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Abstract

Glossina pallidipes is the main vector of animal African trypanosomiasis and a potential vec-

tor of human African trypanosomiasis in eastern Africa where it poses a large economic bur-

den and public health threat. Vector control efforts have succeeded in reducing infection

rates, but recent resurgence in tsetse fly population density raises concerns that vector con-

trol programs require improved strategic planning over larger geographic and temporal

scales. Detailed knowledge of population structure and dispersal patterns can provide the

required information to improve planning. To this end, we investigated the phylogeography

and population structure of G. pallidipes over a large spatial scale in Kenya and northern

Tanzania using 11 microsatellite loci genotyped in 600 individuals. Our results indicate dis-

tinct genetic clusters east and west of the Great Rift Valley, and less distinct clustering of the

northwest separate from the southwest (Serengeti ecosystem). Estimates of genetic differ-

entiation and first-generation migration indicated high genetic connectivity within genetic

clusters even across large geographic distances of more than 300 km in the east, but only

occasional migration among clusters. Patterns of connectivity suggest isolation by distance

across genetic breaks but not within genetic clusters, and imply a major role for river basins

in facilitating gene flow in G. pallidipes. Effective population size (Ne) estimates and results

from Approximate Bayesian Computation further support that there has been recent G. palli-

dipes population size fluctuations in the Serengeti ecosystem and the northwest during the

last century, but also suggest that the full extent of differences in genetic diversity and popu-

lation dynamics between the east and the west was established over evolutionary time peri-

ods (tentatively on the order of millions of years). Findings provide further support that the

Serengeti ecosystem and northwestern Kenya represent independent tsetse populations.

Additionally, we present evidence that three previously recognized populations (the
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Mbeere-Meru, Central Kenya and Coastal “fly belts”) act as a single population and should

be considered as a single unit in vector control.

Author summary

Tsetse flies are responsible for transmission of trypanosomes that cause human African

trypanosomiasis (HAT) and animal African Trypanosomiasis (AAT) in sub-Saharan

Africa, and are thus of economic importance in the regions they inhabit. In Kenya and

Tanzania, control of the main vector species, Glossina pallidipes, plays an important role

in control of both HAT and AAT. Understanding the population structure of G. pallidipes
is important in designing effective fly control strategies. In this study, we determined the

spatial genetic structuring of G. pallidipes on a broad spatial scale with genotype data from

11 microsatellite loci and 21 sampling sites in Kenya and northern Tanzania. Results indi-

cate a strong regional separation of tsetse fly populations into three major genetic clusters,

with divergence east and west of the Great Rift Valley in central Kenya and between the

Serengeti ecosystem and other western sites. Findings from ABC simulations suggest that

the east/west divergence reflects the biogeographic break across the Great Rift Valley, and

the northwest/southwest divergence reflects the biogeographic break between low eleva-

tion savannah and the Kenyan highlands, both biogeographic breaks previously observed

in savannah animals with similar ranges. We found evidence of high genetic connectivity

and migration rates within each of the three genetic clusters, and only occasional migra-

tion between clusters. These patterns of genetic connectivity and migration suggest that,

following local eradication, the risk of reinvasion from within genetic clusters is very high

even across vast geographic distances of more than 300 km, and that the risk of reinvasion

from different genetic clusters is much lower, but still of concern. We argue that these

findings call for tsetse control strategies that are coordinated for each genetic cluster, and

monitoring schemes that are specifically designed to detect migration events across the

geographic boundaries that demarcate genetic clusters. Although coordination of control

within and monitoring between genetic clusters will be challenging because of the large

spatial extent of the east genetic cluster and the international scale of the Serengeti ecosys-

tem, we argue it is necessary to prevent reinvasions from both proximal and distant

localities.

Introduction

Tsetse flies (genus Glossina) are restricted to Sub-Saharan Africa and inhabit patchy and dis-

continuous habitat within their distribution [1,2]. In Kenya and Tanzania [3,4], Glossina palli-
dipes is the most widely-distributed vector of trypanosomes that cause Animal African

Trypanosomiasis (AAT), and to a lesser degree, has also been involved in Human African Try-

panosomiasis (HAT) transmission [5,6]. Distribution of G. pallidipes runs from Ethiopia to

Kenya, Uganda, Tanzania, Democratic Republic of the Congo, Mozambique and Zambia, [7–

9] and its population density depends on the availability of a suitable habitat and mammalian

hosts [10]. The presence, distribution, and abundance of tsetse flies depends on availability of

an appropriate habitat [11]. The extent of the spatial distribution of tsetse matches changes in

seasons, where tsetse populations reduce in size during several arid periods of the year, but

increase in size during rainy seasons [12–14].

Tsetse fly population structure in Kenya and Tanzania
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Geographical Information System (GIS) prediction models have been used to show areas of

tsetse abundance and expansion [13,15], and these models suggest that several human and nat-

ural disturbance have impacted tsetse distribution at various times. This finding is supported

by population genetic analyses that indicated genetic shifts [16] especially in regions where

human activities have altered conditions [17,18]. Our previous study showed that tsetse con-

trol efforts during the 1960s and 1980s (African union 2009) [19] did not interfere with the

genetic diversity of tsetse [16]. Over longer time intervals, disease epidemics such as the Rin-

derpest outbreak that occurred in the early 1990s [20,21], and the biogeographic break caused

by the formation of the Ethiopian rift (the section of the Great Rift Valley in central Kenya; Fig

1), were also likely to have impacted the genetic differentiation of tsetse flies, as it did for many

other groups of animals and plants [22–25]. Understanding the relative impact of these various

biogeographic forces is important for the development and coordination of effective and feasi-

ble vector control strategies in Kenya and Tanzania, two countries that are heavily burdened

by the economic cost of AAT.

The goal of this study was to evaluate patterns and levels of genetic connectivity of G. palli-
dipes across multiple spatial scales, and to understand the evolutionary forces that have shaped

and maintained them. We used samples collected from 21 sites in Kenya and the Serengeti

National Park in Tanzania (Fig 1) and screened approximately 600 samples for genetic varia-

tion at 11 microsatellite loci. Sampling covered five of the eight tsetse fly belts recognized by

the Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC). Using KENTTEC

recommended terminology, we included samples from the Lake Victoria basin fly belt (KAR

and RUM), the Narok-Kajiado fly belt (Maasai Mara National Reserve within the Serengeti

ecosystem: GVR, MRT, FGT, NBS and MRB), the Mbeere-Meru fly belt (MNP), the Central

Kenya fly belt (KIB), and the Coastal fly belt (HND, TSW, KIN, SHI and SHT). We investi-

gated the pattern of genetic structure over three spatial scales, with higher resolution than

previous genetic analyses of G. pallidipes [26–30]. At the largest spatial scale (Fig 1), we investi-

gated genetic structure from 21 sites across the G. pallidipes distribution in Kenya and the Ser-

engeti National Park in Tanzania. At the intermediate spatial scale, we investigate 13 and eight

sites that fall west and east (respectively) of the Great Rift Valley ‘Ethiopian rift’, which is a bio-

geographic boundary that marks a genetic break in G. pallidipes [26]. At the smallest spatial

scale, we investigated 11 sites within the Serengeti ecosystem, which is one of the largest

expanses (~25,000 km2) of well-connected natural savannah habitat in the world [31]. The Ser-

engeti ecosystem is the iconic site of one of the best-known periodical migrations of large ver-

tebrates that spans the Kenya/Tanzania border [32]. The ecosystem is protected in both Kenya

and Tanzania, by the Maasai Mara National Reserve and the Serengeti National Park, respec-

tively. Findings from our investigation at three spatial scales in Kenya and Tanzania can help

develop effective vector control and monitoring strategies to coordinate efforts at local,

regional, national, and international spatial scales.

Methods

Ethics Statement

Field collections of tsetse flies were conducted under permit number NACOSTI/P/18/28381/

22226 granted by the Kenya National Commission for Science, Technology and Innovation.

Study sites and tsetse samples

Biconical [33] and Ngu [34] traps were used to collect tsetse flies from twenty-one sampling

sites during the time period of March 2015 through November 2016 (Fig 1, Table 1). To ensure

trapping effort was uniform among sites, in each location 7–15 traps were placed within a 1
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km radius at least 150 m apart from one another and emptied after 24 hrs. Flies were preserved

individually in 1.5 mL tubes containing 80% ethanol. The collection date, trap number and

coordinates, and sex were recorded on each sample tube. Glossina pallidipes samples were col-

lected from 21 sites across Kenya and northern Tanzania (Fig 1), including from 11 sites

within the Serengeti ecosystem and eight sites from a previous study [26]. A total of 600 tsetse

flies were genotyped, representing ~30 flies per site except for two locations (SHI and SHT),

which had 22 and 8 flies, respectively. To avoid possible sex-bias, the same number of males

and females were included.

To evaluate the genetic structure of these populations at a country-wide scale we included

samples from across the species current distribution in Kenya (Fig 1; Table 1). We also visited

14 more locations that did not have any flies, despite past collection records that indicated the

presence of G. pallidipes (S1 Table). Absence of flies in these 14 localities could have been

caused by recent land use changes that have altered the habitat for agricultural use. To investi-

gate patterns of genetic structure within the Serengeti ecosystem we used samples from five

sites (GVR, MRT, FGT, NBS and MRB) from the Maasai Mara National Reserve in Kenya and

six sites (GTR, IKR, KLM, MSN, MSS, and NGK) from the Serengeti National Park in

Tanzania.

DNA extraction, microsatellite genotyping and mtDNA sequencing

DNA was extracted from two legs per fly using either the PrepGEM insect DNA (ZYGEM

Corp Ltd, Hamilton, New Zealand) or the Qiagen DNAeasy blood and tissue (Qiagen, Hilden,

Germany) extraction kits, following manufacturers’ protocol. We used fluorescent labelled

(FAM, TAM, HEX and NED) forward primers for 11 microsatellite loci (S2 Table) using pub-

lished protocols that had been validated for G. pallidipes [16]. Briefly, PCR amplifications were

carried out in a Mastercycler Pro Thermocycler (Eppendorf, Germany) in 13 μL reactions

Fig 1. Map showing sample sites in Kenya and Tanzania and location of the study region within Africa. Sampling

sites shown with dots and labeled with three letter codes as listed in Table 1. The striped region denotes the 11

sampling sites within the Serengeti ecosystem. The map was created in QGIS v2.12.1 (August 2017; http://qgis.osgeo.

org) with free and publicly available data from DIVA-GIS (August 2017; http://www.diva-gis.org).

https://doi.org/10.1371/journal.pntd.0007855.g001

Tsetse fly population structure in Kenya and Tanzania

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007855 February 24, 2020 4 / 26

http://qgis.osgeo.org/
http://qgis.osgeo.org/
http://www.diva-gis.org
https://doi.org/10.1371/journal.pntd.0007855.g001
https://doi.org/10.1371/journal.pntd.0007855


consisting of 6 μl of distilled H20, 1.1μl of 25 mM MgCl2, 0.5 μL each of 10mM forward and

reverse primers, 0.1 μl of 100X BSA, 1.1 μl of 10 mM dNTP mix, 1μl of DNA template and

0.1 μl of 5 U/μl GoTaq DNA polymerase with 2.6 μL of 5X PCR Buffer (Promega, USA). We

Table 1. Sampling sites and estimates of their genetic diversity and assignment.

Site (date) Code Lat. Long. N AR HO HE FIS FIS p-value qNW qSW qE qO

Northwest

Kapesur

(Jun 2016)

KAP 0.733 34.316 30 2.06 0.42 0.51 0.18 0.00 0.93 0.00 0.00 0.07

Ruma

(Jan 2016)

RUM -0.608 34.307 30 1.81 0.38 0.42 0.10 0.02 1.00 0.00 0.00 0.00

Southwest (Serengeti Ecosystem)

Governor’s Camp

(Aug 2016)

GVR -1.309 35.034 30 2.3 0.49 0.58 0.16 0.00 0.00 1.00 0.00 0.00

Mara Talek

(Aug 2015)

MRT -1.431 35.059 30 2.26 0.54 0.56 0.04 0.09 0.03 0.97 0.00 0.00

Fig Tree Camp

(Aug 2016))

FGT -1.436 35.194 30 2.36 0.54 0.59 0.09 0.01 0.09 0.89 0.02 0.00

Naibosho

(Sept 2016)

NBS -1.465 35.309 30 2.29 0.51 0.57 0.10 0.00 0.00 1.00 0.00 0.00

Marabridge

(Aug 2016)

MRB -1.556 35.025 30 2.44 0.52 0.62 0.16 0.01 0.00 1.00 0.00 0.00

Grumeti

(Nov 2016)

GTR -2.092 34.322 30 2.39 0.55 0.61 0.10 0.00 0.00 1.00 0.00 0.00

Ikorongo

(Nov 2016)

IKR -2.026 34.692 30 2.42 0.54 0.62 0.13 0.00 0.00 0.93 0.00 0.07

Kilimafedha

(Oct 2016)

KLM -2.299 34.901 30 2.43 0.58 0.63 0.08 0.00 0.00 0.98 0.02 0.00

Maswa North

(Nov 2016)

MSN -2.674 34.401 30 2.46 0.55 0.63 0.13 0.00 0.00 1.00 0.00 0.00

Maswa South

(Nov 2016)

MSS -3.199 34.46 30 2.43 0.58 0.62 0.07 0.03 0.01 0.98 0.02 0.00

Ngorongoro

(Oct 2016)

NGK -3.446 34.886 30 2.35 0.54 0.59 0.08 0.01 0.00 0.97 0.03 0.00

East

Nguruman

(Mar 2015)

NGU -1.977 36.117 30 2.12 0.51 0.54 0.06 0.04 0.03 0.10 0.87 0.00

Meru National Park

(Jan 2016)

MNP 0.077 38.064 30 2.5 0.58 0.65 0.11 0.00 0.00 0.00 1.00 0.00

Kibwezi

(Oct 2016)

KIB -2.416 37.954 30 2.53 0.58 0.66 0.12 0.00 0.00 0.00 1.00 0.00

Tsavo west

(Aug 2015)

TSW -3.027 38.218 30 2.55 0.57 0.65 0.13 0.00 0.00 0.00 1.00 0.00

Kinango

(Aug 2015)

KIN -4.108 38.874 30 2.55 0.55 0.65 0.16 0.00 0.00 0.02 0.98 0.00

Tiribe

(Aug 2015)

SHT -4.338 39.264 8 2.51 0.4 0.72 0.48 0.00 0.00 0.00 1.00 0.00

Shimba

(Aug 2015)

SHI -4.152 39.420 22 2.54 0.52 0.66 0.22 0.00 0.00 0.00 1.00 0.00

Hindi

(Jun 2016)

HND -2.117 40.791 30 2.54 0.56 0.65 0.14 0.00 0.00 0.03 0.97 0.00

Sampling information including sampling site (and date of collection), code, latitude (Lat.), longitude (Long.), number of samples (N), mean allelic richness across all 11

loci (AR), observed heterozygosity (HO), expected heterozygosity (HE), inbreeding coefficient (FIS), and results from the STRUCTURE [35,36] clustering analysis of

average assignment probability (q) to the northwest, southwest, east, and outlier clusters (qNW, qSW, qE, qO, respectively).

https://doi.org/10.1371/journal.pntd.0007855.t001
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used the following cycling conditions: 95˚C for five minutes, 12 touch-down cycles (95˚C for

30 seconds, 60–50˚C for 25 seconds, and 72˚C for 30 seconds), 40 additional cycles (95˚C for

30 seconds, 50˚C for 25 seconds, and 72˚C for 30 seconds), and a final extension of 72˚C for

20 minutes. PCR products were multiplexed in groups of two or three loci in the same way as

previously published [16], and genotyped on an ABI 3730xL Automated Sequencer (Life Tech-

nologies, USA) at the DNA Analysis Facility on Science Hill at Yale University (http://dna-

analysis.yale.edu/). Alleles were scored using the program GENEMARKER v2.4.0 (Soft Genet-

ics, USA). To ensure replication of genotype calls, automatically generated peaks were visually

inspected twice independently using agreed upon criteria for each locus (S1 File), and only

genotype calls that agreed were retained.

For approximate Bayesian computation analysis exploring potential causes of population

structure, we sequenced a 439 bp fragment of mitochondrial DNA (mtDNA) from the cyto-

chrome oxidase I gene was PCR-amplified in 24 individuals using primers designed by Simon

et al [37] (sequencing details are in S2 File). Geneious v6.0.6 software [38] was used to edit and

align sequences, and unique mtDNA haplotypes and evolutionary relationships between hap-

lotypes were constructed with parsimony-based network using TCS var 1.21 software [39] as

implemented in PopART (Population Analysis with Reticulate Trees: http://popart.otago.ac.

nz/index.shtm).

Microsatellite marker validation and diversity

We checked for presence of null alleles using Micro-Checker v2.2.3 [40] and loci with evidence

of null alleles in all sampled sites were dropped from subsequent analyses. We tested all micro-

satellite loci for linkage disequilibrium and deviation from Hardy-Weinberg equilibrium using

Genepop v4.6 [41]. All loci were evaluated using the Markov chain method [42] with 10,000

dememorization steps, 1000 batches, and 10,000 iterations per batch. Fisher’s method was

used to obtain significance values that were adjusted for multiple tests using the Benjamini-

Hochberg method ([43]). We used Arlequin v3.5.2.2 [44] to determine observed (Ho) and

expected heterozygosity (He). Allelic richness (AR) and inbreeding coefficient (FIS) were cal-

culated using FSTAT v2.9.3.2 [45].

Estimates of effective population size (Ne) and population bottlenecks

We assessed population dynamics with estimates of effective population size (Ne), which can

be considered a proxy for the amount of variation present in the population, and tests for

recent population bottlenecks. These parameters inform the numbers of breeding individuals

in a region, the effective dispersal ability, the potential strength of selection for resistance to

vector control manipulations (genetic or para-genetic engineering or release of sterile males)

[46–49]. Thus, improved understanding of these parameters can help to model transmission

dynamics and inform on-the-ground vector control strategies. We used one-sample linkage

disequilibrium method [50], implemented in NeESTIMATOR v2 [51]. We tested for recent

bottlenecks in BOTTLENECK 1.2.02 [52], a program that can detect bottlenecks approxi-

mately 2Ne to 4Ne generations before sampling [52,53]. We tested for excess heterozygosity

compared to observed allelic diversity using the Wilcoxon’s one tailed signed rank test [52]

under the two-phase mutation model (TPM) with 70% single-step mutations and 30% multi-

ple-step mutations, and the infinite allele model (IAM), both with 10,000 iterations. We

reported the raw p-values, and p-values that were adjusted for multiple tests using the Benja-

mini-Hochberg method ([43]). The TPM and IAM models differ in their degree of mutation

approximation, with the TPM model generally considered the most appropriate for microsat-

ellite data [54]. We also included the IAM model for comparison but a population was
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considered having undergone a recent bottleneck only if there was a consensus by both mod-

els. The mode shift function of BOTTLENECK was employed to determine allele frequency

distributions and infer whether distortions in distributions were likely to be bottleneck-

induced [53].

Population structure

We used the Bayesian clustering method implemented in BAPS v 6 [55,56] to investigate the

overall population structure among all sampling sites while accounting for geographic origin

of each sample with the “spatial clustering of individuals” option. This method outperforms

clustering methods when sampling is uneven across the landscape and/or there is isolation by

distance [57–60]. We ran 10 independent replicates of the initial clustering step with a maxi-

mum number of clusters (K) of 21 (the number of sampling sites), 10, and 5 to ensure stability

of results as recommended by the authors of the method [55,56]. We then estimated admixture

that reflect the probability of each individual belonging to distinct genetic units (q-values rang-

ing from 0 to 1) in all individuals clustering using 50 reference individuals from each cluster

identified in the “spatial clustering of individuals” analysis using 10,000 iterations. For com-

parison of BAPS results with a second Bayesian method that did not account for geographic

origin, we also ran STRUCTURE v2.3.4 [35,36] with K = 1–10, the admixture model, indepen-

dent allele frequencies, and a burn-in of 50,000 followed by 250,000 steps, and used CLUM-

PAK [61] to align the 10 independent replicates for each K.

To further visualize patterns of genetic structure, we also performed principal components

analysis (PCA) and discriminant analysis of principal components (DAPC) [62] in the "ada-

genet" package v2.1.0 [63] in R v3.3.3 (R Development Core Team), which are both model-free

multivariate procedures that (unlike BAPS and STRUCTURE) make no assumptions about

compliance with Hardy Weinberg equilibrium.

We measured genetic divergence among sampling localities by computing pairwise FST

using Arlequin with Wright’s statistics [64] and tested for significance using the variance

method developed by Weir and Cockerham [65], computed at 10,000 permutations to obtain

exact p-values. The resulting FST values and geographic distances generated by using the web

based Geographic Distance Matrix Generator v1.2.3 (Ersts, http://biodiversityinformatics.

amnh.org/open_source/gdmg, Internet) were used to test for isolation by distance with follow-

ing Rousset 1997 [66] using FST/(1- FST) and log transformed geographic distance in Km as

implemented in the “isolation by distance” web service v3.23 [67] with a Mantel test with

10,000 randomizations [68].

Relatedness and migration

Relatedness between individuals within genetic clusters was tested using the program ML-Re-

late [69] to determine whether the observed genetic clustering was a result of sampling related

individuals. We assigned pairwise relationships within each population into one of four rela-

tionship categories; unrelated (U), half siblings (HS), full siblings (FS) or parent/offspring

(PO).

To test for individual migrants between geographically neighboring sampling sites, we

used two methods. We used GENECLASS v2.0 [70–73] to detect first generation migrants. We

used the Monte Carlo resampling algorithm of Paetkau et al., 2004 [71] with 1000 randomiza-

tions to compute the test statistics Lh (the likelihood of an individual’s assignment to the local-

ity where it was sampled), Lmax (the highest likelihood among all population sampled), and

their ratio (Lh/Lmax) to identify migrants. We used the Bayesian method of Rannala and

Mountain, 1997 [72] to detect true migrants with a p-value cut-off of 0.05. We reported raw p-
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values and p-values that were adjusted for multiple tests using the Benjamini-Hochberg

method ([43]).

Biogeographic modeling with ABC

Population structure can have multiple causes including the slow accumulation of genetic dif-

ferences across geographic space because of prolonged migration-drift equilibrium, or by

genetic divergence across a geographic break (vicariance). Since the cause of structure remains

unclear and has distinct implications on vector control, we explored the cause by modeling the

timing of divergence of the major genetic clusters identified in BAPS with Approximate Bayes-

ian Computation (ABC) in DIYABC [74] v2.0.4 ABC analysis was completed with two data-

sets: a subset of the existing microsatellite dataset, and a 439 bp mitochondrial DNA (mtDNA)

fragment sequenced in 24 individuals for this purpose. We added the mtDNA dataset to allow

inference of evolutionary history in the more distant past since mtDNA has slower mutation

rates than microsatellites. DIYABC simulations assumed no migration between lineages and

panmictic populations, so we used individuals from each major cluster that had no evidence of

admixture or of being a migrant (northwest, southwest, east; see results section for full descrip-

tion of these clusters). In the microsatellite dataset, the three genetic clusters were represented

by 50 individuals each (25 per site) from KAP and RUM (northwest), GTR and MSS (south-

west), and MNP and KIB (east), respectively. In the mtDNA dataset, the three genetic clusters

were represented by five individuals from RUM (northwest), 10 individuals from GTR (south-

west), and nine individuals from KIB (east).

Priors for all parameters (S3 Table) allowed for a wide range of possibilities that were in line

with estimates of mutation rates [75–79], population sizes [16,26,28,29,80–82], generation

time [74, 82–84], and timing of population splits [25,83–86] made in previous studies of G. pal-
lidipes and savannah species from east Africa (S2 File). We completed two analyses that made

unique comparisons of alternative scenarios. Analysis 1 was designed to identify the most

likely ancestral lineage and compared four scenarios (1a, 2a, 3a, and 4a; S1 Fig), while Analysis

2 was designed to distinguish between the likely timing of splits and Ne by comparing two sce-

narios with each of the possible patterns of ancestry (1a vs 1b, 2a vs 2b, 3a vs 3b, and 4a vs 4b;

S1 Fig). We assessed the accuracy of scenarios by comparing summary statistics such as diver-

sity, M-index [44,87], differentiation [53] (S2 File), and by then performing PCA with these

statistics to estimate the relative posterior probability of alternative scenarios with the weighted

logistic regression method described by [88]. We also estimated the posterior predictive error

(frequency of accepting a scenario other than the true scenario) with 1000 runs model-check-

ing using the method described by [74] to confirm reliability of the models, and made parame-

ter estimates by drawing from the linear regression of the 1% of the simulations that were

closest to the observed data.

Results

Microsatellite marker validation and mtDNA sequences generated for ABC

analysis

Glossina pallidipes were genotyped at a total of 11 loci for 21 sampling sites for a total of 600

flies. We observed 49 instances of significant deviation from HWE after correcting for false

discovery rate, using the Benjamin Hochberg method [43]. However, none of these loci

showed a consistent pattern of deviations from HWE across all sampling sites (S4 Table), nor

was there evidence of LD among loci (S5 Table). The 24 mtDNA sequences generated for the

ABC analysis fell into 10 haplotypes, with the most common haplotype being present the three
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groups of samples chosen to represent the northwest, southwest, and east genetic clusters (see

population structure results below for description of these clusters). All other nine haplotypes

were unique to a single cluster (S2 Fig; S2 File).

Genetic diversity and demographic estimates

Diversity statistics are shown in Table 1. Mean allelic richness across all loci was highest in

both TSW and KIN (2.55) and lowest in RUM (1.81). RUM also presented the lowest Ho and

He values, 0.38 and 0.42, respectively. Ho was highest in four sites (0.58: MSS, KLM, KIB,

MNP), while the maximum He was observed in SHT (0.72). All sample sites revealed positive

and significant FIS values (p< 0.05). The lowest FIS value (0.04) was observed in MRT while

the highest (0.48) was observed in SHT. Estimates of Ho, He, and FIS indicate a small heterozy-

gote deficit compared to what is expected under random mating.

Estimates of mean allelic richness after eliminating closely related individuals (see below)

ranged from 1.87 in RUM to 2.62 in SHT (S6 Table) and reflected results obtained using the

complete data set. RUM consistently presented the lowest Ho and He values (0.42 and 0.45,

respectively), as observed using the complete data set. The highest Ho and He values 0.59 and

0.76 were observed in HND and SHT respectively. FIS estimates for this subset data ranged

from 0.06 in RUM to 0.45 in SHT (S6 Table), and remained significantly greater than zero

except for RUM, indicating that individuals were more related on average than would be

expected under a model of random mating, even after eliminating closely related individuals.

Ne estimates ranged widely from 2.7 (2.2–3.3 95% confidence interval [CI]) in KAP to 3,507

(125.8-infinite 95% confidence interval [CI]) in HND (Table 2). Some estimates were indistin-

guishable from infinity, indicating insufficient power to estimate Ne for these sampling sites.

Results from the TPM model did not show a significant reduction in effective population

size in any of the sample sites (Table 2), while the IAM model indicated a population bottle-

necks in RUM, MSS, IKR, KLM, TSW and MNP (p< 0.05), but after correcting for multiple

testing, only MSS was significant (Table 2). Similarly, there were no deviations from the nor-

mal L-shaped allele frequency distribution, indicating mutation-drift equilibrium and no pop-

ulation bottlenecks.

Maximum likelihood tests for relatedness indicate that the majority of individuals were

unrelated (>70%; Table 2). The percentage of half sibling individuals ranged from 0% in SHT

to 14% in NGU, with an overall average of 10%. Full sibling, ranging from 0% in SHT to 4.8%

in KAP, with an overall average of 1.42%. Parent offspring ranged from 0 in SHT and 11% in

KAP, with an overall average of 1.9%. These results indicate generally lower relatedness in the

east than the west.

Population structure and differentiation

Bayesian analysis of population structure using BAPS indicated three major genetic clusters

(Fig 2) that correspond with geographic origin, and a single outlier cluster that contained only

four individuals with no apparent geographic pattern (two from RUM and two from IKR).

The major genetic clusters were made up of samples from northwestern sites (KAP and

RUM), southwestern sites (Serengeti ecosystem: GVR, MRT, FGT, NBS, MRB, GTR, IKR,

KLM, MSN, MSS, NGK), and eastern sites (MNP, KIP, TSW, KIN, SHT, SHI, HND). NGU

was placed in the eastern cluster in BAPs, but not in other analyses (see below). From here for-

ward we refer to samples from western Kenya outside the Serengeti as the “northwest”, sam-

ples from within the Serengeti ecosystem as the “southwest”, and all other samples as the

“east”. In description of these results for Kenya using KENTTEC recommended terminology,

flies from the Lake Victoria basin fly belt (KAR and RUM) made up one of the three genetic
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Fig 2. Results of the Bayesian clustering analyses based on microsatellite data. Spatially explicit genetic clustering was performed in the program

BAPS v 6 [55,56] Vertical bars indicate the probability of assignment (q-value) of an individual to each cluster (S7 Table). Thin vertical lines separate

sampling sites reported along the bottom x-axis, and think vertical lines separate the three major clusters reported along the top x-axis.

https://doi.org/10.1371/journal.pntd.0007855.g002

Table 2. Estimates of effective population size (Ne), bottleneck, and relatedness.

Site Ne Ne 95% CI p-value (TPM) p-value

(IAM)

AFD % UR % HS % FS % PO

KAP 2.7 2.2–3.3 0.58 0.06 L-shaped 70.6 13.6 4.8 11.0

RUM n/a 82.6-1 0.29 0.03 L-shaped 80.5 11.3 3.0 5.3

GVR 111.3 50 -1 0.90 0.29 L-shaped 85.7 11.7 1.6 0.9

MRT 626.1 81.8 -1 0.86 0.29 L-shaped 84.6 12.0 0.9 2.5

FGT 203.4 60.5 -1 0.45 0.09 L-shaped 85.1 12.2 1.6 1.1

NBS n/a 279.7 -1 0.94 0.16 L-shaped 86.2 11.0 1.1 1.6

MRB 50.4 32.3–98.1 0.84 0.42 L-shaped 87.1 8.7 2.3 1.8

GTR 41.8 27.1–77.6 0.77 0.29 L-shaped 84.6 12.6 0.9 1.8

IKR 21.1 15.8–29.3 0.74 0.03 L-shaped 83.4 13.1 0.9 2.5

KLM n/a 156.4 -1 0.45 0.03 L-shaped 86.4 11.7 0.9 0.9

MSN 21.3 16.1–29.4 0.71 0.12 L-shaped 84.8 12.4 1.4 1.4

MSS 94.8 43.6–22768.4 0.16 0.00� L-shaped 85.5 12.4 1.6 0.5

NGK 111.9 48.6-1 0.55 0.12 L-shaped 85.1 11.7 0.9 2.3

NGU n/a 204.5-1 0.84 0.10 L-shaped 79.0 14.0 2.7 4.3

MNP 86.6 646.1 0.23 0.05 L-shaped 84.6 13.8 1.1 0.5

KIB 49.2 33.3–85.4 0.82 0.14 L-shaped 89.9 9.0 0.7 0.5

TSW n/a 444.8-1 0.45 0.03 L-shaped 90.1 9.2 0.7 0.0

KIN n/a 2252.5-1 0.65 0.12 L-shaped 91.3 7.6 1.1 0.0

SHT n/a 29.3 -1 0.54 0.14 L-shaped 100.0 0.0 0.0 0.0

SHI n/a 209.4-1 0.78 0.42 L-shaped 92.2 6.9 0.4 0.4

HND 3507.0 125.8 -1 0.82 0.10 L-shaped 90.0 8.3 1.2 0.5

Site, Ne estimates (marked n/a if indistinguishable from infinity), the Ne 95% confidence interval (CI), p-value of tests for bottlenecks under the TPM, and IAM

mutation models, allele frequency distribution (AFD), and the percent of each sample that was estimated to be unrelated (UR), half-siblings (HS), full-siblings (FS), and

part of a parent/offspring relationship (PS) is also reported. Ne was estimated with the LD method in NeESTIMATOR [51], tests for population bottlenecks were run in

BOTTLENECK [52], and relatedness was estimated in ML-Relate [69]. Significant at p-value < 0.05 after Benjamini-Hochberg correction for multiple testing are

marked �.

https://doi.org/10.1371/journal.pntd.0007855.t002
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clusters (northwest), flies from the Narok-Kajiado fly belt (plus all Tanzanian samples from

the Serengeti ecosystem) made up another genetic cluster (southwest), and flies from the

Mbeere-Meru fly belt, the Central Kenya fly belt, and the Coastal fly belt made up the third

genetic cluster. The average probability of assignment (q-values) for the northwest was 0.97,

the southwest (Serengeti ecosystem) was 0.97, and the east was 0.98 (Table 1; S7 Table). While

most individuals were assigned to only one cluster associated with their region of origin, two

individuals from both the northwest and southwest belonged to the outlier cluster, and eight

individuals from both the southwest and east were genetically admixed with maximum q-

values< 0.90 (Fig 2, S7 Table).

Results from the PCA fully supported BAPS, with strong separation between the west

(northwest/southwest) and east apparent across PC 1 and 2 (accounting for 4.02% and 3.13%

of the total variance, respectively), and separation between the northwest and southwest appar-

ent along PC 4 (accounting for 2.08% of the total variance; S3 Fig). Results from STRUCTURE

(S4 Fig) and DAPC (S5 Fig) largely agreed with BAPS with a single exception: These analyses

placed NGU in the northwest rather than in the east, and indicated more admixture between

the northwest and southwest (S4 and S5 Figs).

Pairwise FST between sampling sites averaged 0.123 and ranged widely from zero (NGK vs.

MSS and KLM vs. MSN) to 0.312 (SHT vs. RUM) and were significant in 79% of pairs

(Table 3; S8 Table) over a mean geographic distance of ~330 km (Fig 1).

The northwest only contained one pair of sampling sites (KAP and RUM) separated by

~155 km with a significant FST of 0.123 (Table 3A), and could not be included in any statistical

tests. The southwest had an average FST of 0.040 over a mean geographic distance of ~111 km

(Table 3A). 62% of southwest FST estimates were significant. The east had significantly higher

FST than the southwest (Student’s t-test p = 0.0273; Fig 3A), averaging 0.067 over a mean geo-

graphic distance of ~282 km, which was not surprising given the larger geographic distances

separating sites (Table 3A). 82% of east FST estimates were significant. There was also signifi-

cantly higher genetic differentiation between clusters (average FST = 0.123) than among sites

in the southwest or east clusters (Student’s t-test p< 0.0001; Fig 3A).

There was significant isolation by distance across each genetic break: Across the east/west

genetic break (overall: p = 0.0002), and across the northwest/southwest genetic break (west:

p = 0.0361). In contrast, there was no significant isolation by distance within any of the genetic

clusters (Fig 3B). Indeed, genetic and geographic distance in the southwest and east were

remarkably unlinked. In the southwest, the pair of sampling sites with the lowest FST (KLM

and MSN: FST = -0.005) were separated by a full 69.6 km, and the pair of sampling sites with

the highest FST (MRT and MRB: FST = 0.121) were separated by only 14.4 km (Table 3A). In

the east, the pair of sampling sites with the lowest FST (KIB and HND: FST = 0.003) were sepa-

rated by a full 303.6 km, and the pair of sampling sites with the highest FST (KIN and NGU:

FST = 0.175) were separated by 400 km, a distance shorter than the maximum of 509.3 km sep-

arating SHT and MNP (Table 3B).

Migration

With the relatively conservative p-value cutoff (0.05) designed to identify all potential first-

generation migrants, GENECLASS identified 83 migrants, with zero migrants within the

northwest, 38 migrants within the southwest, and 38 migrants within the east (Fig 4, S9 Table).

The southwest had the highest exchange between any two sites between MRT and FGT (8

migrants; S9 Table), two sites separated by only 15 km in the Kenyan part of the Serengeti eco-

system. The east had migration over both large and small geographic scales, as we detected

migrants between sites separated by 278 km (MNP and KIB) to only 20 km (SHI and SHT;
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Table 3). There were 9 between-cluster migrants detected, one in each direction between the

northwest and southwest, and seven between the southwest and east (four from the southwest

that were detected in the east, and three from the east that were detected in the southwest; S9

Table). There was no statistical difference in rate of migration between the sexes (43 females

versus 40 males; S9 Table). Only two migration events within the Serengeti ecosystem (from

IKR to GTR, and from IKR to MRB) were significant after correcting for multiple testing (S9

Table).

Population history modeled by ABC

Prior checking indicated non-significant differences between the most summary statistics cal-

culated for simulated and observed mtDNA and microsatellite data under the winning sce-

nario (S3 File; S4 File, respectively), and some overlap in results of the PCA of the simulated

and observed summary statistics (S6 Fig). However, there was high posterior predictive error

in both Analysis 1 (S3 Table), suggesting lack of power to reliably identify the correct scenario.

These results suggest that neither of the datasets (mtDNA or microsatellites) provided the

power needed to accurately identify the true pattern of ancestry (Analysis 1). Furthermore, it is

likely that the microsatellite dataset could not provide accurate estimates of time of divergence

(Analysis 2) because microsatellites generally have fast mutation rates that make them inap-

propriate to estimate timing of splits on the order of millions of years that was indicated in the

mtDNA analysis (S7 Fig).

Table 3. Pairwise genetic and geographic distance.

(a) KAP RUM GVR MRT FGT NBS MRB GTR IKR KLM MSN MSS NGK

KAP 154.7 241.0 254.8 260.5 268.5 266.8 314.5 310.0 343.8 379.5 438.1 469.6

RUM 0.123 111.4 122.7 134.1 146.1 130.4 159.9 159.4 195.7 225.1 283.9 318.0

GVR 0.224 0.239 13.9 22.7 35.2 27.6 117.8 88.5 111.2 167.5 219.9 238.5

MRT 0.152 0.165 0.105 15.0 28.1 14.4 110.1 77.8 98.2 156.5 207.8 225.1

FGT 0.118 0.145 0.104 0.010 13.2 23.0 121.4 86.2 101.5 163.7 212.6 226.4

NBS 0.238 0.280 0.006 0.113 0.102 33.1 130.1 92.8 103.3 168.3 214.9 225.5

MRB 0.200 0.240 0.012 0.121 0.106 0.013 98.4 64.1 83.8 142.6 193.4 211.0

GTR 0.228 0.263 0.020 0.117 0.095 0.001 0.015 41.8 68.4 65.5 124.3 163.3

IKR 0.215 0.244 0.011 0.093 0.086 0.006 0.017 0.008 38.3 79.1 133.1 159.6

KLM 0.199 0.229 0.009 0.091 0.080 0.009 0.010 0.010 0.007 69.6 111.6 127.7

MSN 0.201 0.218 0.011 0.100 0.090 0.015 0.004 0.013 0.009 -0.005 58.8 101.5

MSS 0.217 0.239 0.017 0.113 0.097 0.007 0.013 0.006 0.009 0.006 0.007 54.8

NGK 0.241 0.259 0.016 0.116 0.108 0.011 0.014 0.014 0.012 0.014 0.013 -0.002

(b) NGU MNP KIB TSW KIN SHT SHI HND

NGU 217.4 217.6 400.0 472.9 449.8 524.1 305.7

MNP 0.156 277.9 346.0 474.6 509.3 518.0 389.5

KIB 0.170 0.017 74.0 214.3 258.7 276.2 317.4

TSW 0.175 0.014 0.023 140.7 186.5 205.9 303.6

KIN 0.136 0.030 0.017 0.033 50.3 76.5 307.7

SHT 0.163 0.077 0.082 0.093 0.088 28.5 300.0

SHI 0.158 0.028 0.006 0.033 0.010 0.052 285.3

HND 0.161 0.026 0.003 0.024 0.006 0.082 0.003

Pairwise FST and geographic distance (below and above the diagonal, respectively) between site pairs within the (a) northwest and southwest (shaded grey), and (b) east.

Pairwise FST was computed in Arlequin [44] based on Weir and Cockerham 1984 [65]. Non-significant FST values (p > 0.05) are in bold.

https://doi.org/10.1371/journal.pntd.0007855.t003
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There were, however, consistent indications from the mtDNA Analysis 2 that scenarios

with variable Ne (Scenarios 1b, 2b, 3b, and 4b) were supported over scenarios with constant Ne

(Scenarios 1b, 2b, 3b, and 4b; S3 Table). Parameter estimates indicated that the timing of diver-

gence between the northwest and southwest corresponded to no divergence (i.e. mode of estimate

of t1 = 0), that there was ancient divergence on the order of millions of years between the west

(northwest and southwest) and east (S7 Fig), and that bottlenecks in the northwest and southwest

may have occurred within the last 2–100 years. Results from the microsatellite analysis generally

Fig 3. Comparison of FST among and between clusters, and relationship between FST and geographic distance. (a)

Genetic differentiation (FST) computed in Arlequin [44] based on Weir and Cockerham 1984 [65] within and among

clusters. Box plots show the mean, 1st and 3rd quartile, 95% quantiles (whiskers) and outliers (dots). Student’s t-tests

indicated that average FST was significantly lower in the Southwest than the East (p = 0.0273, marked �), and

significantly higher between-cluster comparisons than in the southwest or east (p< 0.0001, marked ���). (b) Genetic

versus geographic distance using FST/(1- FST) to correct for finite population sizes [66] plotted for the northwest (star),

southwest (downward pointing triangles), east (upward pointing triangles), and between clusters (grey circles), with

linear line of best fit with R2 and p-values for Mantel tests for isolation by distance [66,68] performed in the “isolation

by distance” web service v3.23 [67].

https://doi.org/10.1371/journal.pntd.0007855.g003
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agreed with the mtDNA results but we also found several differences. Contrary to mtDNA results

(S3 File), microsatellite analysis indicated that divergence between the northwest and southwest

(t1) occurred between 1,000 and 10 million years ago (S7 Fig). Additionally, microsatellite results

under Scenario 3 supported constant over variable Ne, a result contrary to results from all

mtDNA analyses and microsatellite analysis under Scenarios 1, 2, and 4 (S1 Fig; S3 Table).

Discussion

Genetic diversity

Genetic diversity estimates from the northwest and southwest had slightly lower mean allelic

richness values as compared to the east. This difference in genetic diversity could reflect differ-

ences in ecology, and/or differences in anthropogenic history including habitat destruction,

grazing pressures and vector control. Ecological differences include less seasonality and larger

areas of undisturbed habitat within river basins in the east (see discussion of genetic connectiv-

ity below). Differences in anthropogenic disturbance likely played a role in shaping patterns of

genetic diversity. Urbanization, habitat destruction, agricultural activity, high grazing pres-

sures, and a history of tsetse control measures [28] in western Kenya [4–6] in the 1980s and

2000s [89–91] driven by the presence of HAT and recurring outbreaks of AAT may all have

played a role in reduced population sizes and thus reduced genetic diversity of G. pallidipes in

the northwest and southwest as compared to the east. Lower estimates of Ne in the northwest

and southwest (Table 2) and indications of recent population reductions in the ABC results

(i.e. mode of estimates of date of bottleneck dbNW and dbSW = 2–100 years ago; S7 Fig; S3

Table), both lend further support for the hypothesis that anthropogenic disturbance has

reduced G. pallidipes population sizes in western Kenya within the last 100 years.

We detected 49 occurrences of significant deviation from HWE (S4 Table), this could be

because of a deficit in heterozygotes leading to positive and significant FIS values and suggest

Fig 4. First generation migrants among sampling sites. Migrants detected using the software GENECLASS [70]

indicated with arrows pointed in the direction of movement. Sites were grouped together if less than 50 km apart. Each

dot represents a sampling site labeled with site codes (Table 1). The dashed outlines denote the three genetic clusters

identified in BAPS v 6 [55,56]. The map was created in QGIS v2.12.1 (August 2017; http://qgis.osgeo.org) with free and

publicly available data available from DIVA-GIS (August 2017; http://www.diva-gis.org).

https://doi.org/10.1371/journal.pntd.0007855.g004
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that individuals in our study may be related (~ 10% of individuals; Table 2), or that there may

be a history of inbreeding. However, estimates of deviations from HWE after excluding puta-

tive relatives (S6 Table) were very similar to the estimates made with the full dataset, which

was similar to the result found by [26], and favors inbreeding as an explanation for deviations

from HWE. One possibility is that the signal of high relatedness could be a result of inbreeding

caused by life history traits common to the genus, Glossina. For example, viviparity [80] man-

dates that there is only one offspring per reproductive cycle, and only ~ three offspring in the

lifetime of a female. This results in small effective population sizes and a high probability of

inbreeding when close relatives encountering one another during reproduction. Another fac-

tor could be the short distance of average dispersal of tsetse flies by flight of< 2 km [92–94] et

ref 92 Rodgers et, which could also increase the probability of relatives encountering one

another during reproduction.

We did not detect any signals of genetic bottlenecks (Table 2) using TPM and IAM models

as well as using mode-shift indicator test. Previous work by Ciosi et al., 2014 [82] identified a

genetic bottleneck in KAP and this was attributed to previous tsetse control efforts that had

been carried out in the area [89]. The discrepancy between the two results could be due to the

timing of the sampling in the two studies and the limited sensitivity of the BOTTLENECK

approach to detect bottlenecks in the distant past. Ciosi et al., 2014 [82] used samples that were

collected in the year 2000, just a few years after tsetse control measures were enforced, while

samples for this study were collected in the year 2016, a difference of ~128 generations. It

could be that during this time span the population could have recovered from the bottleneck

effect.

Population structure

Genetic clustering results, while largely agreeing with findings from a previous analysis on a

narrow transect along the southern border of Kenya [26], provide a more clear definition of

the three genetic clusters (northwest, southwest, and east) and their boundaries. All clustering

methods (BAPS, STRUCTURE, DAPC, PCA) identified a distinct genetic break between sam-

pling sites to the east and west of the Ethiopian Rift, and a genetic break between the northwest

(KAR and RUM) and the Serengeti ecosystem in the southwest (Fig 2, S3–S5 Figs). The mem-

bership of NGU to the cluster east or west of the Ethiopian Rift was different in BAPS than in

the other analyses (Fig 2, S3–S5 Figs). We favor the BAPS results here because this method

accounts for uneven spatial sampling (spatial autocorrelation) [55,56]. However, it should be

noted that none of the analyses used could also correct for the possibility that the genetic

breaks were caused by isolation by distance rather than genetic divergence across a geographic

barrier [95] and this remains a possibility. Indeed, the ABC analysis suggests that the north-

west/southwest genetic break may not represent genetic divergence across a geographic break

because there is some evidence that the timing of this population split was contemporary (see

below). Nonetheless, the fact that there is no signal of isolation by distance within genetic clus-

ters argues that the cause of the genetic breaks was not uniform isolation by distance. Instead,

patterns of divergence and Hardy-Weinberg equilibrium identified in the BAPS and STRUC-

TURE analyses suggest that the three genetic clusters identified may have unique population

dynamics [35, 36, 52].

Genetic differentiation and migration

In general, most pairs of sampling sites were significantly differentiated despite being geo-

graphically separated by as little as ~13 km (Table 3), and there was an overall pattern of isola-

tion by distance (Fig 3B). However, there was no pattern of isolation by distance within
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genetic clusters, and each region appeared to have unique patterns of genetic connectivity. In

the southwest, there was surprisingly high genetic differentiation across short geographic dis-

tances, with pairs of sites separated by only 13.2 km (NBS and FGT), 13.9 km (GVR and

MRT), and 14.4 km (MRT and MRB) displayed highly significant genetic differentiation with

FST values ~0.1 (Table 3). Conversely, there were low levels of genetic differentiation among

sites centrally located within the southwest. This indicates high differentiation in the northern

extent of the Serengeti ecosystem, and low genetic differentiation in the central region of the

Serengeti ecosystem regardless of geographic distance. Low genetic differentiation in the cen-

tral region of the Serengeti could be caused by habitat connectivity during the wet season,

which could facilitate fly dispersal and thus gene flow over multiple generations [96–99].

In the east, there were high levels of genetic connectivity even across distances greater than

300 km, with FST values ranging from a low of 0.003 between HND and KIB separated by

317.4 km, to a high of 0.024 between TSW and HND separated by 303.6 km (Table 3). The east

had only slightly higher FST estimates than the southwest (0.067 vs 0.040), and this was over

much larger average geographic distances (110.6 km vs 282.2 km; Fig 3; Table 3). This implies

greater genetic connectivity in general in the east (Table 3), which aligns with greater genetic

diversity (Table 1), and higher migration rates (Fig 4), both patterns noted in previous studies

[26][98]. Notably, there was surprisingly low genetic differentiation across large geographic

distances (Fig 1) among sites in the Athi-Galana-Sabiki river basin separated by 74 km (KIB

and TSW) and sites in the Tana river basin separated by 389.5 km (HND and MNP; Table 3).

These low levels of genetic differentiation imply G. pallidipes gene flow is high within the Athi-

Galana-Sabaki River basin and between the Tana and the Athi-Galana-Sabaki river basins, and

highlights a potential major role of large river basins in driving patterns of gene flow in G.

pallidipes.
High genetic connectivity in the east, especially among sites within river basins, could

reflect the ecology of the region, and/or the anthropogenic history of the region. Ecologically,

high connectivity could be driven by low seasonal variation in water availability in the coastal

forest habitat that allows for more continuous high population densities. This is supported by

the Ne estimates and the ABC results, which indicated larger population sizes in the east and

more constant population size throughout evolutionary history. Additionally, habitat connec-

tivity within river basins, which are larger in the east than in the west, and with other G. palli-
dipes populations that exist in a continuous distribution from northeast Tanzania to southern

Somalia [100–102], could both contribute to more stable population sizes, higher genetic con-

nectivity, and higher genetic diversity in the east than in the northwest and southwest. Regard-

ing anthropogenic history, lower levels of urbanization, livestock density, and HAT disease

risk in eastern Kenya [4–6] has resulted in a lower level of habitat alteration and vector control

activity, which may have contributed to more continuous and stable tsetse populations, and

could help explain the higher genetic diversity found in the east.

Population history modeled by ABC

Results from the ABC analysis were difficult to interpret because of high predictive error of

~0.7 in the analysis designed to distinguish the pattern of ancestry (Analysis 1: S3 Table), and

inconsistency in parameter estimates in the analysis designed to refine estimates of population

size and timing of population splits (Analysis 2: S7 Fig).

Even so, there were some consistent patterns that emerged from the mtDNA analysis that

showed minimal divergence between the northwest and southwest, deep divergence between

the east and west, and population size fluctuations in the northwest and southwest. The win-

ning scenarios in Analysis 2 always included G. pallidipes population size fluctuations in the
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northwest and southwest during the last century (S3 Table), and negligible divergence between

the northwest and southwest (S7 Fig). This suggests that the genetic break between the north-

west and southwest perhaps represents isolation by distance across a geographic gap in sam-

pling. The signal of a genetic break could have been accentuated by recent population size

fluctuations in these regions, which would have increased differences in genotype frequencies

and Hardy-Weinberg disequilibrium between samples from the two regions [35,36]. In con-

trast, ABC results suggest a deep divergence time on the order of millions of years between the

east and west (S7 Fig). This opens the possibility that there are reproductive barriers between

these two genetic clusters, but should be confirmed with further research that provides evi-

dence of divergence beyond isolation by distance. Existence of reproductive barriers would

mean that even when flies migrate between the east and west, as detected in our migration

analysis (Fig 4), reproductive success would be low in migrated individuals and would pose a

low risk of providing population augmentation or the introduction of novel G. pallidipes
genetic variation in the receiving population.

If divergence is as old as a million years, reproductive barriers could have accumulated.

Reproductive barriers would reduce the risk of population augmentation from populations from

a neighboring genetic cluster. However, it would not remove the threat of re-establishment after

local eradication from populations from a neighboring genetic clusters, if the ecological needs of

the invading population were met. Future research should assess the levels of interbreeding

among the three genetic clusters and characterize any reproductive barriers that may exist to

determine the level of threat posed by reinvasion across the boundaries between genetic clusters.

Conclusions and recommendations for effective vector control strategies

Our findings provide an understanding on the levels and patterns of genetic diversity, differen-

tiation, gene flow, and population dynamics among and within G. pallidipes populations sam-

pled from western and coastal Kenya as well as the Serengeti ecosystem in Tanzania. Results

from the multiple analyses indicate that there is non-random mating across the range, and that

G. pallidipes populations are partitioned into three clusters (northwest, southwest, and east),

with G. pallidipes genotypes fitting expectations of Hardy-Weinberg equilibrium only when

separated into these three groups. Along with significant population differentiation at multiple

scales and lack of isolation by distance within genetic clusters, these results suggest that the

major population dynamics such as the population density, the distance of average dispersal,

and disease transmission dynamics will be unique to each genetic cluster. Even if the genetic

break between the northwest and southwest was caused by isolation by distance rather than a

geographic barrier, these regions are ecologically and epidemiologically different because of

the conservation status of the Serengeti ecosystem (i.e. there are different large mammals pres-

ent, cattle grazing patterns, and human visitation rates) and so should be treated differently

during tsetse fly control campaigns.

Using KENTTEC recommended terminology, these results indicate that the Lake Victoria

tsetse belt and the Narok-Kajiado fly belt are in separate genetic clusters, but that the three

tsetse belts in the east (Mbeere-Meru fly belt, the Central Kenya fly belt, and the Coastal fly

belt) have high genetic connectivity in G. pallidipes and should be considered as a single G. pal-
lidipes population. The results imply that in eastern Kenya for all three KENTTEC terminology

fly belts (Coastal, Mbeere-Meru, and Central Kenya fly belts), G. pallidipes eradication may

likely never be feasible, and that suppression rather than eradication would be a more realistic

target. Results also indicate evidence of infrequent migration between the clusters, which

could pose a reinvasion threat after local eradication, if it were to be successful in the northwest

or southwest.
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Ne estimates and ABC results indicated that the northwest and southwest have gone

through a recent population size reduction and currently have lower Ne and less genetic varia-

tion than populations in the east. Results also indicated relatively small Ne (<100) in a subset

of G. pallidipes (KAP in the northwest, IKR, MRB, GTR and MSN in the southwest, KIB and

MNP in the east), suggesting that novel vector control methods may be feasible in these

regions. There is evidence from disease transmission models that novel control methods such

as inundation and replacement of natural populations with sterile males, or genetically/endo-

symbiont modified flies (e.g., replacement with artificially selected low vector competence

individuals as suggested by Powell & Tabachnick [103], or replacement with flies with modi-

fied endosymbionts as suggested by Aksoy ([46]) are more effective in small populations

[46,103]. On the other hand, small Ne suggests localized dispersal and breeding, and means

that genetic modification will require many local releases that target spatially separated popula-

tions across a larger target area [103]. Thus, successful replacement may only be feasible in the

subset of populations with small Ne that are also distributed over a small geographic area, such

as the population in the northwest (i.e. in the RUM region).

Taken together, results suggest that models of transmission dynamics should consider the

northwest, southwest, and east separately, and that tsetse control strategies should be designed

as a coordinated effort for each genetic cluster. Specifically, eradication will likely never be fea-

sible in the in eastern Kenya for all three KENTTEC terminology fly belts (Coastal, Mbeere-

Meru, and Central Kenya fly belts), while there is potential for success of novel vector control

methods that require inundation and replacement of natural populations in geographically

isolated populations with small Ne, such as those found in the northwest. Furthermore, our

data suggest that infrequent long-range migration events do occur even between distinct popu-

lations separated by more than 200 km (Fig 4), underscoring the need for active monitoring of

fly movement to minimize risk of augmentation from neighboring populations and reestab-

lishment after successful local eradication. Further studies to investigate reproductive barriers

among genetic clusters are needed to identify the risk of population subsidy and/or replace-

ment after control efforts. Likewise, further studies to investigate the distributions of popula-

tions with small Ne with spatial modeling are needed to identify isolated populations where

novel control techniques such as genetically modifying vector populations can be tested and

developed further. Finally, further studies to resolve demographic and genetic connectivity

patterns in the northwest are needed, as we had sparse sampling in this region and results indi-

cated unique population connectivity, genetic variation, and demographic patterns.
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S2 Fig. Principal components analysis of genetic variation. Results of the principal compo-

nents analysis conducted with the "adegenet" package v2.1.1 (Jombart et al., 2018) in R Studio

v1.1.383, showing the variance found in the three principal components that display separation

among the major clusters detected in BAPS v 6 [55,56]. These three components were PC 1, 2,
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S4 Fig. Discriminant analysis of principle component (DAPC). DAPC based on G. pallidipes
microsatellite data for 21 sampling sites, completed in the R (R Development core team) using

the “adegenet” package [63] with 40 principle components. Individuals are represented by

dots linked by a line to the centroid and encompassed by 95% confidence intervals. Colors rep-
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blue = southwest, purple = east). PCA eigenvalues represent variance explained by principle
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with the genetic cluster they were chosen to represent in the ABC analysis. Hashes along the

branches of the network represent a single nucleotide change (one inferred mutation), and
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S6 Fig. Analysis of reliability of ABC results. Principal components analysis (PCA) from (a)

mtDNA under scenarios without fluctuating population sizes (Scenarios 1a, 2a, 3a, 4a), (b)

mtDNA based results under scenarios with fluctuating population sizes (Scenarios 1b, 2b, 3b,

4b), (c) microsatellites based results under scenarios without fluctuating population sizes (Sce-

narios 1a, 2a, 3a, 4a), (b) microsatellite based results under scenarios with fluctuating popula-

tion sizes (Scenarios 1b, 2b, 3b, 4b). Results from different scenarios are colored as indicated in

the legend. ABC analyses was performed in DIYABC v2.0.4 [74].
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S7 Fig. Parameter estimates from ABC analysis. Mode of DIYABC v2.0.4 [74] parameter

estimates from the winning scenarios of Analysis 2 (Scenarios 1b, 2b, 3b, 4b) in green, red,

blue, and pink, respectively, including estimates of (a) population size from the mtDNA analy-

sis (b) timing of simulated events from the mtDNA analysis, (c) population size from the

microsatellite analysis, and (d) timing of simulated events from the microsatellite analysis plot-

ted on a log scale to make all estimates visible in a single image. Population size estimates are
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tion bottleneck (SWb), ancestral northwest (NW), ancestral southwest (SW), and the east (E).
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to. Panel (b) and (c) display results for the mtDNA and microsatellite based ABC analyses,
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using the weighted logistic regression method described by [70], the lower 95% confidence
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S4 Table. FIS values after testing for deviation from Hardy Weinberg equilibrium (HWE)

using. Bolded FIS values were considered significant after Benjamini-Hochberg correction for

multiple testing.
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S5 Table. Results of pairwise tests for LD estimated using Genepop v4.6 [41] showing chi-

squared (χ2) distribution per locus pair, degrees of freedom (df), and original p-values for

the test for significance and p- values after Benjamini-Hochberg correction for multiple

testing.
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from each site, number of samples remaining (N), mean allelic richness across loci (AR),

observed (HO) and expected heterozygosity (HE), inbreeding coefficient (FIS), and FIS p-

values.
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individuals to each of the four clusters identified in BAPS v 6 [55,56]. Admixed individuals

(< 0.9 assignment probability to any one cluster) and those assigned to the outlier cluster are
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S8 Table. Genetic and geographic distance of between-cluster pairs. This table shows (a)
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were not included in Table 3 in the main text. Pairwise FST was computed in Arlequin [44]

based on Weir and Cockerham 1984 [65]. Significant values (p> 0.05) are denoted in bold.
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S9 Table. First generation migrants among sampling sites. Home site, sample ID, sex of the

migrant, inferred origin of the migrant, and p-value of the test of migrants detected using

GENECLASS [70] (a) within the southwest, (b) within the east, (c) between the northwest and

southwest, and (d) between the southwest and east. Marginally significant after Benjamini-
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ysis 1 comparing Scenarios 1a, 2a, 3a, and 4a, (b) Analysis 2 comparing Scenarios 1a and 1b,

(c) Analysis 2 comparing Scenarios 2a and 2b, (d) Analysis 2 comparing Scenarios 3a and 3b,
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probability comparison of scenarios, and parameter estimation. The details of the scenarios

are in S1 Fig.
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S4 File. Details of microsatellite-based Approximate Bayesian Computation (ABC) results.
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