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Abstract: The use of adhesive to joint structural elements, despite many advantages of this technology,
is not a method commonly used in engineering practice, especially in construction. This is mainly
due to the poor recognition of the behavior, both in terms of testing and analysis, of joints made
on a scale similar to the actual elements of building structures. Therefore, this paper presents the
results of model tests and then numerical analyses of adhesively bonded joints made of high-strength
steel elements in a full-scale (double-lap joint). In order to properly model the adhesive connection,
material tests of the methacrylate adhesive were performed in the field of tensile, shear (in two
versions: single lap joint test and thick adherent shear test) and bond properties. Comparison of the
results of the model and numerical tests showed very good agreement in terms of the measurable
values, which makes it possible to consider the results obtained in the adhesive layer as reliable (not
directly measurable in model tests). In particular, the distribution of stresses inside the adhesive layer,
the range of plastic zones and areas of loss of adhesion are presented and discussed. The results
indicate the possibility of a reliable representation of the behavior of adhesively bonded joints of
high-strength steel, thus providing a tool for the analysis of semirigid adhesive in large-size joints.

Keywords: adhesive joint; methacrylate; numerical analysis; full-scale elements; DLJ

1. Introduction

The first structural adhesively bonded joints were employed as early as the first half of
the twentieth century [1]. Following the research by Pierre Castan in 1936, which yielded
epoxy resins as more than suitable for binding metals, Ciba started large-scale production of
the resins in 1946. At first, epoxy resins were used mostly in the aeronautics industry [2,3].
Then they found their way into the automotive [4,5] and even construction industries [6].
The dynamic advancements in welded joints in the second half of the twentieth century
led to the abandonment of adhesively bonded joints for steel structures. They were not
researched or used at a significant scale. Still, they were applied for two types of joints. The
first one was strengthening of structures using composite materials that are glued to the
original structure [7–9]. The other group was multimaterial structures where mechanical
point fastening was advised against, including glass structures (hybrid beams, prefabricated
composites structures, façade elements) [10–12]. The most popular of these applications
are epoxy adhesives, which are strong, stiff, and well researched in terms of necessary
mechanical characteristics [13–15].

The authors’ original research [16–18] demonstrated that semi-rigid methacrylate
adhesives offer much higher resistance of large-area lap joints on high-quality steel. The
application of flexible adhesives facilitates stress redistribution over a larger joint distance
than in joints with stiff epoxy adhesives. In contrast, the elastic-plastic characteristics of
methacrylate adhesives result in a ductile failure.

It is difficult or even impossible to conduct an in-depth analysis of the behavior of
an adhesive layer on an actual joint tested in a laboratory. Therefore, a reliable numerical
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model of a sample may prove very useful. The literature offers numerous approaches to
adhesively bonded joint modelling today. Still, each has to be adapted to the type of joint,
adherend materials, and adhesive characteristics.

There are three primary models proposed in FEA analyses to describe the adhesive
layer [19,20]. The first one is the continuous model, which considers the adhesive’s stiffness
based on Young’s modulus, Poisson’s ratio, and the thickness of the adhesive bond. The
initiation of adhesive failure can be defined in two ways. For rigid materials, it is necessary
to determine the conditions necessary for the occurrence of a crack and its propagation,
which is in line with LEFM (Linear Elastic Fracture Mechanic). In such a case, the base is
cohesive elements (in Cohesive Zone Modelling—CZM), which prevent any mesh refine-
ment over the thickness of the adhesive layer. This approach works for thin adhesive bonds
where no significant changes in stress distribution are found over the bond thickness. For
flexible adhesives, the failure is defined with the criterion of plasticization of the adhesive
layer. It is then modelled identically to the adherends (steel elements), which facilitates
the refinement of the mesh over the thickness of the adhesive layer, and then analysis of
any increases in and distribution of stress over the thickness. Regrettably, this adhesive
layer modelling does not facilitate any failure mode analysis because it is only possible to
determine the finite element within which the material degraded.

The continuous model based on LEFM is popular in modelling joints with relatively
stiff adhesives. Campilho et al. illustrated the influence of CZM shape [21] and overlap
length [22] on strength prediction of thin adhesive layer in a single-lap joint (SLJ) made
of aluminum for different geometry and adhesive combinations (two epoxy adhesives:
brittle and ductile, and ductile polyurethane adhesive). Gustfson and Waas [23] showed
the influence of adhesive parameters on the outcome of cohesive zone finite element
simulation. They conducted numerical analyzes for various joint configurations that are
used to characterize joint parameters (SLJ, double-cantilever beam DCB and end notch
flexure ENF). Katsivalis et al. [24] described the possibility of applying cohesive zone
models for the prediction of damage and failure of DCB glass/steel joints glued using two
different adhesives (epoxy and methacrylate).

The next method for modelling an adhesively bonded joint is to use interface relation-
ships between the adherend and the adhesive layer. In the simplest terms, this approach
can be employed for joints where the adhesive layer is so thin it can be considered as a
thickness of zero. In such a situation, the macroscopic parameters of the adhesive are
irrelevant. Fracture mechanics are used in analyses instead. What is important in this
scenario is that the joint failure is always due to the loss of adhesion (adhesive failure). This
modelling method for joining a member to the surface of reinforced concrete beams was
presented by Sena-Cruz et al. [25]. The adhesive bond was considered an interface surface
with adhesion properties of the adhesive. It is the optimal solution because the bond can be
considered a zero-thickness layer in the context of the entire reinforced concrete element. A
similar approach was adopted by Feito et al. [26] when modeling CFRP composite strips.
The adhesive layer was considered an interface surface between composite matrices here
as well, which yields a delamination.

For a more in-depth analysis of adhesives, interface relationships can be used to model
parameters of adhesion of the adhesive to the adherend. This approach necessitates a
limitation in the way the adhesive layer is modelled. The adhesive layer failure cannot be
defined in accordance with LEFM, which is employed to model interface surfaces but has
to follow the introduction of a criterion for plasticization (ductile adhesives).

The most versatile adhesive layer model is provided by XFEM (eXtended Finite
Element Method). It facilitates the modelling of adhesive bond failure by breaking links
between nodes in the adhesive layer. It was achieved thanks to additional functions that
describe node displacement during crack emergence until two new surfaces are created.
This method describes such discontinuities as cracks, allowing them to propagate in a
controlled manner. Additionally, when elements of XFEM are used, the type of the finite
element does not need to be the same as in the continuous model, so it is possible to
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refine the finite element mesh over the bond thickness. This modelling method facilitates
a more precise bond joint failure mode assessment, removing any restrictions on crack
shape. Nevertheless, this tool is very time consuming and laborious as it requires a complex
adhesive model and a huge amount of input data. Such an innovative approach on the
XFEM to modeling the adhesively bonded joints is presented, among others, by Ramesh
et al. [27] considering different criteria for damage initiation, and Santos and Campilho [28]
using XEFM as a method to predict the joint’s behavior. These analyzes reflect the behavior
of the same joints made of aluminum plates using three types of adhesive, as described in
detail in [21,22].

The literature today offers many studies comparing basic models for building nu-
merical adhesively bonded joints. An interesting summary of CZM and XFEM analysis
results, indicating the capabilities and limitations when modelling SLJ and DLJ speci-
mens is presented by Campilho et al. [29], and DCB specimens by Antunes et al. [30].
Struparu et al. [31] compared the behavior of the single-lap joint modeled using CZM
and XEFM, and these results were related to the stresses measured during the optical
measurement of the actual research model.

Another noteworthy work is comparative analyses made by Kim et al. [32] and
Sadegahi et al. [33]. Both research groups presented four different FE models based on
fracture toughness criteria to modeling fractures on adhesively bonded single-lap joints. In
the first paper a joint with three overlap lengths (10, 20 and 30 mm) made of unidirectional
carbon fiber reinforced adherend with brittle epoxy adhesive was described; in the second
one, the steel adherent joint was modeled using ductile epoxy adhesive with a thickness
of 0.2 and 0.9 mm. An interesting proposal of a hybrid inverted method to analyze the
adhesive interface stress at a composite single-lap bonded joints was presented in [34]. The
data obtained from the optical measurement of the samples (displacement field distribution)
were used here to create a reliable numerical model of the joint.

All numerical analyses in the referenced literature focused on modelling simple, small-
scale SLJ, DLJ, DCB, ENF joints or others [35]. These types of joints are used to determine
basic material parameters of the adhesive alone, not structural joints tested on full-scale
elements. In the case of large models, basic material parameters need to be analyzed
in-depth first so that material models used can be as accurate as possible (full adhesive
characteristics), and then the right models for the entire joint can be selected.

This paper focuses on the possibility of identification of adhesive behavior within
a shear joint between full-scale steel elements. The point is that the adhesive cannot be
observed directly because the adherends obscure the relatively thin layer. Therefore, any
external observations (such as optical deformation measurements) are restricted to steel
elements, and any conclusions regarding adhesive behavior are indirect. On the other
hand, introducing any gauges, such as strain gauges, into the adhesive layer, disturbs
its continuity, resulting in observer error whereby the test alone affects its result. In this
case, the problem can be resolved with the right models for numerical simulation of the
investigated phenomenon.

The model joint is made of high-strength steel flat bars joined with a methacrylate
adhesive, which has great potential for steel bonding. The first part of the paper presents
detailed material tests of the steel and adhesive with a discussion of the results in reference
to parameters in the product data sheet (taking into account differences in standards).
Next, the authors present a method for modelling the adhesively bonded joint, which
reflects the actual given full-scale DLJ. Thanks to the right adhesive model based on its
actual measured parameters, the structural model is reliable, which was confirmed in a
comparison of the model and numerical test results (to the available extent). Hence, it was
concluded that the consistency with parameters determined with the test demonstrated the
reliability of adhesive behavior in the FEM analysis. The last part of the paper presents an
analysis of the adhesive layer behavior, including its plasticization and consecutive stages
of adhesive failure.
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2. Laboratory Material Testing—Results and Discussion
2.1. Steel

The steel specimens were made of steel Domex 700 and were tested according to
PN-EN ISO 6892-1:2016 recommendation [36]. Three identical specimens were tested at
a speed of testing of 1 mm/min. The elongation of the specimens was measured using
extensometers. The primary mechanical properties of the steel are given in Table 1.

Table 1. The mechanical parameters of steel.

Proportional
Limit Stress

[MPa]

Yield Strength
[MPa]

Tensile
Strength

[MPa]

Ultimate
Elongation

[%]

Average values ~750 791.7 825.8 21.5

COV [%] – 0.6 1.1 5.4

2.2. Adhesive

All material tests were performed with the Plexus MA 420 adhesive (Shannon, County
Clare, Ireland) [37]. This adhesive is a two-component methacrylate recognized as a semi-
rigid material for structural joints. Based on the detailed material tests described below, the
main tensile, shear and adhesion parameters were determined.

2.2.1. Tensile Strength

In order to determine the basic properties of the methacrylate adhesive, standard
tensile tests were carried out. Quasi-static tensile tests were performed on typical dog-bone
shape samples (Figure 1) according to PN-EN ISO 527 recommendations dedicated for
plastics [38,39]. Three series of five repetitions were performed at speeds of testing of 1, 10
and 100 mm/min. The samples were fixed in custom made aluminum clamps with a base
grip length of 42.5 mm.
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Figure 1. Geometry of tested specimen.

The elongation of the samples was measured using extensometers, and in some sam-
ples using an optical measurement system (DIC). In order to determine reliable parameters
for the elastic-plastic material model (Figure 2a) important characteristic points—elastic
stage of work, yielding and final failure—were specified as averages for each of the consid-
ered test speeds. The laboratory tests results are presented in Table 2. Additionally, in the
strain range of 0.05–0.25%, according to [38], the modulus of elasticity was calculated. The
stress-strain relationships for all three test speeds are given in Figure 2b. The mean value
of the Poisson’s ratio for the standard test speed (1 mm/min) amounted to 0.365. Some
detailed information is presented in [40,41].

The results indicate a significant influence of the load speed on the adhesive strength.
Faster load increase results in greater strength and stiffness of the adhesive, with a simulta-
neous significant reduction in plastic deformation.
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Table 2. Tensile properties of the adhesive.

Test
Speed

[mm/min]

Elastic
Strength
σe [MPa]

COV
[%]

Elastic
Strain
εe [%]

COV
[%]

Yield
Strength
σp [MPa]

COV
[%]

Yield
Stain εp

[%]

COV
[%]

Failure
Strain εf

[%]

COV
[%]

E-
modulus

[MPa]

COV
[%]

1 8.0 7.5 0.8 25.0 14.7 4.1 4.1 7.3 8.4 23.8 1058 5.9
10 11.0 5.4 1.2 33.3 16.2 3.1 3.2 3.1 6.8 27.9 1131 2.1
100 13.9 4.3 1.4 21.4 18.3 3.8 2.4 4.1 4.6 39.1 1224 4.7

2.2.2. Shear Strength—Single Lap Joint (SLJ)

The determination of the shear strength of the adhesive was performed on sam-
ples subjected to tension in the single lap joint (SLJ) scheme, in accordance with PN-EN
1465:2009 [42] recommendation. Aluminum flat bars of 1050A alloy with a modulus of
elasticity of 69 GPa and a yield point of 120 MPa (information according to the manufac-
turer’s data) were used. The plates were prepared directly before bonding by sandblasting,
cleaning and coating with the primer recommended by the adhesive manufacturer. The
joint geometry is shown in Figure 3a. In the test, aluminum plates were adopted as adherent
because the adhesive parameters provided by the manufacturer [37] were also tested using
aluminum elements.
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During the test, aluminum flat bars became plasticized in the area of the glued joint.
Thus, an incorrect mode of failure was obtained because no adhesive or cohesive failure
in the adhesive layer was observed. Of course, in the next loading steps the failure of the
adhesive occurred, but it was a secondary phenomenon. Therefore, it can be concluded that
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since the metal elements were not broken, the glue was responsible for the final destruction
(however, with the wrong mode of failure—“metal failure”).

Measurement of flat bar elongation (with the use of extensometers) allowed for indirect
determination of the shear stresses in the adhesive. The values of displacements measured
directly in the jaws of the machine were reduced by the values taken from the extensometers.
In this way, the stress-strain characteristic were obtained (Figure 3b). There was no yielding
of the adhesive layer. The shear strength was calculated as the product of the tensile force
and the area of the adhesive joint, and the average value amounted to 25.22 MPa (COV
2.5%) with an average deformation of 6% (COV 5.7%).

Of course, one has to take into account the fact that the value of the shear strength
depends on the type of adherents.

2.2.3. Shear Strength—Thick Adherent Shear Test (TAST)

The typical single-lap shear test of analyzed adhesive did not allow determination
of its fill characteristic due to the occurrence of an undesirable mode of specimen failure.
Therefore, it was decided to perform a pure shear adhesive test according to the ISO
11003-2:2001 recommendation [43] in so-called TAST (Thick Adherent Shear Test). The
specific geometry of the tested sample (Figure 4a), “thick adherent” and a special gripping
system allows measurement of shear stresses without significant impact of additional
peeling stresses (no bending effect appears). Specimens were mounted by steel blocks with
diameter 10 mm, passing through pin holes. Five repetitions were performed at a speed of
testing of 0.5 mm/min. Figure 4b presents the stress-strain relationships.
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The result, shown in Figure 4b, allows separation of two phases of the adhesive work:
elastic and plastic. The shear strength was calculated as the product of the tensile force
and the area of the adhesive joint. The elastic limit is noted for an average shear stress of
13.49 MPa and 4.5% average strain (with COV amounted to 4.5% and 6.1%, respectively).
After reaching this value the plastic phase (with strengthening) begins. The failure of the
adhesive occurred at the average stress of 17.36 MPa (with COV amounted to 3.4%). In
the non-elastic phase, at the failure significant strains ranging from 10.7% to 19.2% were
observed. A large range of the failure strains is probably due to the automatic shutdown of
the hydraulic press with a certain sequence of instantaneous results.

In each case, the mode of failure indicated an adhesive-cohesive character.
The secant shear modulus was also calculated, the mean value of which amounted to

379 GPa (with COV amounted to 4.1%).
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2.2.4. Bond Strength

In order to determine the bond properties of the MA420, a pull-off test of the adhe-
sive to steel surface was carried out. This test was made according to the PN-EN ISO
4624:2016 [44] recommendation. The test consisted of measuring the adhesion force be-
tween an aluminum stamp with a diameter of 20 mm and a properly prepared surface.
The test was performed on steel plates (S235JR) with dimensions of 150 × 150 × 6 mm,
which were sandblasted, degreased with acetone and painted with a dedicated primer
immediately before bonding the measuring stamps. During the test, measurements were
made on seven aluminum measuring stamps. The thickness of the adhesive layer was 0.1
mm. As a result of the test, an average adhesion of 21.85 MPa (COV 2.0%) was obtained,
and the failure was of an adhesion nature (Figure 5).
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2.2.5. Analysis and Discussion of Material Test Results

The tensile and shear properties of the methacrylate adhesive—Plexus MA 420—
provided by the manufacturer in the technical sheet [37] are summarized in Table 3. The
technical sheet of the product defines the standards on the basis of which tensile properties—
ASTM D638 [45] and shear properties—ASTM 1002 [46] were determined.

Table 3. Tensile and shear properties of adhesive.

Data Test Speed
[mm/Min]

Tensile
Strength

[MPa]

E-Modulus
[MPa]

Elongation
at Rapture

[%]

Shear
Strength

[MPa]

Technical
data 50 1 18.6–20.6 517–689 30–50 2 20.7−26.2 2

(SLJ)
1 According to ASTM D638 [45], tests can be made at speeds of 5, 50 and 500 mm/min (samples type I and
II)—explanation in the text below. 2 Values taken from the datasheet from 2018 [37], i.e., during the material
testing period. In the datasheet from 2006 [47] the elongation to at rupture amounted to 100–125% and shear
strength was 12.0–15.5%.

A comparison of the obtained results from own laboratory tests (point 2.2.1) with the
data from the technical sheet (Table 3) shows large discrepancies in values, especially in the
deformation parameters (Young’s modulus and elongation at rupture).

The standard [45] specifies as many as five types of sample geometry depending on
the type of the tested plastic (rigid, semirigid or nonrigid) and the thickness of the sample.
Additionally, it defines different load speeds for the selected sample type, while requiring to
“select the lowest speed that produces rupture in 0.5 to 5 min. for the specimens’ geometry”.
If the manufacturer of the adhesive does not provide detailed information on the type of
sample and at what speed it was tested, it is not possible to reliably compare the obtained
strength and deformability values of the adhesive.

However, methacrylic adhesive is considered to be semi-rigid plastic, so the shape of
the test sample corresponds to Type I (material thickness 7 mm or less) or Type II (material
does not break in the narrow section with the preferred Type I specimen). The geometry of
these samples is shown in Figure 6a, and is very similar to the sample tested according to
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the standard [38]. However, the thickness of the sample tested according to the standard it
is not known [45].
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The analysis of the test speed of Type I and II samples, in terms of possible sample
elongation (assuming that the failure will occur between 0.5 and 5 min of the test), indicates
that the tested samples were loaded with a speed of 50 mm/min. This gives a real elongation
between 25 mm and 250 mm. Therefore, assuming the distance between grips of 115 and
135 mm for Type I or II sample, respectively, this results in elongation ranging from 30 to
50% within this range. At a speed of 5 mm/min, the maximum elongation would be just
over 25 mm (which is only 22% of the length of the Type I sample and 19% of the length of
the Type II sample) and, at a speed of 500 mm/min, the analyzed sample would have to
extend from about 250 to 2500 mm, which is unrealistic with respect to its dimensions.

When analyzing the values given in the product sheet, it is puzzling why there are
large ranges of values for most of the parameters specified. For tensile strength it is over
10%, with an E-modulus of over 30%, with strain at failure of over 65% and with shear
strength about 26% (in relation to lower values). Since the relevant standard defines at
what speed dog bone-shaped pieces should be tested, the values given are not the result of
different loading speeds. Similarly, the values of temperature and humidity, as well as the
conditions of sample seasoning, are strictly established. Thus, under strict conditions, the
cited significant dispersions seem to indicate high instability of the material, which was
not observed in own study, in which the results were consistent. Therefore, if one wants
to clearly assume the characteristics of the adhesive for numerical analyses or theoretical
considerations, it is necessary to rely on the results of one’s own tests performed on samples
taken from the same batch of adhesive which was used to make the models. What is also
puzzling in the analysis of the data sheet of the adhesive is the differences between the data
contained in the sheets from 2018 and 2006, despite referencing the same standard [45].

As already mentioned, after analyzing the possible geometry of the sample and the
loading speed, it must be concluded that the adhesive tensile strength test results quoted
in the data sheet were obtained at a loading speed of 50 mm/min. Thus, the lowest value
described there deviates slightly upwards from the values obtained in our tests. This may
be due to the slightly different geometry of the samples, including the unknown thickness,
which is only known to be no greater than 7 mm. Meanwhile, the thickness of the samples
in our own tests was 4 mm.

With regard to the deformability of the adhesive, i.e., the modulus of elasticity and
elongation at failure, the tested adhesive is much more rigid than declared in the product’s
technical sheets. The differences obtained are probably due to the slightly different geome-
try of the samples, including their thickness. However, in view of the good repeatability of
the results of our own tests the deformation data entered in the product sheets seem to be
too optimistic.
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With regard to shear strength, the geometry of the joint specified in standard [46], and
shown in Figure 6b, is almost identical to that specified in standard [42]. The difference is
the thickness of the adhesive layer. In the tests carried out according to [42], it was equal to
0.2 mm and in the case of tests carried out according to [46], it was equal to 6 mm, while
the ASTM standard for aluminum bonded components allows different joint thicknesses
ranging from 0.015” (0.38 mm) to 0.120” (3.05 mm).

In our own tests (Section 2.2.2), it turned out that the adhesive thickness required by
standard [42] was insufficient to obtain the correct model failure, namely a failure in the
adhesive layer (adhesive or cohesive failure). Therefore, it was considered that the result
obtained was not reliable, although it was within the range of the values obtained by the
manufacturer. What appears puzzling in this case, too, is the considerable dispersion of the
values declared by the manufacturer of the adhesive.

A reliable shear strength value for the tested adhesive was obtained using the TAST
method [43]. In this method, the thickness of the adhesive layer was 0.7 mm and the joint
length was 5.5 mm. This test allowed us to determine the maximum strength in the elastic
phase as 13.49 MPa and at the time of failure (after plasticization), 17.36 MPa. This value
is less than that given in the technical data sheet, but this difference is due to the quite
different geometry of the joint and the different test method.

3. Laboratory Model Testing—Results and Discussion
3.1. Testing Procedure

The evaluation of the effectiveness of the structural shear joint of steel elements with
methacrylate adhesive was performed on a double-lap joint, the geometry of which was
adapted to the actual geometry of the structural elements. The DLJ specimens corre-
sponded to the dimensions of the projected geometry of the overlays strengthening the
steel load-bearing elements of load handling equipment and their supporting structures.
Two types of DLJ specimens were made that differed in the effective length of the adhe-
sive joint amounted to 200 and 400 mm (specimens with 200/400 mm and 400/400 mm
overlap length). The specimens consisted of basic steel plates with the dimensions of
90 × 6 × 550 mm and both-sided overlaps glued to the basic plates. The cross-section of
the overlaps was 50 × 6 mm and their length was 850 mm and 650 mm, depending on the
type of specimen. The connection between the steel components was provided by a layer
of methacrylate adhesive with a thickness of 1.2 mm. Three specimens of each type were
made from one portion of the adhesive. A view of the tested specimens is given in Figure 7.
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Figure 7. Geometry of the full-size adhesively bonded joints (DLJ).

The specimens were tested under axial tension in one cycle up to failure. The loading
speed was 1.27 mm/min (0.05 inch/min), which was adopted from the ASTM D3528-96
recommendation [48]. Figure 8 shows the elements tested.
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Figure 8. Specimens prepared for tests with a traditional measurement system (strain gauges):
(a) model with an effective length of 200 mm; (b) model with an effective anchorage length of
400 mm.

During the test, the tension force, elongation of the specimen and strains on the steel
surface (at selected points of the overlap) were measured.

3.2. Results and Discussion

The detail test results are included in [16]. Only the most important results of the basic
model tests performed are discussed here.

It should be explained that in the full laboratory tests four specimens of each type were
made, while the fourth model in a given series was made later with the use of glue from
another portion. These additional specimens were used to perform optical measurement
of deformation using the Digital Image Correlation method (DIC). Due to the fact that
slightly different characteristics were obtained (which was explained by slightly different
parameters of the glue, as in [16]), the results of additional models were omitted in this
paper because the material tests were performed for the portion of glue used to make the
basic specimens (three of each type).

The behavior of the tested specimens is illustrated by the relationship between the
tensile force and elongation of the tested elements, as shown in the Figure 9a,b.
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A significant influence of the effective joint length on the behavior of the specimen
was observed. The use of a joint with a length of 200 mm resulted in the element as a whole
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working in an almost elastic manner until the joint was damaged. This occurred at an
average force of 319 kN and a strain (averaged over the length of the specimen) of 0.46%. In
all tested specimens, “adhesive failure” was noted, so the connection between the adhesive
and the surface of the steel base element was damaged (Figure 10a).
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Figure 10. Specimens after failure: (a) model with an effective anchorage length of 200 mm; (b) model
with an effective anchorage length of 400 mm.

In elements with an effective joint length of 400 mm, two work phases were distin-
guished: elastic and plastic. The yielding of the specimens took place at an average force of
403 kN, and the strain averaged over the length of the sample was 0.52%. During the plastic
phase, the elongation of the samples increased very rapidly. At failure, it exceeded 30 mm,
which corresponded to the average strain of the models amounting to 3.73%. The force
during yielding process increased slightly and at the time of failure amounted to ca. 437 kN.
Measurement of the length of steel elements after failure allowed for the conclusion that the
steel base elements had plasticized, which was also confirmed by subsequent tests in which
the optical method of measuring deformation of steel surfaces was used [16]. Unfortunately,
due to the limitations of the measurement methods, it cannot be clearly determined to
what extent the adhesive had plasticized. The damage of the joint was carried out in two
stages. From the point of view of the ASTM standard [48], at the moment of steel yielding
the joint was damaged because one of the system components was theoretically destroyed
(sudden increase in deformation). So, “metal failure” occurred in this convention. However,
after the steel yielded, the joint deformation continued to increase, most likely because the
adhesive in this area began to work in the plastic range, which included successive sections
of the adhesive joint. This situation lasted until the bond between the adhesive and steel
surface was broken, which can be considered a secondary adhesive failure (Figure 10b).
Figure 10b shows the model after final damage with a very large elongation of the base
steel plate (difference between the edge of the overlay and the adhesive residues on the
base plate) resulting from the plasticization of the steel and probably the adhesive joint.
The above description was based on indirect premises and, describing the phenomenon in
a qualitative sense, it was not possible to quantify it.

4. Numerical Modeling—Assumption
4.1. Model Selection

Analysis of the behavior of the test models, as well as the mode of their failure, enables
a reasonable adoption of the most appropriate numerical model of the adhesive joint. Point
1 presents theoretical descriptions of the adhesive models that are most commonly used in
numerical modeling.

Considering the assumed thickness of the adhesive layer (1.2 mm) and the guidelines
of the standard [38], the methacrylate adhesive analyzed can be classified as a semi-rigid
material [49] because its thickness is between the values accepted for rigid (0.1–0.2 mm)
and fully deformable (3–4 mm) adhesives.
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The force-elongation relationship shown in Figure 9b indicates plasticization of the
adhesive layer and the failure pattern of the models (primary or secondary) in each case
studied indicates adhesive failure of the joint between the steel surface and the adhesive
layer (Figure 10a,b).

Taking into account the above considerations, in the numerical analyses performed
the methacrylate adhesive layer is modeled as a continuum with contact layers. The
plasticization criterion for the adhesive was adopted based on the results of research [50],
in which it was shown that in the case of acrylic adhesives the best convergence of results
was obtained for the Drucker-Prager linear plasticization criterion. Due to the fact that
methacrylate adhesives, such as acrylic adhesives, have a high deformability before failure,
a decision was made to use this criterion as well. Contact layers (zero thickness) between the
adhesive bond and the steel components were modeled by applying adhesive characteristics
to the bonded surfaces and by applying a contact model using the LEFM. This approach
allowed for crack propagation in contact layers. For this purpose, the criterion of maximum
nominal stresses was adopted and, after reaching the limit stress in a specific place, the
contact was lost and the crack propagated. A simplification in the calculation model was
that the crack could only increase in the contact layer; there was no such possibility in
the material itself (adhesive or steel). The steel components were described by a material
model with elastic-plastic characteristics, according to the Huber-Misses criterion.

ABAQUS [51] software was used for modeling the DLJ specimens.

4.2. Material Model of the Adhesive
4.2.1. True Values

The basis for determining the material parameters of the adhesive were the tensile
results for dog-bone-shaped samples (point 2.2.1) and TAST results (point 2.2.3). An
identical approach can be found in other studies [52]. The values obtained in material tests
(engineering approach) do not take into account the influence of transverse deformations
of samples appearing during the laboratory test. The adopted Drucker-Prager model, on
the other hand, is based on the actual (true) values of stresses and strains; therefore, the
obtained results were transformed [38].

True tensile stress and strains are calculated according to the guidelines of the National
Physical Laboratory [53]. The following equations express elastic stress, elastic strain and
transverse elastic strain respectively:

σT =
σ′T

(1− v′ε′T)
2 , (1)

εT = ln
(
1 + ε′T

)
, (2)

εt = ln
(
1 + ε′t

)
. (3)

The values marked with ′ are values obtained directly from the tensile test (Section 2.2.1),
i.e., engineering values.

From the tensile test, the E-modulus and Poisson ratio were measured to calculate the
following plastic strain, transverse plastic strain and plastic Poisson’s ratio (the values with
‘ are taken from the laboratory tests):

εP
T = εT − ln

(
1 +

σT
E

)
, (4)

εP
t = εt − ln

(
1− v′

σT
E

)
, (5)

vP = − εP
t

εP
T

. (6)
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True shear parameters are calculated on the basis on TAST results (point 2.2.3). The
plastic strain, effective shear stress and effective shear plastic strain are expressed by the
equations given below:

εP
S = εS −

σS
G

, (7)

σs,e f f =
√

3σS, (8)

εP
s,e f f =

εP
S√
3

. (9)

Figure 11a,b show the comparison of stress-strain relationships in the plastic range for
the results obtained directly from the laboratory tests (engineering values) and the values
needed in the numerical model (true values).
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4.2.2. Continuous Model with Plasticization

In the Drucker-Prager material model, the plasticization criterion (fDP) is expressed as
the relationship:

fDP = tDP − dDP − pDP· tan(βDP) = 0 (10)

where tDP is the effective stress defined as a component of the principal stress, dDP is a
cohesion, i.e., a material parameter related to plasticizing stresses at shearing, pDP is the
mean hydrostatic stress, βDP is the material internal friction angle, and tan(βDP) is the
plasticity coefficient for hydrostatic stress.

The plasticity coefficient is determined on the basis of two stress states, tensile and
shear, and is determined from Equation (11):

tanβDP =
3·(λDP − 1)
(λDP + 1)

(11)

where λDP is a hydrostatic stress sensitivity parameter defined as:

λDP =

√
3·(σS/σT)

2−
√

3·(σS/σT)
(12)

True tensile stress, σT , and shear stress, σS, used in Equation (12), must correspond to
the same value of plastic strain:

σT ·εP
T = σS·εP

S, (13)

As long as the stresses do not reach the limit determined by Equation (10), the adhesive
model is based on linear elasticity, using the relationship between the Young’s modulus and
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the elastic Poisson’s ratio of the material. After exceeding this limit, plastic deformation
begins to increase. The increase depends on the flow parameter ψDP. This coefficient
should be determined on the basis of the plastic component of the Poisson’s ratio vp, from
the equation:

tan(ψ) =
3·
(
1− 2·vp

)
2·
(
1 + vp

) , (14)

Based on the transformed values (true values given in Figure 11) and Equations (11)
and (14), the parameters necessary to characterize the material model of the adhesive
were determined. The values used in the numerical analysis for Drucker-Prager linear
plasticization criterion are shown in Figure 12.
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4.3. Material Model of the Steel

The material characteristics of the steel adopted as the elastic-plastic model are pre-
sented in Figure 13 based on the parameters listed in Table 1 (point 2.1). No steel failure
criterion was adopted, but it was assumed that after exceeding the limit stresses, the defor-
mation would increase rapidly, which would allow determination of plasticization in the
steel element.
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4.4. Contact Layer Model

A contact layer, with zero thickness between the adhesive and the steel elements was
modeled by conferring bond characteristics to the surfaces to be joined. Based on the test
results (point 2.2.4), the limit bond stress was assumed to be 21.85 MPa, which is also the
limit shear stress. This represents destruction in the adhesive form without significantly
damaging the adhesive layer itself. Therefore, it was decided to use the pull-off strength to
determine the adhesion parameters of the adhesive contact layers.
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As a criterion for the initiation of degradation, the criterion of maximum nominal
stresses was adopted according to Equation (15), where successive ti

0 denote the limit
values of tensile and shear stresses. This approach is similar to that described in [54].

MAX
(
〈tn〉
t0
n

;
ts

t0
s

;
tt

t0
t

)
= 1. (15)

The fracture energy was assumed to be 3.5 kJ/m2 for tensile (Gn
c) and shear (Gs

c)
based on the study [54]. This describes the evolution of crack propagation and, according
to the study [55], a triangular shape was selected (Figure 14). Due to the deformable
adhesive layer, cracks occur in the peel force region of connection so this assumption is a
good approximation. When the fracture energy is used/dissipated, a fracture occurs in a
given region.
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5. Numerical Model—Results and Discussion
5.1. Characteristic of the Numerical Model

The numerical model of the joint was made in a three-dimensional state of stress with
the use of finite elements of the C3D8 type (eight-node cubic elements). The dimensions
of the finite element were assumed to be 1.0 × 1.0 × 1.0 mm in both types of steel plates
and 0.25 × 0.25 × 0.25 mm in the adhesive layer (Figure 15). The static scheme and the
mode of loading of the joint were adopted identically to the model laboratory tests. A
stiff connection at one end of the specimen and a stiff link with one independent reference
point (along which the load occurs) of the second end were assumed. Specimens with two
different effective joint lengths (200 and 400 mm) were modeled [40]. Figure 16 shows the
adopted static scheme of a DLJ specimen.
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5.2. Nmerical Model Validarion—Discussion

Analysis of the validity of the modelled double-lap joint was carried out by comparing
the force-elongation relationship for both types of joints analyzed [40]. Figure 17 shows
the graphs obtained from laboratory tests of three models (made using the same batch of
adhesive) and a numerical model based on the results of tests of adhesive from the same
batch. Each time, three displacement values were assumed, for which the force values
measured in the tests and read from the numerical model were compared. These points
were designated as A.1, A.2, and A.3 for the sample with an effective anchoring length of
200 mm and B.1, B.2, and B.3 for the sample with an effective anchoring length of 400 mm.
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For both types of specimens, a very good agreement of the analyzed results was
obtained (Table 4), which allows us to conclude that the performed numerical model
reflects the actual behavior of the tested samples very well. This consistency was obtained
both in the elastic phase of the models’ work and during the plasticization of the specimens
with an effective joint length of 400 mm.

Table 4. Tensile and shear properties of adhesive.

Model with 200/400 mm Overlap Model with 400/400 mm Overlap
A.1 A.2 A.3 B.1 B.2 B.3

3.10 mm 3.35 mm 3.63 mm 2.31 mm 2.95 mm 6.00 mm

Laboratory tests

Mean value [kN] 299.0 311.2 319.7 264.1 323.1 411.2

COV [%] 1.1 1.4 2.3 1.1 1.5 1.3

Numerical model

Value [kN] 298.5 314.0 318.6 270.2 332.6 406.2

Difference 0.17% 0.90% 0.34% 2.31% 2.94% 1.22%

The slightly overestimated resistance value obtained in the models with the anchoring
length of 400 mm is probably due to the inaccuracy of the adhesive bond in the model joints,
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where the excess adhesive was squeezed out of the pads and formed a local thickening
of the joint (Figure 10b). As a result, the actual active area during shearing was slightly
larger than the theoretical one, and the edge stress distribution was smoother than in the
idealized numerical model.

In the numerical model with an anchoring length of 400 mm, as in the laboratory tests,
a clear increase in displacement was obtained when a tensile force of 400 kN was reached.
This was due to the sum of the effect of elongation of the base flat bar at the jaws of the
testing machine (stress in the steel exceeded the proportional limit) and plastic deformation
in the adhesive layer. The visible difference between the numerical model and the tested
samples in this phase was due to the adopted bilinear material model of steel. In reality,
however, steel plasticization occurs in a gentler manner than in the simplified model, so
that a higher stiffness of the numerical model immediately before steel plasticization is
observed in the graphs. In addition, the rheology of the adhesive itself in the plastic state
may also have influenced the results.

5.3. Deformation Analysis—Discussion

In standard laboratory tests, only a certain amount of measurement data can be
obtained, usually with a certain number of points. In this specific given case, these mea-
surements were limited to the places where deformations were measured (strain gauge
alignment) or, in the case of optical measurements, to the accessible surfaces of the steel
components. Any results concerning the adhesive bond can only be estimated indirectly.
Hence, having a reliable numerical model of the joint allows fast and efficient execution of
deformation analysis and determination of the full stress distribution in the components, in-
cluding the adhesive bond layer. It is also possible to simultaneously analyze the adhesion
of the adhesive to the surface of the steel components and the behavior of the steel itself.

Figure 18 shows the stress distribution obtained from the numerical analysis on the
surface of the overlap with effective joint lengths of 200 mm and 400 mm. The maps
show the stress values at the time of theoretical failure of the numerical models (point A.3
with tensile force of 318.6 kN; point B.3 with tensile force of 406.2 kN). The colors in the
individual graphs are scaled independently and do not correspond to each other.

For the sample with the overlap length of 200/400 mm, when the joint resistance
(ultimate tensile force) was reached, the stresses in the steel components were within
proportional limits, so that the diagram of the relationship between the force and the
elongation of the steel components should be linear. However, in Figure 9a, in the last
phase of work of the component it can be seen that there has been some minor plastic
deformation in the model as a whole, suggesting plasticization of the adhesive prior to
the failure. However, the above conclusion is indirect and cannot be quantified on the
basis of the data obtained in the model tests. At the same time, a visual inspection of the
destroyed samples (Figure 10a) indicates that the final failure of the tested models was
adhesive in nature at the contact surface between the adhesive and the 90 × 6 mm base flat
bar. During the preliminary analysis of the obtained laboratory results [17], it was found
that an anchorage length of 200 mm was assumed to be insufficient to provide efficient
bonding between high-strength steel components. The specimen failure occurred earlier
than the joined components load-bearing capacity expired. Only the numerical analysis
that was carried out provided complete knowledge of the joint behavior and enabled the
conclusion that the anchoring length was ideal, as it did not allow plasticization and hence
excessive elongation of the sample (which is disadvantageous from the point of view of
practical application).

Table 5 shows the adhesive bond behavior determined in the numerical analysis at
the analyzed points in the model with an overlap length of 200/400 mm. In the adhesion
maps, a value of 0.00 indicates full adhesion and 1.00 indicates no adhesion. On the other
hand, for the plasticity of the adhesive, a range from 0.00 to 1.00 indicates the relative level
of plasticity of the adhesive (1.00 is full plasticity).
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Table 5. Tensile and shear properties of adhesive.

Points Given in Figure 14a

A.1 A.2 A.3

Loss of adhesion:
adhesive—base plate

(90 × 6 mm)
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between the base flat bar (90 × 6 mm) and the adhesive layer (red zone), initially in the 
area of the joint edge in the center of the sample. At the same time, the joint retained full 
adhesion to the overlap (50 × 6 mm). As the zones where the adhesion of the main flat bar 
was lost increased, there was a decrease in the extent of the plastic zone of the adhesive, 
as the adhesive ceased to transmit stress in the areas of adhesive failure. Although adhe-
sive failure (between adhesive and the surface of the base plate) is ultimately visible, in 
reality the mechanism is complex and can be described as adhesive failure with partial 
plasticization of the adhesive. In the case of the overlap, only a local loss of adhesion oc-
curring in the last phase, i.e., just before the joint failure, was observed. Confirmation of 
the described behavior of the adhesive layer is provided by the photograph of the dam-
aged sample (Figure 10a), where the loss of adhesion between the adhesive and the sur-
face of the base flat bar is clearly visible. The plasticization of the adhesive described 
herein explains the aforementioned slight nonlinearity of the model elongation-force dia-
gram. 
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An analysis of the plasticity level of the adhesive shows that initially (A.1) the plas-
ticization of the adhesive bond was almost complete. Due to the possibility of further
stress buildup in the plastic working range of the adhesive, there was a gradual loss of
adhesion between the base flat bar (90 × 6 mm) and the adhesive layer (red zone), initially
in the area of the joint edge in the center of the sample. At the same time, the joint retained
full adhesion to the overlap (50 × 6 mm). As the zones where the adhesion of the main
flat bar was lost increased, there was a decrease in the extent of the plastic zone of the
adhesive, as the adhesive ceased to transmit stress in the areas of adhesive failure. Although
adhesive failure (between adhesive and the surface of the base plate) is ultimately visible,
in reality the mechanism is complex and can be described as adhesive failure with partial
plasticization of the adhesive. In the case of the overlap, only a local loss of adhesion
occurring in the last phase, i.e., just before the joint failure, was observed. Confirmation of
the described behavior of the adhesive layer is provided by the photograph of the damaged
sample (Figure 10a), where the loss of adhesion between the adhesive and the surface of the
base flat bar is clearly visible. The plasticization of the adhesive described herein explains
the aforementioned slight nonlinearity of the model elongation-force diagram.
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In order to better illustrate the stress distribution in the adhesive layer (obtained in
numerical analysis) for the specimen with 200/400 mm length of overlap, the shear and
tensile peeling-stress distributions in the adhesive layer (Figure 19a,b respectively) are
additionally shown in the axis of the tension specimen. Only selected force levels are shown
in the diagrams for greater clarity. From a qualitative point of view, it is significant that
moments before the failure (ca. 312 kN) the shear stresses reached practically the same
value (15.5 MPa) on the short sections of both joints in the central part of the model. Over
the length of the shorter joint, this showed a decrease in stress at the ends and a shift in
the maximum value slightly towards the center of the joint. A further small increase in
load in the direct failure phase (up to 318.6 kN) did not cause any visible changes in the
stress distribution in the longer joint, while in the shorter joint a decrease in stress at one
of its ends was clearly visible, accompanied by a shift of the highest stress values (up to
15.5 MPa) towards the center of the joint length. The two red lines along the length of the
shorter joint also showed equal shear stress values between their extreme peaks, which
indicates plasticization of the adhesive. This behavior is desirable as it allows the adhesive
to work properly over the entire length of the joint (which, of course, is due to the inherent
flexibility of the adhesive layer, which is a function of the modulus of elasticity and the
thickness of its layer). The values of the shear stresses obtained at the failure, in the range
from 15.5 MPa to 16.5 MPa, are similar to those obtained in our TAST tests; the difference is
due to the joint size in the material test and in the joint model.

As can easily be seen in Figure 19a, the shear stress distribution along the length of
the two contact surfaces (adhesive layers) is very similar, with pronounced peaks near
their ends and a drop in the value as the center of the length of each contact surface is
approached. Clearly, the stresses in the shorter joint (200 mm) are higher than in the longer
joint (400 mm) for the same force value.
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In the case of the distribution of tensile (peeling) stresses as shown in Figure 19b, they
were clearly concentrated at the ends of both joints, whereas in the failure phase, they
reached values of up to 7 MPa (i.e., significantly below the tensile strength from the material
tests). Only in the failure phase did tensile stresses appear along the entire length of the
shorter joint (but in a negligible value of up to about 2 MPa), while they were practically
equal to zero along most of the longer overlap.

The distribution of shear stresses presented in Figure 19a is identical to the stress
map shown in Figure 18a. Of course, the stress map is made for one selected force value,
hence it is general in nature, while Figure 19 shows successive changes in the stress
distribution during loading (in selected loading steps) showing the graphs for several
selected load values.

It should be noted that the obtained shear stress distribution along the joint length was
almost identical to that for the lap-type joints, despite a significant difference in the size of
the adhesively bonded joint. However, with much larger surfaces of actual glue joints the
differences in the stress values along the length of the joint are greater and strongly depend
on the deformability of the glue and its layer thickness. In general, the stiffer the adhesive
and the thinner its layer, the more incorrect the assumption of uniform stress distribution
in the adhesive layer. Thus, in an actual lap joint, the load-bearing capacity is determined
by the maximum local shear stresses, and not the average value along the joint length (as
in SLJ test and TAST).

An analogous analysis was performed for an effective joint length of 400 mm. In
this case, maps of the plastic work of the adhesive and of the plasticization of the base
plate (90 × 6 mm) were most important. The results are shown in Table 6. At a force
of about 270 kN (point B.1), which is well before the visible plasticization of the entire
model, local plasticization of the adhesive layer occurred at both ends of the contact surface
between the overlap and the base flat bar. A further increase in force, up to point B.2 (ca.
333 kN), led to the development of a zone of plasticization of the adhesive, which at that
time covered almost the entire surface of the joint. Such a condition is responsible for the
onset of a clearly nonlinear character of the diagram showing the relationship between
the force and the elongation of the sample visible in Figure 9b. At a force of about 406 kN
(which corresponds to a stress in the basic flat bar of just over 750 MPa), there was a loss
of proportionality between the steel deformation and the stress, and consequently a huge
increase in specimen elongation at a virtually constant force.

Thus, the deformation of the steel in the base flat bar starts to be responsible for
the nonlinear nature of the diagram (as a result of its narrowing, the stresses continue to
increase, and the yield point is exceeded). This failure of the models is also adhesive in
nature, but the direct cause is plasticization of the steel in the base flat bar, and the loss of
adhesion of the adhesive to the steel itself is secondary. It can be assumed that the use of
steel with even higher performance characteristics would result in a higher load-bearing
capacity of the joint, for which only the adhesive bond would be responsible.
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Table 6. Tensile and shear properties of adhesive.

Points Given in Figure 14b
B.1 B.2 B.3

The plastic phase of the
adhesive layer and base plate

(90 × 6 mm)
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6. Conclusions

This study considered the possibility of obtaining detailed data on the behavior of
a sheared adhesive joint connecting steel components in a double-lap joint. Since direct
observations of the behavior of such a joint do not allow for measuring the accessible
surfaces of the steel components, and since the introduction of strain gauges directly into
the adhesive layer disrupts its work, in the model tests inferences concerning the behavior
of the adhesive in the joint can only be made indirectly. Meanwhile, by using appropriately
advanced numerical modeling based on reliable characteristics of the adhesive confirmed
by tests (and, of course, the characteristics of the materials being joined), it is possible to
obtain a direct image of the behavior of the adhesive in the joint, as well as to assess the
contact phenomenon at the interface between the adhesive layer and the joined materials.

Based on the performed model tests and the numerical analysis, the following conclu-
sions can be formulated.

(1) The basis for creating a reliable numerical model is to perform detailed tests on
the mechanical characteristics of the adhesive. This is because the data contained in the
technical data sheets for adhesives are not always reliable, even if they are based on the
same standards as our own tests. In addition, the final results alone (regarding strength,
elongation, and other characteristics) are not sufficient to adopt a simplified model of the
adhesive because it is usually necessary to know all characteristics of the behavior of the
material under load.

(2) In the case of methacrylate adhesive (and probably other adhesives), the loading
speed has a significant effect on the strength and elongation test results; this is important
given the wide range of test speeds allowed by the standards.

(3) In model tests of adhesive joints, data obtained from strain gauge measurements at
selected points in the models are insufficient to fully describe their behavior.

(4) In the case of the methacrylate glue tested, reliable results were obtained using the
continuous model with plasticization criterion for the adhesive, and the contact layers were
assumed to have zero thickness, with the bond characteristics given. It should be noted
that the above criteria are specific to adhesives with significant deformation prior to failure
(semi-rigid material) and therefore cannot be considered universal.

(5) The results of numerical analysis allowed for detailed mapping of the behavior of
the adhesive layer under the load of the tested models, including the analysis of the extent
of the adhesive joint plasticization and the areas of loss of adhesion. Thus, the possibility
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of a reliable assessment of the adhesive joint behavior under load, and a description of
the course of the final failure of the models, was demonstrated. At the same time, plastic
failure of steel in 400 mm long models, previously inferred only indirectly in tests with
local strain gauge measurements, was demonstrated.

Additionally, general conclusions were formulated based both on the described labo-
ratory tests and on our own and other research.

(6) Attention should be paid to the influence of the thickness of the adhesive layer on
the test results. In the case of a joint with a small area (SLJ, TAST), an increase in shear
strength is visible in the case of a thinner adhesive layer, which results from the cooperation
of the entire, short joint (it is even included in the standards, where the failure force is
divided by the entire surface of the joint, thus assuming identical stresses at each point). In
turn, in large joints, it is desirable to have an adhesive layer thick enough to ensure proper
interaction of the adhesive (plasticization) along the length of the joint. Hence, there is a
need to individually select the thickness of the adhesive layer in a given joint, depending
both on the dimensions of the joint and the stiffness of the adhesive itself.

(7) The mode of failure of the adhesively bonded joint (adhesive, cohesive or mixed)
depends on the ratio between the adhesion at the contact of the adhesive with adherents
and the cohesion inside the adhesive layer. In our laboratory tests, each time the adhesion
was damaged this could be explained by the use of an adhesive with relatively medium
deformability. In the case of brittle adhesives, one can expect cohesive failure, but the final
method of failure will always depend on the mutual correlation of a number of factors, such
as the adhesive elasticity modulus, the thickness of its layer, the joint surface and method
of surface preparation of adherents, and also on the test conditions (e.g., temperature).

As our main conclusion, it should be stated that a properly performed numerical
analysis of an adhesively bonded joint, based on appropriate material tests, is a reliable
tool to study the behavior of an adhesive throughout the model loading process.

Of course, one has to be aware that the described tests are only fragmentary and are
limited to two types of models made of the same steel and joined with the same adhesive.
Thus, the conclusions of the tests are not universal, especially in terms of material models,
which must be adapted each time to the characteristics of the adhesive and the bonded
materials.
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