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Abstract: Musculoskeletal disorders in the workplace are a growing problem in Europe. The mea-
surement of these disorders in a working environment presents multiple limitations concerning
equipment and measurement reliability. The aim of this study was to evaluate the use of inertial
measurement units against a reference system for their use in the workplace. Ten healthy volun-
teers conducted three lifting methods (snatching, pushing, and pulling) for manhole cover using a
custom-made tool weighting 20 and 30 kg. Participants’ back and dominant arm were equipped with
IMU, EMG, and reflective markers for VICON analysis and perception of effort was estimated at each
trial using a Visual Analog Scale (VAS). The Bland–Altman method was used and results showed
good agreement between IMU and VICON systems for Yaw, Pitch and Roll angles (bias values < 1,
−4.4 < LOA < 3.6◦). EMG results were compared to VAS results and results showed that both are
a valuable means to assess efforts during tasks. This study therefore validates the use of inertial
measurement units (IMU) for motion capture and its combination with electromyography (EMG)
and a Visual Analogic Scale (VAS) to assess effort for use in real work situations.

Keywords: inertial measurement units; EMG; musculoskeletal disorder risk; ergonomics

1. Introduction

Work-related Musculoskeletal Disorders (MSD) are the most common work-related
problem in Europe. Almost 24% of EU workers report suffering from back pain and 22%
complain of muscular pains [1]. In France, MSDs represent 87% of occupational diseases
leading to a direct cost of two billion euros for the company and an indirect cost of two to
seven times more [2]. The economic cost of MSDs represents between 0.5 and 2% of GDP
annually for the European Union [3].

An international scientific consensus has emerged on a consensual and multifactorial
approach to MSDs integrating certain physical, psychological, social and organisational
characteristics of work situations [4–9]. Despite this multifactorial etiological model, pre-
ventions mainly aim to reduce biomechanical and physiological factors as these are the
easiest to measure [10]. This type of approach results in prevention targeted at the sizing of
the workstation, or a requirement for the workers to adapt to the characteristics of their
tasks. It can lead to what Winkel and Westgaard [11] called an “ergonomics trap”. For
instance, an improvement in working postures that does not consider the intensification of
repetitive gestures fostered by a new work setup might lead to a rebound source of MSDs.
The risk of developing MSDs will increase with the presence of constraints in the working
environment, constraints to which the operator will not be able to provide solutions, and
with the combination of the different risk factors in the same situation.

MSD assessment tools are mainly observational tools [12]. The use of wearable devices
for ergonomic purposes is limited [13]. If the combination of different risk factors increases
the risk of MSD, assessment tools only allow for a limited combination even of solely
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biomechanical factors due to measurement difficulty of some risk factors such as physical
effort in the workplace [14]. Improving MSD assessment and measurement tools is a
decisive move for Occupational Health and Ergonomics.

MSDs are a crucial health issue among construction workers which perform repet-
itive labour and intense activities exposed to weather conditions [15–17]. Construction
workers are exposed to several MSD related risk factors such as awkward body posture,
excessive vibrations, bending and twisting, working in static positions and lifting of heavy
loads [17–20]. Among these workers, water supply and sanitation workers take a particular
place, because their task of manhole cover opening implies lifting of heavy loads from 20
to more than 40 kg from ground level [21]. They cumulate both effort and posture, which
are biomechanical risk factors of MSDs. To alleviate this biomechanical load, workers can
use various tools such as a pickaxe, by pushing or pulling on the handle through leverage,
or a magnet tool which allows them to directly lift the manhole cover. In this situation,
comparing the MSD risk factors in the use of both tools can be a major stake for prevention
purposes.

Instrument-based assessment of MSDs on the workplace can be performed by var-
ious technologies such as depth sensor cameras, inertial measurement units (IMU), and
electromyography (EMG), among others [22]. Researchers have validated the effective-
ness of the depth sensor camera in real-time tracking of 3D human posture [23,24]. Other
studies showed the limitations of this kind of device such as self-occlusion, tracking range
or occlusion by coworkers which are not suitable for an application in real work condi-
tions [22]. An IMU sensor measures real-time acceleration and angular velocity to estimate
positioning in 3D by means of sensor fusion algorithm (e.g., complementary filters, Kalman
filters . . . ). The magnetic field can also be measured but the sensor is very sensitive to
magnetic disturbances (power lines, heavy metals . . . ) and requires specific algorithms
to limit this. IMU systems provide non-invasive, long-term tracking of body posture and
movements [25] and have been validated by several studies for motion tracking to assess
MSDs in workers [25–27]. IMU limitations such as the requirement of accessories (straps,
belts), are sometimes uncomfortable for workers and bring a risk of sensor detachment [18].
Still, those limitations are less restrictive in the manhole handling workstation context than
depth sensor occlusion. For this study, we used the IMU system created in the NOMADe
project which has been validated for the quantification of classical clinical tests and for
low-back pain rehabilitation evaluation [28].

Surface electromyography (EMG) is an interesting tool for workload assessment in
ergonomics [29]. In human factor ergonomics, exposure concepts are derived from chemical
end radiation epidemiology. Physical factors, which are part of MSD risk, are supposed
to exert their effects through mechanical forces arising in the body from physical work-
load. The exposure-effect model focusing on mechanical exposure distinguishes external
exposure and internal exposure [30]. External exposure refers to factors in the working en-
vironment, which may give rise to mechanical exposure in the body. The internal exposure
comprises of forces acting on and in the body. The approach of internal exposure can be
observed through electromyographic activity characterised as neuromuscular response to
match the biomechanical demands. An EMG signal can be used in two different ways in
ergonomics: the biomechanical approach is interested in forces and torques, whereas the
physiological approach concerns muscle activation and fatigue. The relationship between
EMG methodologies and MSD is mainly based on a presupposed relationship to exposure
conditions or signs of fatigue estimated by EMG. Few studies demonstrate a relationship
between average EMG amplitude and MSD for hand/wrist disorders [31]. Other studies
show a relation between disorders and fatigue signs during work [32] or the lack of EMG-
gaps during work that can predict later myalgia [30]. For the low-back region, studies tend
to indicate a faster fatigue development [31–35].

Both IMU and EMG sensors represent a means to estimate MSD in a real-life operating
environment and not in the vicinity of the laboratory. The combination of Bluetooth EMG
sensors and standalone datalog systems make it suitable for out of the lab measurement.
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IMU are not affected by occlusion and the same datalog system can be used to avoid range
tracking issues. Moreover, even if the sensors are worn on the skin, they allow the wearing
of compulsory safety clothing and equipment as opposed to optical devices. Assessing
MSD risk in real work conditions is a crucial prevention issue as real work conditions
present a large variability of situations which cannot all be reproduced in the laboratory.
Before measuring motions on site, our setup needs to be validated to a gold-standard
motion-capture system. Hence, the main goal of this paper is to provide validation of
an embedded motion-capture and EMG system for use in real work conditions with a
population of workers.

2. Materials and Methods
2.1. Participants

Ten healthy subjects (4 females, 6 males), all members of the LAMIH UMR CNRS 8201,
voluntarily participated in this study; see Table 1. Inclusion criteria were the absence of
any neuro–Musculo–skeletal (low-back pain, upper limb injury, . . . ) disorders in the last
6 months. The study was approved by the Lille University’s ethics committee (reference
number: 2021-523-S97).

Table 1. Characteristics of the participants (mean + standard deviation).

Age (Years) Body Mass (kg) Height (m)

31.7 ± 10.5 73.6 ± 15.9 1.74 ± 0.08

2.2. Material
2.2.1. IMU Positioning

The motion-analysis system designed within the scope of consortium INTERREG:
NOMADe, is composed of a Data Capturing Unit (DCU) (Dramco KUL, Ghent, Belgium)
receiving the measured data of four wireless IMUs (Dramco KUL, Ghent, Belgium) (see
Figure 1). The DCU acts as a controller (IMU settings and acquisition START/STOP), a
preprocessor (IMU calibration and fusion of the raw data via a Madgwick filter to obtain the
orientation quaternion) and storage of the acquired data. The four IMUs sensors are based
on a very well-known Micro Electro Mechanical Systems (MEMS) IMU: the MPU6050,
which combines a 3-axis gyroscope with a sensitivity range from 250 to 2000◦/s and a
3-axis accelerometer with a sensitivity range from ±2 to ±16 g. The sample frequency can
be set to 10, 20, 25, 50, or 100 Hz. The quaternions, accelerometer, and gyroscope data
communicated through Bluetooth are stored in a text format file in a micro-SD card on the
DCU.
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Figure 1. The IMU system designed by the INTERREG NOMADe consortium.

IMUs were positioned at the centre of the forearm and arm segment on the dominant
arm, respectively, immediately below the C7 vertebra and between the right and left
posterior superior iliac spine (see Figure 2).
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Figure 2. Marker placement of EMGs, IMUs, and optoelectronic markers on the subjects.

2.2.2. VICON Markers Positioning

The reference system for the validation of the IMU system is an optoelectronic system
composed of 13 infrared cameras VICON® MX (Vicon, Oxford, UK) with a sampling
frequency scaled at 100 Hz. Optoelectronic markers were placed on the left and right
acromia, C7, the manubrium, left and right anterior and posterior iliac spine, and the
medial and lateral condyles of the dominant arm as well as the radial and ulnar styloid
processes of the dominant arm (Figure 2). A reflective marker was also disposed on each
IMU sensor (see Figure 2).

2.2.3. EMG Positioning

EMG was measured from the subject’s dominant side (see Figure 2), deltoideus p.
calvicularis (DC), deltoideus p. scapularis (DS), latissimus dorsi (LD) and erector spinae
(ES) using the Wave COMETA EMG system (Cometa, Milano, Italia). The skin was shaved
and cleaned, and bipolar electrodes (Ambu WhiteSensor 4535M 44 × 32 mm, Ambu,
Ballerup, Denmark) were placed following SENIAM recommendations [36]. To allow the
comparison of EMG signals between subjects, a normalisation based on maximal voluntary
contraction was performed.

2.3. Protocol

The aim of the protocol explained to the participant was to lift a pole with two different
masses composed of bodybuilding weights (20 and 30 kg). The participants had to use
three different lifting methods: (1) pushing the pole (Ps), (2) snatching the mass with the
pole (Sn), and (3) pulling the pole (Pl) (see Figure 3).
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lift the mass: (left) pushing the pole, (middle) snatching the pole, and (right) pulling the pole.
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Data collection was organised such that three consecutive repetitions of the same
movement were performed. Data were collected for each repetition. The lifting methods
was randomly assigned at the beginning of each repetition to avoid learning effects. All
three movements were firstly performed for 20 kg, followed by 30 kg; this resulted in a
total of 18 movements: nine (3 repetitions × 3 lifting methods) for the 20 kg load, followed
by nine for the 30 kg load. Between each repetition, a 2 min recovery phase was taken,
during which participants rated the subjective necessary effort to perform each lift using a
visual analogical scale (VAS). VAS was preferred to the Borg CR10 Scale [37] because of the
statistical treatment allowed by the data with VAS.

Before the measurement, a warm-up and familiarisation phase of 5 min was given,
within which participants were free to lift the mass in an unstructured manner.

2.4. Data Processing
2.4.1. Synchronisation and Filtering

IMU and VICON raw data were not synchronised. Hence, a cross-correlation algo-
rithm based on linear acceleration was developed to resynchronise all the motion data and
crop all time-series to the common parts [28].

Optoelectronic data were resampled at 50 Hz to be easily compared to the IMU data.
Both VICON and IMU signals were filtered by a fourth-order Butterworth low-pass filter
with a cut-off frequency of 6 and 20 Hz, respectively ([38,39]).

2.4.2. Linear Acceleration

Raw acceleration data measured by the IMUs include the earth’s gravity contribution.
It is thus necessary to subtract the gravity vector to obtain the true linear accelerations
of the IMU sensor and compare it to the VICON clusters. To do so, we expressed the
acceleration vector in global coordinates using the quaternion of orientation between local
and the calibration reference system computed by the DCU [40].

Q
(

aG
)

lin
= Qloc/G ⊗

(
Q
(

aloc
))
⊗Qloc/G −Q

(
gG

)
(1)

where Q
(

gG) is the gravitation acceleration quaternion in the global calibration frame,

Q
(

aloc
)

is the quaternion of acceleration in the local coordinate system (linked to the IMU),
Qloc/G is the quaternion of orientation between the local and global coordinates system,
Qloc/G the conjugated quaternion, and ⊗ is the operator for the quaternion product (also
known as Hamilton product) [41].

Calculating back to the linear acceleration vector in the local coordinate system is
obtained trivially:

Q
(

aloc
)

lin
= Qloc/G ⊗

(
Q
(

aG
)

lin

)
⊗Qloc/G (2)

After computing linear acceleration from the IMU system, the norm of this acceleration
vector was computed. Linear acceleration of each IMU sensor was also computed through
the VICON system by double derivation of the reflective marker’s position on each IMU
sensor. An example of linear acceleration from the IMU and VICON system is presented in
Figure 4 below.
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2.4.3. Angle Computation

Despite being very efficient as a tool for orientation computation, quaternion interpre-
tation can be tedious. Hence, a choice was made to compare the orientation of both the IMU
and VICON systems using the classical Yaw–Pitch–Roll angles (also known as Tait-Bryan or
Euler angles). Yaw–Pitch–Roll angles of each IMU sensor can be deduced from Qloc/G, the
quaternion orientation. The first step is to apply the rotation matrix of the sensor from the
quaternion vector [41], followed by the Yaw–Pitch–Roll angles computation using a ZYX
mobile sequence [42].

The same process is applied to the VICON data from the markers applied on each
segment: forearm, upper arm and pelvis. Each segment was equipped with at least
3 reflective markers whose coordinates were first used to compute a local orthogonal frame,
then the segment rotation matrix. This matrix was then transformed into Yaw–Pitch–Roll
angles using a ZYX mobile sequence [43].

2.4.4. Time Normalisation

To be able to compare the EMG data from acquisitions with different timelines, each
acquisition was normalised with respect to time. The start (resp. ending) of each acquisition
was defined by a single operator for all acquisitions using the motion-capture data as the
time when the subject laid their hands on (resp. removed their hands from) the pole before
(resp. after) a lifting method.

Once the start and end points were defined for all acquisitions, EMG signals data were
linearly interpolated using built-in MATLAB function interp1 over 1000 points.

2.4.5. EMG Normalisation

EMG measurements are inherently variable between subjects due to physiological
parameters (skin and fat tissue thickness above the muscle, presence of hair, sweat, etc.).
Hence it is good practice to perform EMG normalisation using a maximum voluntary
contraction (MVC) [44]. The MVC acquisitions were recorded prior to the lifting protocol.
To compute the MVC of each muscle, the EMG signal was rectified then filtered by a 6 Hz,
four order, zero-lag, low-pass Butterworth filter. Finally, a 500 ms moving average window
filter was applied to the filtered signal. The MVC value was selected as the maximal value
of this final signal. From this step, all EMG measurements were expressed as % MVC and
associated with the appropriate muscle (see Appendix A). Data for each trial, across all
muscles and participants were inspected for movement artifacts (e.g., EMG sensor moving
on skin).
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2.5. Data Analysis

The well-known Bland and Altman method [45] was used to obtain a visual rep-
resentation of agreement of Yaw, Pitch, and Roll angles between the reference and the
measurement system to be validated. According to [46,47], the bias and limit of agreement
of the Bland and Altman method enables us to assess the correctness and accuracy of
the new measurement system. An additional linear regression between the VICON and
IMU systems was performed using the corrcoef function in MATLAB R2020b (Mathworks,
Natick, MA, USA). The regression output value is the determination coefficient, r2.

Lin’s Correlation Coefficient (LCC) [48] was used in this study to obtain numerical
information about agreement between measurement methods. The LCC quantifies the
difference between the abscissa points of a first dataset, the ordinate of a second one, and
the 45◦ line corresponds to perfect agreement [49]. This coefficient was chosen instead of
the Intraclass Correlation Coefficient as this latter does not always give the same results
depending on the computation method. LCC between 0.71 and 0.80 is Satisfactory, between
0.81 and 0.90 is Fairly good, between 0.91 and 0.95 is Very good, and above 0.95 is Excellent [46].

2.6. Statistic Analysis

For motion analysis, the statistical analyses were performed using the MATLAB
R2020b software. The Shapiro–Wilk test was used to assess the normality of the data. At
each acquisition, parameters computed with VICON and IMU data were analysed via a
Student’s test to look for any statistical difference. Bonferronni corrections were used to
consider the statistical repetition over all 180 acquisitions.

For EMG and VAS Analysis, the statistical analyses were performed using Statistica
software (V12, StatSoft Europe, Hamburg, Germany). The Kolmogorov–Smirnoff test was
used to assess the normality of the data. Repeated measures ANOVA was performed on
both the data and the correlation matrix and was used to question the links between the
variables. The relationship between variables for each EMG data was assessed through a
Pearson’s correlation coefficient computation.

3. Results
3.1. Comparing IMU to Gold Standard

To assess motion variability of the three lifting methods, we displayed on Figures 5–7
the range of motion (ROM) of the Yaw–Pitch–Roll angles computed from the IMU and the
VICON system.
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Results of the data analysis comparing acceleration norm and Yaw–Pitch–Roll angles
between VICON and IMU systems are presented in Table 2. For all data, mean bias and
LOA values are very low (especially when compared to the ROM of the above figures).
Lin’s correlation coefficients are very good to excellent for all angles and fairly good for the
acceleration norm.

Table 2. Results computed from the Bland–Altman method and Lin’s coefficient of sensor validation.
All values are averaged over acquisitions with standard deviation in parentheses.

Parameter
Name

Acceleration
Norm (m/s2) Yaw Angle (◦) Pitch Angle (◦) Roll Angle (◦)

bias −0.006 (0.176) 0.224 (2.1) 0.139 (1.599) −0.864 (0.237)

lower LOA −0.682 (0.465) −3.180 (2.812) −2.397 (1.458) −4.474 (3.587)

upper LOA 0.640 (0.407) 3.628 (2.524) 2.676 (2.200) 2.745 (2.384)

precision 0.281 (0.206) 2.127 (1.240) 1.578 (0.824) 2.226 (1.691)

r2 0.768 (0.173) 0.976 (0.028) 0.924 (0.092) 0.951 (0.084)

Lin’s CC 0.859 (0.136) 0.958 (0.067) 0.908 (0.107) 0.928 (0.121)
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No statistical difference was found between the above-mentioned parameters when
analysing the effect of the VICON on the IMU system.

3.2. EMG Analysis

The distribution of EMG data is normal according to Kolmogorov–Smirnov test results,
parametrical repeated measures ANOVA was performed on EMG data.

Table 3 shows the descriptive statistics of EMG for each muscle stratified by weight
and movement.

Table 3. Mean and standard deviation for each movement for deltoideus p. calvicularis (DC),
deltoideus p. scapularis (DS), latissimus dorsi (LD), and erector spinae (ES).

DC DS LD ES

Weight Movement M Sd M Sd M Sd M Sd

20 kg
Sn 4.648 0.540688 22.5236 4.213061 12.0361 3.586532 22.0377 2.895057
Ps 0.966 0.198473 10.422 3.084158 6.4182 2.028903 15.1535 2.592818
Pl 0.656 0.144846 5.47851 1.961944 10.6167 2.199019 15.3425 2.173868

30 kg
Sn 6.77 0.560089 30.5888 5.130576 13.696 3.930682 25.1647 2.787131
Ps 1.744 0.291895 9.3448 2.903456 5.82487 1.767021 14.0036 2.3651873
Pl 1.384 0.275521 4.4531 1.159783 9.7306 2.585124 14.837 1.968479

Note: M: Mean; Sd: Standard Deviation; Sn: Snatching method; Ps: Pushing method; Pl: Pulling method.

Repeated-measures ANOVA results comparing muscle activation between each move-
ment show statistically significant results for each muscle (DC: F1.9 = 30.056, p < 0.001; DS:
F1.9 = 46.221, p < 0.001; LD: F1.9 = 13.395, p < 0.01; ES: F1.9 = 61.284, p < 0.001). Table 4 shows
the effects of weight and movement on muscle activation expressed as %MVC. Only lifting
methods have a significant effect on these differences.

Table 4. ANOVA on EMG (%MVC).

Muscle Source of Variation df F

DC
Weight 1 2.01676

Movement 2 26.57875 **
Weight ×Movement 2 3.97352 *

DS
Weight 1 3.44022

Movement 2 19.4128 **
Weight x Movement 2 8.23358 **

LD
Weight 1 0.04502

Movement 2 6.23308 **
Weight ×Movement 2 8.42081 **

ES
Weight 1 1.08632

Movement 2 21.99597 **
Weight ×Movement 2 4.4893 *

Note: * p < 0.05; ** p < 0.01.

Pairwise comparisons show non-significant differences between “pushing” and “pulling”,
while there are significant differences between “pushing” and “snatching” and “pulling”
and “snatching”. Post hoc analysis shows interactions between weight and movement for
“snatching”, “20 kg” and “30 kg”, and the other movements (p < 0.001). No differences
between “pushing” or “pulling”, “20 kg” and “pushing”, or “pulling” and “30 kg” were
shown, except for LD which shows statistically significant differences (p < 0.001) between
“pushing” and “pulling” “20 kg” and “30 kg”.



Sensors 2022, 22, 436 10 of 16

Table 5 presents the Pearson’s correlation coefficient between EMG signals for the
LD and ES muscles, based on movement and weight. A strong positive correlation was
observed between each variable for LD and ES. Correlations concerning the DC and DS
muscles concern only snatching 30 and 20 kg (r = 0.7583; p = 0.011), pushing 30 and 20
kg (r = 0.9919; p < 0.0001), and pulling 30 and 20 kg (r = 0.9804; p < 0.0001) for DS. For
DC, correlations concern pushing 20 and 30 kg (r = 0.9682, p < 0.0001), pushing 20 kg and
snatching 20 kg (r = 0.9354, p < 0.0001), pushing 20 kg and pulling 30 kg (r = 0.8554, p = 0.02),
pulling 20 kg and pushing 30 kg (r = 0.9284, p < 0.0001), pulling 20 and 30 kg (r = 0.9526,
p < 0.0001), and pushing 30 kg and pulling 30 kg (r = 0.8867, p = 0.01).

Table 5. Correlation table for LD and ES.

Muscle Variable 1 2 3 4 5 6

LD

1. Sn 20kg
2. Ps 20kg 0.9162 **
3. Pl 20kg 0.8219 ** 0.8799 **
4. Sn 30kg 0.9903 ** 0.9562 ** 0.8294 **
5. Ps 30kg 0.8842 ** 0.9954 ** 0.8802 ** 0.9318 **
6. Pl 30kg 0.785 ** 0.8831 ** 0.9888 ** 0.8042 ** 0.8911 *

ES

1. Sn 20kg
2. Ps 20kg 0.7427 *
3. Pl 20kg 0.6449 * 0.8692 **
4. Sn 30kg 0.9201 ** 0.8197 ** 0.8452 **
5. Ps 30kg 0.6911 * 0.9225 ** 0.9225 ** 0.8618 **
6. Pl 30kg 0.7156 * 0.8237 ** 0.9197 ** 0.8325 ** 0.7822 **

Note: * p < 0.05; ** p < 0.01.

3.3. VAS Analysis

VAS data showed normal distribution according to the Kolmogorov–Smirnov test;
parametrical repeated measures ANOVA was performed on EMG data.

Repeated measure ANOVA on VAS data shows a significant effect of the mass on
the VAS. The means are significantly higher for 30 than 20 kg (F1.9 = 41.744; p < 0.001).
We observe an effect of the movement (F2.18 = 95.299; p > 0.05): pairwise comparisons
show non-significant difference between pushing and pulling while there are significant
differences between pushing and snatching (1.35 vs. 5.70; p < 0.001) and pulling and
snatching (1.02 vs. 5.70; p < 0.001). We observed an interaction between the weight and
movement (F2.18 = 6.0825; p < 0.01). We noted on Figure 8 as well as on the simple effects that
for the “snatching” gesture, the “30 kg” condition is higher than the “20 kg” (p < 0.00001).
This is also the case for the “pushing” condition, but was less clearly observed. On the
other hand, for the “pulling” condition, there is no difference between the “20 kg” and
“30 kg” conditions. There was a positive correlation between VAS and EMG for Snatching
20 kg (r = 0.7889, p = 0.007) for DC.
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4. Discussion

The main goal of this paper was the validation of an embedded motion-capture system
for use in a real work situation. Motion capture was performed by means of IMU and EMG
sensors, which were compared to optoelectronic motion-capture data and VAS rating the
effort of each trial, respectively.

4.1. Limitations

Some limitations are present in our study. First of all, the fact of using two different
motion-capture systems meant that synchronization between the IMU and VICON data
at 50 Hz was necessary. Despite previous validation of this method and visual inspection
of all acquisitions, small delays between the data can still persist. At 50 Hz, a two-frame
delay represents 40 ms which is enough to yield the small values of Lin’s concordance
coefficient on rapidly changing data such as acceleration (Table 2). Future works will be
dedicated to correcting this limitation. The current solution considered is the design of a
synchronisation bench which will be linked as an analog device to the VICON system and
will move the IMU following a known trajectory.

The motion variability was very important, and this was due to the three lifting
methods and the participants’ anthropometrical variability. Indeed, participants were
free to adapt the lifting method to their anthropological parameters. For instance, during
snatching, a tall subject would lift the mass with his/her hands above the horizontal bar
of the mass when a smaller subject would rather lift it with his/her hands below the bar.
Although our results are positive on the use of this embedded motion-capture setup, further
research with larger sample size including differences in anthropometry would improve
the validation statement.

One potential source of error in the orientation estimation of the segments could be
due to the well-known soft tissue artefacts (STA) and wobbling masses. STA represent an
important error source both for IMU and VICON systems in differing ways due to variations
in sensor position. In optoelectronic systems, reflective markers are commonly positioned
on bone points to reduce skin displacement during motions whereas IMU sensors are
usually placed in the middle of the segments to avoid measuring the displacement of two
segments at the same time. Naturally, this type of error will depend on the anthropometry
of the subjects. Nevertheless, a preliminary study [50] showed little effects of STA and
wobbling masses when accelerations were low (which is the case for the different lifting
methods).
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Lastly, better precision could have been obtained by using an IMU with a three-axis
magnetometer sensor (e.g., MPU9250). However, the use of a magnetometer exposes
measurements to an increased sensitivity to magnetic disturbance [51], which can be
very important in the current context of our study (high-power cables, heavy metals,
construction machines, etc.).

4.2. Motion-Capture Validation

The main goal of this section was to test the reliability, reproducibility, and robustness
of the IMU sensors on various segments and motions. It was not to quantify the motion
variability between the three (obviously different) lifting methods but to provide evidence
that the embedded motion-capture set was precise enough to be used in the inherent
variability of the real work situations.

It is important to state that we focused on segment orientation rather than joint angles
and this for two main reasons. First of all, biomechanical modelling of the upper limbs
kinematics (especially at the elbow level) is still not standardised for the use of IMU as it
is for optoelectric systems [52]. This disparity creates a lot of errors in the validation of
IMU systems against state-of-the-art motion analysis technics [53,54]. The second reason
is linked to the field of application of our IMU system in the prevention of MSD in real
work situations (i.e., away from the motion-capture lab). In ergonomics, one gold-standard
method to perform posture analysis and MSD assessment is to use survey methods such as
RULA (Rapid Upper Limb Assessement) which is amongst the most renowned [55]. This
method is not focused on range of motion of the joint but of the individual segments, which
is why our validation method is coherent with the field of applied ergonomics.

Despite the high variability in the results due to the three different lifting motions,
the IMU system precision is coherent with previous scientific works. In [53], the authors
compared the angle ROM obtained from a low-cost IMU system (Perception Neuron,
Noitom, Miami, FL, USA) with a classical optoelectronic system and the proprietary
software. The Bland–Altman method resulted in bias values between −11.1◦ and 8.1◦,
LOA ∈

[
−19◦ 26◦

]
for the IMU placed on the upper limbs, which clearly shows the

superiority of our system. In [54], the same authors compared gold-standard motion
capture with a more renowned IMU system (MVN, Xsens technologies, Enschede, The
Netherlands). Once again, the Bland–Altman method resulted in bias values of the upper
limbs IMU between −1◦ and 0.6◦, LOA ∈

[
−5◦ 4◦

]
.

Hence, our motion-capture results presented in Table 2 are coherent with the existing
state of the art in embedded motion capture. Future work could be dedicated to injecting
the measured kinematics into human body modelling [56] to allow the estimation of joint
torques during the different motions.

4.3. EMG and VAS a Complementary Set of Measurements

EMG data analysis shows significant differences of muscular activity based on the
movement performed by the subject and the weight lifted. Statistical analysis shows
an interactional effect of movement and weight over the activity of different muscles.
Correlation analysis shows us the muscles whose variations are strongly linked with the
task rather than the motor strategy of the subject. This is particularly relevant for back
muscles as they are less assumed by motor strategy variations than the shoulder muscles.
This is particularly important for efforts assessment in real work situations where effort
assessment on the shoulders can be linked to the strategy of the workers depending on
the specificities of the situation, when back muscles activity will be linked with the task
itself. As already shown in various studies, EMG is a relevant choice to compare muscular
activity during the use of various tools and different tasks [57,58]. Considering EMG data
as a continuous value allows for a more complex analysis than a simple Exposure Variation
Analysis (EVA) treatment [29] which limits the use of statistics to non-parametrical tests. In
our protocol, EMG data can be compared between various tasks or working conditions. As
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far as we know, no other study offers such a statistical treatment of EMG in the workplace.
One of the main causes could be the difficulties of assembling a sufficient sample of workers.

An interesting point is the link between the effort measured by the EMG and the
perceived effort assessment by the subject using VAS. VAS measures of perceived effort
by the subject also show statistically significant differences based on the movement and
on the weight performed by the subject. VAS appears to be more sensitive to weight than
the muscular activity. This can be explained by the perception of the weight lifted by
the subjects. In correlational analysis, we note a strong relation between VAS and DC in
snatching tasks. This may be an order effect of our protocol. It also can be linked with
the fact than this muscle is not usually involved in manual handling tasks. In real work
situations, perception of the weight of the objects lifted by a worker is rarely so clear. VAS
shows the same differences as the EMG. In a measurement method during a real work
situation, VAS can be used as a back-up measurement in case of loss of EMG signal due the
workers’ movements.

When using a new measurement method, it is necessary to validate it and compare
these results with a gold standard and estimate the agreement between these two measure-
ment methods. The particularity of work situations where professional tools and gestures
are often unique to a company practice can make it difficult to find this reference basis.
This study allows us to have a reference basis to compare EMG values with the future
EMG found in real work situations. The use of EMG measurement will allow comparisons
such as the tools used for the opening of a manhole cover, and the muscle activity around
various factors such as the experience of the worker performing the movement and to
compare the effects of these strategies on muscle activity. EMG and motion analysis can
also be used for tool sizing, and helping to adjust the height of the handle regarding the
efforts needed to achieve the task [59]. This method also provides a means of treating
manual handling which is significantly above the ergonomic recommendations where the
configuration and variability of the situation does not always allow the deployment of tools
other than manual tools.

5. Conclusions

The embedded motion-capture and EMG setup developed in this study has been
positively validated for the real work condition study of manhole-cover handling. Our
work shows that our embedded motion-capture set is precise enough to be used in real
work situations. Our EMG data analysis shows than EMG is a relevant choice to compare
muscular activity during the use of various tools and different tasks. EMG analysis as a
continuous variable allows the use of parametrical statistical tests. Moreover, there is an
interesting link between EMG measurement and the self-perception of effort rated by a VAS.
Future work will be dedicated to using this setup to assess the impact of work conditions
(i.e., cover weight, tools for lifting methods, etc.) on both the motion and effort perception
of lifting.
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Appendix A. EMG Signal Illustration

Appendix A illustrates the normalised EMG measurements for the three repetitions of
snatching at 20 and 30 kg and pulling at 20 and 30 kg on one subject.
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