does not seem to

alter the early programs for host myogenic specification or muscle dif-

ferentiation, which based on our expression analyses of early muscle

markers and structural proteins continue to follow the timetable of

the host (Tokita & Schneider, 2009). Such a result is not entirely sur-

prising given that muscle is an ancient mesodermal lineage that

evolved long before the appearance of the cranial neural crest and

therefore, likely executes aspects of its own developmental program

rather autonomously. This also appears to be the case for the

mesodermally-derived blood vessels of the host, which are similarly

unaffected in chimeras (Hall et al., 2014). However, this situation is

quite unlike what we have observed for the donor-derived programs

for cartilage, bone, and tendon, and the host-derived programs for

epidermis (i.e., feathers and egg teeth) and osteoclasts, which in chi-

meras all follow in lockstep with the quail donor timetable and

become accelerated by three stages (Ealba et al., 2015; Eames &

Schneider, 2005, Eames & Schneider, 2008; Hall et al., 2014; Merrill

et al., 2008; Schneider & Helms, 2003).

In sum, neural-crest mesenchyme and its muscle connective tis-

sue derivatives transmit species-specific patterning information to

craniofacial muscles by executing autonomous molecular programs

and by dominating interactions with their partners from the meso-

derm. Such mechanistic insights help explain how skeletal and muscu-

lar components in the jaw complex have so intimately co-evolved as

species radiate into new niches and their mouthparts become adapted

in various ways. This can be seen clearly in birds such as parrots,

where the number and organization of jaw muscles have been

extremely modified, and most likely in close association with changes

to neural crest (Tokita, 2004, 2006; Tokita, Kiyoshi, & Armstrong,

2007; Tokita et al., 2013; Zusi, 1993). The fact that neural crest mes-

enchyme establishes a direct relationship between skeletal anatomy,

muscle architecture, and feeding mechanics suggests that the capabil-

ity of a given species to modify its jaw complex rapidly during evolu-

tion, which is critical to accommodate novel ecological conditions,

resides in the cranial neural crest. Thus, the neural crest has played a

leading role in dictating species-specific pattern and in directing the

structural and functional integration of the craniofacial complex during

the course of vertebrate evolution.
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FIGURE 3 (a) Adult quail and (b) duck heads in lateral view showing the mandibular adductor muscles that close the jaw (yellow dashed lines).

The duck mandibular adductor inserts more laterally and proximally, and integrates into a pronounced coronoid process along the side of the
lower jaw (black arrow) whereas the quail mandibular adductor inserts more dorsally and distally. Modified from Tokita and Schneider (2009). (c)
Lateral view of cleared and stained quail and (d) duck embryos at stage 41. Cartilage is blue and bone is red. In duck, the coronoid process forms
as a secondary cartilage (white arrow) on the lateral side of the surangular bone along the lower jaw skeleton. A corresponding cartilage is absent
in quail (white asterisk). (e) In quck chimeras, jaw muscles come from the duck host whereas skeletal and connective tissues come from quail
donor neural crest. Jaw anatomy on the donor side is transformed to something more like that found in quail. The mandibular adductor is
narrower, inserts dorsally along the surangular, and as in quail, does not contain secondary cartilage. (f ) In contrast, on the host side of quck, the
mandibular adductor muscle is broader and inserts laterally on the surangular bone, and secondary cartilage forms within the insertion (white

arrow) like that normally observed in duck. (g) Trichrome-stained section of duck in lateral view showing the mandibular adductor muscle at its
insertion (black arrow and stained purple), which is wide and triangular shaped along the surangular bone (stained blue). (h) On the host side of
quck, the insertion looks the same as in duck whereas (i) on the donor side of quck (white asterisk) and in (j) quail the insertion is relatively thin.
(k) Coincident with the eventual formation of secondary cartilage in duck but not quail, the chondrogenic transcription factor Sox9 is expressed
highly in the insertion (white arrow) of duck and (l) on the host side of quck, but not in the insertion (m) on the donor side of quck (white asterisk)
or (n) in quail. Modified from Solem et al. (2011)
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10 | CONCLUSION

The vertebrate craniofacial complex displays tremendous conserva-

tion in its anatomical organization but remarkable diversity in its

species-specific size and shape. Such dualism mirrors the need for the

craniofacial complex to satisfy essential requirements for survival like

feeding, breathing, and sensing, yet simultaneously generate enough

morphological variation to allow for adaptive evolution. Conspicu-

ously, much of the evolutionary diversity in the craniofacial complex

has appeared in those structures derived from the cranial neural

crest, suggesting a high degree of plasticity (Eames & Schneider,

2005; Fish & Schneider, 2014b; Gans & Northcutt, 1983; Hanken &

Gross, 2005; Jheon & Schneider, 2009; Le Douarin et al., 2004;

Noden & Schneider, 2006; Northcutt, 2005; Schlosser & Wagner,

2004; Schneider, 1999, 2005, 2015; Trainor et al., 2003; West-Eber-

hard, 1989, 2003; Young et al., 2014).

To this point, one might ask, what endows the cranial neural crest

with both the plasticity to drive evolutionary diversification and the

regulatory abilities to put them near the top of hierarchies in develop-

mental programs for species-specific pattern? Contributing factors

may include gene duplication events, which are believed to have

capacitated the evolution of neural crest development via co-option

and novel gene function (Green & Bronner, 2013; Meulemans &

Bronner-Fraser, 2005). Similarly, results from transcriptional profiling

studies point to novel signaling pathways and suites of transcription

factors that are enriched in sub-populations of neural crest (Lumb,

Buckberry, Secker, Lawrence, & Schwarz, 2017; Simoes-Costa &

Bronner, 2016; Simoes-Costa, Tan-Cabugao, Antoshechkin, Sauka-

Spengler, & Bronner, 2014). Moreover, given that cranial neural crest

derivatives participate deeply in the development and patterning of

multiple systems including the nervous, neuroendocrine, integumen-

tary, and skeletal, regulatory changes to the neural crest can be a

major source of simultaneous evolutionary transformations in behav-

ior, pigmentation, as well as the size and shape of cartilage and bone

in the face (Lord et al., 2016; Sanchez-Villagra et al., 2016; Schneider,

2005, 2018; Singh et al., 2017; Wilkins et al., 2014).

Without a doubt, data from a wide variety of experimental sys-

tems and strategies performed in diverse vertebrate taxa, demon-

strate that neural crest mesenchyme controls species-specific pattern.

Work from our lab takes this conclusion one step further and reveals

that neural crest does so by autonomously executing molecular and

cellular programs for making neural crest-derived structures, as well as

by governing the required interactions with adjacent tissues

(e.g., ectodermal epithelia and mesodermal mesenchyme). Further-

more, the precise origin of species-specific pattern is rooted in the

fact that epithelia are generally permissive and supply generic anatom-

ical information (e.g., “form a lower jaw”) while neural crest mesen-

chyme contains instructive information for size and shape (e.g., “form

a quail-like lower jaw” versus “form a duck-like lower jaw”). In other

words, the list of parts is more or less the same but the species-

specific differences that arise during the construction process appear

to stem from where, when, and for how long neural crest mesen-

chyme autonomously activates and executes intrinsic molecular pro-

grams including the expression of receptors that allow for signal

transduction to begin and end, as well as a variety of transcription fac-

tors that modulate gene regulatory networks. Ultimately, the develop-

mental fate of each species is determined by the differential unfurling

of each genome in three dimensions as a function of absolute and/or

relative time (e.g., cell cycle dynamics and maturation rates).

Most significantly, the propensity of neural crest mesenchyme to

keep track concurrently of stage-specific and species-specific time,

size, and shape provides a potent mechanism linking ontogeny and

phylogeny in the integumentary and musculoskeletal systems, both of

which have been critical to the success of vertebrates. Such findings

about the integration of these systems vis-à-vis the cranial neural

crest also reveal the many ways development can play a “generative

and regulatory” role in the evolution of species-specific pattern

(Alberch, 1982b), and they help substantiate heterochrony as a viable

developmental mechanism whereby species-specific transformations

in size and shape can come about via changes in the timing of devel-

opmental events (Alberch et al., 1979; De Beer, 1930; Fish & Schnei-

der, 2014b; Hall, 1984; Schneider, 2018; Smith, 2003).

In this framework, a major remaining question for future research

involves identifying on a much larger scale (i.e., systems level) where,

when, and how variation in the molecular and cellular programs that

are directed by the neural crest leads to species-specific changes in

size and shape. Addressing this question has important implications

for understanding both evolution and the etiologies of craniofacial

birth defects (Schneider, 2015). Furthermore, heterochrony may be an

oversimplification of the many processes at work and instead a more

multidimensional strategy that accounts for the effects of complex

changes in facets such as the levels and spatial distribution of gene

expression over developmental time (Depew & Simpson, 2006) may

be necessary. Additional approaches that incorporate genome-wide

differences in the regulation of neural crest-mediated programs

among divergent taxa, have great potential to elucidate these issues

(Betancur, Bronner-Fraser, & Sauka-Spengler, 2010; Long, Prescott, &

Wysocka, 2016; Nikitina et al., 2008; Prescott et al., 2015; Rebeiz &

Tsiantis, 2017; Sauka-Spengler & Bronner-Fraser, 2008; Sauka-

Spengler et al., 2007; Trinh et al., 2017; Williams et al., 2018). One

can only imagine what the next 150 years of neural crest biology will

uncover.
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