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Acute non-typhoidal salmonellosis (NTS) caused by Salmonella enterica Typhimurium
(STM) is among the most prevalent of foodborne diseases. A global rising of antibiotic
resistance strains of STM raises an urgent need for alternative methods to control this
important pathogen. Major human food animals which harbor STM in their gut are
cattle, swine, and poultry. Previous studies showed that the probiotic Limosilactobacillus
(Lactobacillus) reuteri KUB-AC5 (AC5) exhibited anti-Salmonella activities in chicken by
modulating gut microbiota and the immune response. However, the immunobiotic effect
of AC5 in a mammalian host is still not known. Here, we investigated the anti-Salmonella
and anti-inflammatory effects of AC5 on STM infection using a mouse colitis model.
Three groups of C57BL/6 mice (prophylactic, therapeutic, and combined) were fed with
109 colony-forming units (cfu) AC5 daily for 7, 4, and 11 days, respectively. Then, the
mice were challenged with STM compared to the untreated group. By using a specific
primer pair, we found that AC5 can transiently colonize mouse gut (colon, cecum,
and ileum). Interestingly, AC5 reduced STM gut proliferation and invasion together with
attenuated gut inflammation and systemic dissemination in mice. The decreased STM
numbers in mouse gut lumen, gut tissues, and spleen possibly came from longer AC5
feeding duration and/or the combinatorial (direct and indirect inhibitory) effect of AC5 on
STM. However, AC5 attenuated inflammation (both in the gut and in the spleen) with no
difference between these three approaches. This study demonstrated that AC5 confers
both direct and indirect inhibitory effects on STM in the inflamed gut.

Keywords: acute non-typhoidal salmonellosis, Salmonella enterica Typhimurium, probiotic Limosilactobacillus
(Lactobacillus), mouse colitis model, anti-inflammatory effect, immunomodulation
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INTRODUCTION

Acute gastroenteritis caused by non-typhoidal Salmonella is
a foodborne disease causing around 93.8 million cases and
155,000 deaths per year worldwide (Majowicz et al., 2010;
Heredia and García, 2018; Balasubramanian et al., 2019). The
Gram-negative bacterium Salmonella enterica is comprised of
more than 2,500 serovars. The most important non-typhoidal
serovars for human or livestock infections include Typhimurium,
Enteritidis, Gallinarum, Infantis, Ohio, Seftenberg, Derby, and
Rissen (Antunes et al., 2016; Campos et al., 2019; Ferrari et al.,
2019; Sun et al., 2021). The major route of human acute non-
typhoidal salmonellosis (NTS) is consumption of contaminated
food or drink from animal reservoirs of Salmonella (especially
cattle, swine, and chickens) (Bernad-Roche et al., 2021). Increased
demand for food products in both developed and developing
countries leads to the improper use of antibiotics on animal
farms. Low dose antibiotics have been used as a growth promoter
to increase the yield of meat products (Castanon, 2007). However,
this practice results in an increase in multi-drug resistance
(MDR) Salmonella strains around the world (Zhao and Hu, 2013;
Ur Rahman et al., 2018; Sedrakyan et al., 2020). MDR Salmonella
strains are currently spreading in the human food supply chain
and have a huge impact on economics and health (Tasmin et al.,
2019; Castro-Vargas et al., 2020; Chen et al., 2020). This concern
raised the alarm on the need to find alternative ways to control
this important foodborne pathogen (Kongsanan et al., 2020; Mao
et al., 2021; Sargun et al., 2021).

Salmonella enterica serovar Typhimurium (STM) is a major
cause of human acute NTS and its pathogenesis has been
extensively investigated (Broz et al., 2012; Rivera-Chavez and
Baumler, 2015; Hausmann and Hardt, 2019; Rogers et al.,
2021). Once ingested and passed into the large intestine of
its mammalian host, STM exploits two type-three secretion
systems (T3SS)-1 and T3SS-2 to secrete effector proteins
promoting gut epithelial invasion and survival inside host cells,
respectively. Innate immune receptors such as Toll-like receptors
(TLRs) or nucleotide-binding oligomerization domain-(NOD)-
like receptors (NLRs) of gut epithelium recognize pathogen-
associated molecular patterns (PAMPs) on STM resulting in gut
inflammation (Thiennimitr et al., 2012). Chemotactic cytokines
such as interleukin (IL)-8 (CXCL-8 or KC in mouse) and IL-
6 promote a neutrophil influx into the gut lamina propria
and submucosal tissue at the site of STM entry (Barthel et al.,
2003; Tsolis et al., 2011; Santos, 2014). A hallmark histological
finding of STM infection in humans is infiltration in numerous
polymorphonuclear cells (PMNs) in the large intestine. STM
infection also increases the production of inducible nitric oxide
synthase (iNOS) derived from gut epithelium and lamina propria
inflammatory monocytes (Winter et al., 2013; McLaughlin et al.,
2019). Then, iNOS catalyzes the production of nitric oxide
(NO), which plays a significant role in the host immune
response and Salmonella pathogenesis (Lopez et al., 2015).
Interestingly, the facultative anaerobic STM can take advantage
of gut inflammation to outcompete resident obligate anaerobic
gut microbiota and bloom in the inflamed gut (Lupp et al.,
2007; Stecher et al., 2007; Barman et al., 2008). In the

inflamed gut, alternative terminal electron acceptors such as
tetrathionate (S4O6

2−) and nitrate (NO3
−) become available

for STM. STM exploits these electron acceptors to breakdown
non-fermentable molecules such as ethanolamine and 1,2-
propanediol by anaerobic respiration (Winter et al., 2010, 2013;
Thiennimitr et al., 2011; Faber et al., 2017). This nutritional
advantage allows STM to outcompete gut microbiota and flourish
in the host gut during the infection (Rivera-Chavez and Baumler,
2015). Successful proliferation in the inflamed gut plays a crucial
role in STM transmission to a new host (Stecher et al., 2007;
Santos et al., 2009).

Probiotics are defined as “live microorganisms when
administered in adequate amounts confer a health benefit on
the host” (Morelli and Capurso, 2012). Several probiotics have
already been investigated to identify potential beneficial roles
against Salmonella infection. A Gram-positive bacterium in
the genus Limosilactobacillus (former named “Lactobacillus”)
is one of the most common probiotic microorganisms used
to promote animal and human health (Kakabadze et al., 2020;
Petrova et al., 2021). Several species of Limosilactobacillus,
for example, reuteri, paracasei, johnsonii, plantarum, and
rhamnosus are categorized as generalized recognized as safe
(GRAS) and can be used as probiotics. Previous studies have
already demonstrated an anti-Salmonella effect of the probiotic
Limosilactobacillus both in vitro and in vivo (Nakphaichit
et al., 2019; Hai et al., 2021; Jia et al., 2021; Kim et al., 2021).
Effects of probiotics against enteropathogens (colonization
resistance) can be divided into two major branches: (1) direct
effect including prevention of pathogen adhesion and invasion
to gut epithelium, nutritional competition with pathogens,
or direct killing activity on pathogens by the production of
antimicrobial substances and (2) indirect effect by enhancing
host protective immune response (locally or systemically) such
as strengthening gut barrier integrity, increasing production of
secretory IgA (SIgA) antibody or attenuation of inflammatory
responses (Sassone-Corsi and Raffatellu, 2015). Several strains
of Limosilactobacillus reduced Salmonella lipopolysaccharide
(LPS)-induced gut epithelial barrier impairment by increasing
tight junction protein expressions (Fang et al., 2010; Yeung et al.,
2013). Limosilactobacillus probiotics attenuated Salmonella-
induced gut inflammation by reducing pro-inflammatory
cytokine production by the attenuation of TLRs activation
in vitro (Kanmani and Kim, 2020). Kanmani and Kim (2020)
showed that Limosilactobacillus isolated from Korean food
increased production of the immunosuppressive cytokine IL-10,
transforming growth factor (TGF)-β, and antimicrobial peptide
β-defensin by manipulating the expression of TLR negative
regulators in human colonocytes.

Liu et al. (2019) demonstrated anti-Salmonella activity of
Limosilactobacillus in mice. They found that L. plantarumZS2058
and L. rhamnosus GG (LGG) reduced Salmonella pathogenicity
and inflammatory response in a mouse typhoid model with a
strain-specific mechanism. The probiotic L. plantarum ZS2058
increased fecal short chain fatty acid (propionic acid) and mucin
levels in mouse colon, while LGG more strongly alleviated
mouse gut inflammation. This study reported the anti-Salmonella
activity of the probiotic Limosilactobacillus in mice. However,
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mice infected with STM do not properly develop a robust gut
inflammation but rather have a systemic infection called “typhoid
fever-like disease” (Tsolis et al., 1999, 2011). To study the anti-
inflammatory role of the probiotic Limosilactobacillus against an
acute NTS, a mouse colitis model for Salmonella infection should
be used. Antibiotic pretreatment in the genetically susceptible
mouse strains (e.g., C57BL/6 and BALB/c) prior to STM
infection transiently abrogates mouse colonization resistance.
Then, STM triggers mouse gut inflammation which mimics acute
gastroenteritis in human (Bohnhoff et al., 1954; Bohnhoff and
Miller, 1962).

The anti-Salmonella effect of the probiotic AC5 has already
been investigated in broiler chickens (Nakphaichit et al., 2011,
2019; Sobanbua et al., 2019). Nakphaichit et al. (2019) recently
reported that oral feeding with AC5 increases the survival rate
and attenuates the pathogenicity of Salmonella infection in
chickens by modulating chicken gut microbiota and immune
responses. Due to the differences in the gut immune response
between avian and mammalian hosts when interacting with STM,
the outcomes of probiotic Limosilactobacillus challenge between
these two hosts might differ (Tsolis et al., 1999; Santos et al., 2001).
Here, we investigated the anti-Salmonella and anti-inflammatory
effects of the probiotic L. reuteri KUB-AC5 in the inflamed gut of
STM-infected mice.

MATERIALS AND METHODS

Ethical Approval
The animal experiments in this study were approved by the
Animal Care and Use Committee, Chiang Mai University,
Thailand in accordance with the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC) guidelines
(Approval No. 2559/MC-0005).

Bacterial Strains, Culture Conditions,
and Direct Antimicrobial Effect Assays
The S. Typhimurium strain IR715 (STM) is a fully virulent,
nalidixic acid-resistant derivative of the wild-type isolate ATCC
14028 (Stojiljkovic et al., 1995). The probiotic L. reuteri KUB-
AC5 (AC5) was isolated from chicken intestine (Nitisinprasert
et al., 2000). To determine the direct anti-Salmonella activity of
AC5, we performed growth assays in both liquid (co-culture)
and solid media (spot-on lawn and agar-well diffusion assays).
For the co-culture assay, 100 µL of 1:100 dilution of an equal
amount (1:1) of STM and AC5 inocula [about 104 colony-
forming unit (cfu)/mL total] was incubated microaerobically
(without shaking) in 10 mL of co-culture broth at 37◦C for
16 h as previously described with a slight modification (Drago
et al., 1997; Adetoye et al., 2018). The co-culture broth was
composed of an equal amount of the double strength (2×) de
Man, Rogosa, and Sharpe (MRS) and Mueller–Hinton (MH)
broth. For a single growth assay, 100 µL of 1:100 dilution of
an overnight culture of AC5 or STM was inoculated separately
into 10 mL fresh MRS and MH broth, respectively, and then
incubated at 37◦C for 14 h without shaking. At the indicated time
point, viable counts (cfu/mL) of AC5 and STM were enumerated

using a serial 10-fold dilution with the appropriate media MRS
agar (AppliChem) and Luria–Bertani (LB) agar with 0.05 mg/mL
nalidixic acid, respectively.

The direct anti-Salmonella effect of the viable cell and cell-
free supernatant from AC5 culture (AC5-CFS) of probiotic AC5
was determined by spot-on lawn and agar well diffusion methods
as described previously (Lima et al., 2007). For the spot-on
lawn assay, 20 µL of AC5 overnight culture was spotted on
MRS agar and incubated at 37◦C for 16 h to develop a viable
spot on the plate. Then, 200 µL of STM overnight culture was
added to 20 mL LB broth containing 0.75% agar (Difco agar,
BD, MD, United States) and poured over the plate. All plates
were incubated at 37◦C for 16 h to observe the inhibition zone.
A diameter of the zone of inhibition more than 1 mm was
considered as a positive.

An agar well diffusion method was used to evaluate the
antimicrobial effect of AC5-CFS on STM as previously described
(Lima et al., 2007). To collect AC5-CFS, 5 mL of AC5 overnight
culture was centrifuged at 4,000 rounds per minute (rpm) for
10 min at 4◦C. An STM lawn was prepared by mixing 200 µL
of STM overnight culture in 20 mL LB with 0.75% agar and
then pouring into a sterile plate. Then, 6-mm-diameter wells
were made in the agar by 200 µL pipette tip and filled with
60 µL of AC5-CFS. All plates were incubated at 37◦C for 16 h to
observe the inhibition zone. The inhibition activity was expressed
as a clear zone.

Probiotic L. reuteri KUB-AC5 Preparation
A single fresh colony of the probiotic L. reuteri KUB-AC5 grew
on MRS agar (Difco agar, BD, MD, United States) with 0.6% w/v
CaCO3 was picked and inoculated into 5 mL MRS broth with
0.6% w/v CaCO3. The mixture was statically incubated at 37◦C
for 16–18 h. Then, 400 µL AC5 overnight culture was added into
a new 40 mL MRS broth with 0.6% w/v CaCO3 (1:100 dilution)
and grown statically for the next 16–18 h. The bacterial culture
was centrifuged at 4,000 rpm at 4◦C for 10 min to obtain the cell
pellets which were resuspended with sterile PBS to adjust the final
concentration of 1010 cfu/mL and kept at 4◦C until use.

Animal Study
The animal experiments were approved by the Animal Care and
Use Committee, Chiang Mai University, Thailand in accordance
with the AAALAC guidelines (Approval No. 2559/MC-0005).
Female C57BL/6 mice aged 6–8 weeks old were purchased from
Nomura Siam International (Bangkok, Thailand). All mice were
acclimatized and co-housed (for gut microbiota normalization)
for 1 week and housed in 12 dark/12 light hour cycle in a
controlled environment (room temperature, 21 ± 1◦C; humidity,
50 ± 10%). Standard mouse chow and drinking water were
provided ad libitum. Then, mice were divided into four groups:
(1) prophylactic (Pro), (2) therapeutic (Tx), (3) combined
(prophylactic and therapeutic, Pro + Tx), and (4) untreated
control group. There were six to seven mice per group. Mouse
was orally fed with 100 µL of 1010 cfu/mL AC5 (109 cfu/mouse)
daily for 7, 4, and 11 days for the prophylactic, therapeutic,
and combined group, respectively. Mice in the untreated control
group were daily fed with sterile PBS. To induce colitis, 100 µL
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of (200 mg/mL) streptomycin sulfate (Sigma Aldrich, Singapore)
solution was given orally to mice 1 day prior to STM infection
(109 cfu of STM/mouse) (Barthel et al., 2003; Sarichai et al., 2020).
All mice were euthanized at day 4 post infection.

Determination of Bacterial Numbers
A viable count (cfu/gm tissue) of STM in mouse gut contents
(colon content and cecal content), gut tissues (colon, cecum,
and ileum), and spleen was performed using a serial-dilution
plating technique. Briefly, the samples were collected in sterile
PBS and homogenized with a bead-beating machine with 1.0 mm
diameter zirconium/silica beads (Biospec Products, Bartlesville,
OK, United States). Then, serial 10-fold dilutions of the
homogenates were made. STM cfu/gm tissues were enumerated
by plating 100 µL of the dilutions onto LB agar with nalidixic
acid (0.05 mg/mL) and incubated at 37◦C for 16 h.

Limosilactobacillus reuteri KUB-AC5 was quantified by
quantitative polymerase chain reaction (qPCR) with the AC5
strain-specific primer pair (Sobanbua et al., 2019). The forward
and reverse primers were TCGCTCACGGCTGTTAGGACA
and AGCACTCCACGTTGCCACA, respectively. The microbial
genomic DNA was extracted from mouse gut contents by
using the QIAamp Stool Mini Kit (Qiagen, Hilden, Germany)
in a combination with the bead beating method. About 100–
200 mg of gut contents was suspended in 900 µL of sterile PBS
(pH 8.0), 300 µL phenol-chloroform-isoamyl alcohol (25:24:1)
and 0.3 g of zirconium beads (0.1 mm in diameter, As One
Corporation, Osaka, Japan). Microbial cells in gut contents were
broken by a minibead beater 3110BX (Biospec, United States)
for 3 min at 4,800 rpm and further DNA extraction was done
in accordance with the protocol of the QIAamp Stool Mini Kit.
Total bacterial DNA was applied as a template for qPCR. Total
qPCR reaction volume of 20 µL contained 50 ng/µL of DNA
template, 2 µL; 10 µmol of each forward and reverse primer,
0.4 µL; LightCycler 480 SYBR Green master (Roche, Germany),
10 µL; and nuclease-free water added to obtain the final volume
of 20 µL. Amplification conditions of initial denaturation at 95◦C
for 5 min were followed by 45 cycles of 95◦C for 10 s, annealing
and extension step combined at 70◦C for 45 s, and elongation
at 72◦C for 5 min. A serial 10-fold dilution of genomic DNA of
L. reuteri KUB-AC5 was used to generate the standard curve.

Detection of Tissue Gene Expression by
qPCR
Four days after the infection with STM, all mice were euthanized
and tissue samples were collected for mRNA expressions
by qPCR. Fold change (relative of expression) of important
proinflammatory cytokine genes [Kc, Ifng, and Il-6 encoding for
KC or CXCL-1, interferon (IFN)-gamma and IL-6, respectively],
Nos2 and Zo-1 [encoding for iNOS and a tight junction protein
zonula occludens (ZO-1), respectively], were performed as
previously described (Sarichai et al., 2020). In short, collected
tissues were immersed in RNA preservative solution (RNAstore
reagent, TIANGEN, China) and stored at −20◦C until extraction.
Mouse tissue RNA was isolated using TRIzol reagent (Thermo
Fisher scientific, Waltham, MA, United States), following the

manufacturer’s protocol. DNase treatment was performed using
a DNA removal and inactivation kit (Ambion, Life technologies,
Vilnius, Lithuania). The purity and amount of the isolated
RNA were confirmed using a NanoDrop Spectrophotometer
(Thermo Fisher scientific, Waltham, MA, United States). Then,
complimentary DNA (cDNA) was synthesized using a Tetro
cDNA synthesis kit (Bioline, Taunton, MA, United States). The
qPCR reaction was prepared by using a SensiFAST SYBR Lo-
ROX Kit (Bioline, Taunton, MA, United States) and performed
with ViiA 7 Real-Time PCR system (Applied Biosystems). Gene
expressions were analyzed with a comparative Ct method (2−1

1 Ct) using a Gapdh as a housekeeping genes (Schmittgen and
Livak, 2008). The lists of primers used in this study are shown in
Supplementary Table 1.

Cecal Histopathological Study
Segments of mouse ceca were fixed in 10% buffered formalin,
embedded in paraffin, and stained with hematoxylin and eosin
(H&E). The slides were blindly scored by the veterinary
pathologist using the criteria shown in Supplementary Table 2.

Statistical Analysis
The cfu/gm of STM and relative fold changes of mRNA were
logarithmically transformed before statistical analysis. Analysis
was carried out using a parametric test [one-way analysis of
variance (ANOVA) with Tukey’s multiple comparisons test].
The cecal histopathological scores were statistically tested using
a Kruskal–Wallis test with multiple comparisons as previously
described (Sarichai et al., 2020). P < 0.05 was considered
statistically significant; ∗, ∗∗, and ∗∗∗ indicate P-values < 0.05,
0.01, and 0.001, respectively.

RESULTS

Limosilactobacillus reuteri KUB-AC5
Exhibited Direct Antimicrobial Activity on
Salmonella Typhimurium
In a previous study, the strain AC5 produced antimicrobial
peptide KAC5 of 4.7 kD against S. Enteritidis S003 with
bactericidal activity in its mode of action (Sobanbua et al.,
2020). To investigate whether the AC5 can inhibit growth of
STM IR715 used in this study, the time course growth assays
of both monoculture and co-culture were carried out as shown
in Figure 1. Co-culture assay demonstrated that probiotic AC5
can inhibit the growth of STM and maintain at 105 cfu/mL
(Figure 1A) during 8–14 h compared to that of 107 cfu/mL in
the monoculture assay (Figure 1B). From the spot-on lawn assay,
we found the clear zone only around the viable colonies of AC5
but not CFS (Figure 1D). By the agar well diffusion assay, we
observed the clear zone around the wells of both CFS and KAN
(positive control) at 16 h after the inoculation but not the MRS
(negative control) (Figure 1E). The diameters of clear zone in
both assays are depicted in Supplementary Figure 2. These data
indicated the direct antagonistic effect of both viable cells and
CFS of AC5 on STM IR715.
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FIGURE 1 | In vitro anti-Salmonella effect of probiotic L. reuteri KUB-AC5 on S. Typhimurium IR715 in liquid and solid media. Co-culture assay was done by
inoculating an equal amount of AC5 and STM in de Man, Rogosa, and Sharpe (MRS) and Mueller–Hinton (MH) broth (A). An independent growth of STM and AC5 in
liquid media was performed (B,C, respectively). The anti-Salmonella activities of AC5 cell-free supernatant (CFS) were tested using spot-on lawn assay (D) and agar
well diffusion assay (E). Data represent geometric means ± SD of three independent experiments. KAN, kanamycin as a positive control, MRS broth as a negative
control.
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FIGURE 2 | Anti-Salmonella effect of probiotic L. reuteri KUB-AC5 in mouse inflamed gut. Female C57BL/6 mice were fed daily with 109 cfu AC5 in prophylactic
(Pro), therapeutic (Tx), and combined (Pro + Tx) approaches for 7, 4, and 11 days, respectively (black bar). Mice in the untreated control group were fed with
phosphate-buffered saline (PBS) (white bar). Then, mouse tissues were harvested at day 4 post infection and homogenized for the enumeration of STM cfu/gm
tissues. Bars represent geometric means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to all other groups.

Oral Feeding With L. reuteri KUB-AC5
Reduced Numbers of Salmonella in
Mouse Inflamed Gut
To study the role of AC5 consumption in an acute NTS, a
mouse colitis model of STM infection was used. The 6–8-
week-old female C57BL/6 mice were divided into four groups:
(1) prophylactic (Pro), (2) therapeutic (Tx), (3) combined
(prophylactic and therapeutic, Pro + Tx), and (4) untreated
group. Mice in the treatment groups were orally fed daily with
109 cfu AC5 at the different indicated times (Supplementary
Figure 1). At day 4 post infection, all mice were euthanized and
tissue samples were harvested. Our data indicated that all groups
of mice fed with AC5 have decreased numbers of STM in their gut
contents (colon content and cecal content) (Figures 2A,B). Mice
in the combined group (Pro + Tx) showed a remarkable decrease
in STM numbers in their colon contents. To evaluate the role of
AC5 against STM gut tissue invasion, STM cfu/gm from different

sites of the gut (colon, cecum, and ileum) were determined. Our
data showed that all AC5-fed mice had significantly lower STM
numbers in their gut tissues than those of the untreated mice
(Figures 2C–E).

The Probiotic L. reuteri KUB-AC5
Transiently Colonized Mouse Gut
To detect the presence of AC5 in mouse gut, we used a qPCR
technique with a primer pair specific to AC5. Then, copy numbers
of AC5 per mg of mouse gut content were calculated as previously
described (Sobanbua et al., 2019). Our data demonstrated that
AC5 can colonize differently in mouse colon, cecum, and
ileum (Figure 3). Interestingly, the difference in AC5 feeding
duration might play a role in a significant difference of AC5
amounts collected from mouse gut. In the therapeutic (Tx) and
combined (Pro + Tx) groups, mice were orally fed with AC5
continuously for 4 and 11 days, respectively, before the sample

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 716761

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-716761 August 17, 2021 Time: 14:58 # 7

Buddhasiri et al. Probiotic L. reuteri KUB-AC5

FIGURE 3 | Detectable amounts of L. reuteri KUB-AC5 in mouse gut contents. At day 4 post infection, mouse gut contents in colon, cecum, and ileum were
collected and quantified for AC5 by qPCR. The copies/mg of AC5 in each gut content was calculated and depicted. Bars represent geometric means ± SD.
*P < 0.05, **P < 0.01, and ***P < 0.001 compared to all other groups.

collection. At the same time, mice in the prophylactic (Pro)
group were fed with AC5 for 7 days and stopped for 4 days
before the sample collection. Our results showed that mice in
the prophylactic group have the lowest amount of AC5 in their
gut contents. These data suggest the transient manner of AC5
colonization in mouse gut.

The Probiotic L. reuteri KUB-AC5
Attenuated Gut Inflammation During
Salmonella Infection
Next, we investigated the anti-inflammatory effect of AC5
on mouse gut. Relative expressions of the representative pro-
inflammatory genes were determined by qPCR. Our results
revealed that all AC5-fed mice have reduced expression
levels of colonic pro-inflammatory genes (Kc, Il-6, and Nos2)
(Figures 4A–C, respectively). However, the colonic gene
expressions of Ifng encoding for cytokine IFN-γ, an important
cytokine in the systemic phase of STM infection, were not
changed in all groups (Figure 4D). Therapeutic (Tx) and
combined (Pro + Tx) orally fed with the probiotic AC5 mice
showed increased expression of tight junction protein zonula
occludens gene (Zo-1) in the colon (Figure 4E).

STM-infected mice orally fed with AC5 also showed reduced
gene expressions of Kc and Il-6 in their ceca (Figures 5A,B).
There was no significant change in cecal Nos2 expression in
all groups of mice (Figure 5C). Mice in the prophylactic (Pro)
and therapeutic (Tx) groups showed a reduction in Ifng gene
expression (Figure 5D). Zo-1 was upregulated in the prophylactic
and therapeutic groups (Figure 5E). An anti-inflammatory effect
of AC5 in the distal ileum of STM-infected mice was also
observed (Figure 6). Probiotic AC5 feeding decreased Kc, Il6,
Nos2, Ifng, and increased Zo-1 expressions in the ilea of the
mice. To confirm the anti-inflammatory effect of AC5 on gut
inflammation, tips of mouse ceca were sectioned, stained, and

evaluated. The histological study revealed that AC5 feeding
attenuated the severity of gut inflammation induced by STM
compared to that of the untreated mice (Figure 7).

The Probiotic L. reuteri KUB-AC5
Reduced Systemic Dissemination of
Salmonella Typhimurium in Mice
In the systemic phase of infection, STM survives inside the
cytoplasmic vacuoles of host innate immune cells such as
macrophages or monocytes. This intracellular niche protects
STM from host immune recognition and allows STM to
disseminate through lymphatic and blood vessels to distant
organs such as the spleen (Broz and Monack, 2011; Broz et al.,
2012). Our data showed that feeding mice with AC5 significantly
reduced STM numbers in the spleen (Figure 8A). The combined
regimen (Pro + Tx) of AC5 provided the greatest effect in
the reduction of the STM numbers in the mouse spleen. AC5
also decreased the expressions of Ifng and Nos2 in mouse
spleen (Figures 8B,C). These data indicated that orally fed
with probiotic L. reuteri KUB-AC5 can reduce the severity the
systemic phase of STM infection in mice.

DISCUSSION

STM is one of the most prevalent foodborne pathogens causing
several million cases of acute gastroenteritis and invasive
bacteremia in humans per year (Majowicz et al., 2010; Whistler
et al., 2018). Although the most outcome of STM infection
is self-limiting acute diarrhea, a life-threatening condition
could occur in immunocompromised hosts such as those with
human immunodeficiency virus (HIV)-infection, malnutrition,
or extreme ages (Gordon et al., 2002; Preziosi et al., 2012). An
increase in MDR STM necessitates an urgent alternative approach
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FIGURE 4 | Anti-inflammatory effect of L. reuteri KUB-AC5 on the STM-infected mouse colon. At day 4 post infection, mouse colons were collected and quantified
for the fold change in mRNA expression of pro-inflammatory cytokines (Kc, Il-6, and Ifng), iNOS (Nos2), and tight junction protein (Zo-1) by qPCR. All genes were
analyzed with the comparative Ct method over the housekeeping gene Gapdh. Bars represent geometric means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001
compared to all other groups.

for this important foodborne pathogen. STM is a frank pathogen
which can be recognized by host gut immune receptors and
exploit host responses to its benefit (Baumler et al., 2011; Rivera-
Chavez and Baumler, 2015). By using its virulence factors, a
minor population of STM can invade and survive inside host
cells while the majority proliferates in the gut lumen of the
host (Santos et al., 2009). Winter et al. (2010) showed that

STM conferred a nutritional advantage from gut inflammation,
outcompeted resident gut microbiota, and then bloomed in the
inflamed gut. Gut inflammation provides several host-derived
resources for STM to flourish in the gut. For example, increased
oxygen, nitrate, tetrathionate, and lactate levels in the inflamed
gut have been reported (Winter et al., 2010; Lopez et al., 2012;
Faber et al., 2017; Rogers et al., 2021). These evidences
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FIGURE 5 | Anti-inflammatory effect of L. reuteri KUB-AC5 on the STM-infected mouse cecum. At day 4 post infection, mouse ceca were collected and quantified
for the fold change in mRNA expressions of pro-inflammatory cytokines (Kc, Il-6, and Ifng), iNOS (Nos2), and tight junction protein (Zo-1) by qPCR. All genes were
analyzed with the comparative Ct method over the housekeeping gene Gapdh. Bars represent geometric means ± SD. *P < 0.05 and **P < 0.01 compared to all
other groups.

suggest that the facultative anaerobic bacteria such as STM can
harness the host response (gut inflammation) to outcompete the
indigenous gut microbiota in the inflamed gut. Hence, strategies
that reduce gut inflammation might also decrease STM blooming
in the host intestinal tract.

Probiotic microorganisms are a promising way to be used
as an alternative to antibiotics in several infectious diseases
including an acute NTS (Storr and Stengel, 2021). Two major
mechanisms used by probiotics in the inhibition of STM

growth have been reviewed (Sassone-Corsi and Raffatellu,
2015). (I) Probiotics could directly inhibit growth of STM
by adhesion exclusion, competing for nutrient sources of
antimicrobial peptide production. (II) Some probiotics confer
an indirect (immunomodulation) effect on gut immunity such
as increasing gut barrier integrity and enhancing production of
anti-inflammatory cytokines or protective SIgA antibody against
STM. The anti-Salmonella effect of probiotic L. reuteri KUB-
AC5 has been recently reported (Nakphaichit et al., 2019).
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FIGURE 6 | Anti-inflammatory effect of L. reuteri KUB-AC5 on the STM-infected mouse ileum. At day 4 post infection, mouse ilea were collected and quantified for
the fold change in mRNA expressions of pro-inflammatory cytokines (Kc, Il-6, and Ifng), iNOS (Nos2), and tight junction protein (Zo-1) by qPCR. All genes were
analyzed with the comparative Ct method over the housekeeping gene Gapdh. Bars represent geometric means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001
compared to all other groups.

Nakphaichit et al. (2019) showed that high dose AC5
consumption for 3 days prevents Salmonella infection in
chickens. The gut microbiota of chickens supplemented with
AC5 was altered by causing an increase in Lactobacillaceae
and a decrease in Enterobacteriaceae in their ilea and ceca.
These results indicate the gut microbiota modulation effect
of AC5 on Salmonella infection in chickens. Although the

anti-inflammatory effect of probiotic Limosilactobacillus on
Salmonella in other experimental models has already been
investigated (Abhisingha et al., 2018; Mohanty et al., 2019; Shi
et al., 2019; Smialek et al., 2019; Acurcio et al., 2020; Kanmani
and Kim, 2020; Kowalska et al., 2020; Mizuno et al., 2020), the
strain-specific effect of the probiotic plays a crucial role in their
different outcomes.
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FIGURE 7 | Decreased cecal histopathological scores in STM-infected mice orally fed with L. reuteri KUB-AC5. At day 4 post infection, mouse ceca were sectioned
and stained for hematoxylin and eosin to evaluate the severity of gut inflammation. Exudate, epithelial damage, submucosal edema, mononuclear leukocyte
infiltration, and neutrophil infiltration were assessed. The graphs display total pathological score (A) and individual score (B). The representative pictures of
prophylactic (Pro), therapeutic (Tx), combined (Pro + Tx), and untreated (D) are shown in (C–F), respectively. Bars represent geometric means. *P < 0.05,
**P < 0.01, and ***P < 0.001 compared to all other groups.

Liu et al. (2018) showed that prophylactic oral feeding with
L. plantarum and L. rhamnosus reduced Salmonella numbers
and improved gut barrier integrity in C57BL/6 mice. Reduced
translocating Salmonella numbers were found in the spleen
and liver of L. rhamnosus HN001 orally fed BALB/c mice

(Gill et al., 2001). Interestingly, L. casei CRL431 enhanced the
production of IFN-γ levels in immune cells isolated from Peyer’s
patch of mice infected with STM. Castillo et al. (2011) found that
the combined effect (Pro + Tx) resulted in increased IFN-γ and
IL-6 levels in mouse intestinal fluid. Nonetheless, most of the
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FIGURE 8 | Probiotic L. reuteri KUB-AC5 attenuates a systemic dissemination of STM. AC5-fed mice were divided into three groups (Pro, Tx, and Pro + Tx, black
bar) and one untreated group (white bar). Mouse spleens were harvested at day 4 post infection and homogenized for STM cfu/gm determination (A). Fold change
of Ifng and Nos2 genes in mouse spleen was calculated by qPCR (B,C, respectively). All genes were analyzed with the comparative Ct method over the
housekeeping gene Gapdh. Bars represent geometric means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to all other groups.

previous studies into the probiotic effect of Limosilactobacillus
against STM were performed in a non-robust gut inflammation
mouse typhoid model. Here, we used a streptomycin-pretreated
mouse colitis model to investigate anti-Salmonella and anti-
inflammatory effects of L. reuteri KUB-AC5.

The direct anti-Salmonella effect of AC5 is shown in Figure 1.
We investigated the direct antagonistic effects of AC5 on STM
using co-culture growth, spot-on lawn, and agar well-diffusion
assays. Our data showed that the direct antagonism of AC5 on
STM could arise from either the cells or cell-free components
of AC5. These data confirmed the anti-Salmonella activity of
AC5 in vitro as previously shown (Nitisinprasert et al., 2000).
Previous studies also demonstrated that AC5 inhibited in vitro
growth of several strains of Salmonella and Escherichia coli by
production of short chain fatty acids and antimicrobial peptides
not as a result of the acidity effect. Recently, the antimicrobial
peptide KAC5 produced by AC5 was characterized and was
shown to have no similarity to bacteriocin (Sobanbua et al.,
2020). KAC5 of AC5 demonstrated a broad inhibition spectrum
against several Gram-positive and -negative bacteria but not
against lactic acid-producing bacteria. Next, we compared the
role of prophylactic, therapeutic, and combined (prophylactic
and therapeutic) AC5 feeding on STM infection in mice. Our
data showed that all groups of AC5-fed mice had decreased STM
numbers in several parts of their gut and spleen. Interestingly,
AC5 caused a more significant reduced in STM numbers in the
colon content than in the cecal content in all groups of treated
mice. This suggests that the antagonistic activity of AC5 is gut
site-specific on STM in mice. A previous study by Jiang et al.
(2019) showed that intraperitoneal administration of L. reuteri
ATCC 55730 (both live and heat-inactivated forms) reduced
severity of an invasive NTS in mice by macrophage activation.
In this study, we demonstrated the role of oral consumption of
L. reuteri KUB AC-5 in both prevention and treatment of an

acute NTS. The combined feeding (Pro + Tx) of AC5 resulted
in the highest anti-Salmonella effect in the mouse gut lumen (gut
contents) compared to the other feeding approaches. These data
suggest a positive role of AC5 feeding and its duration on the
inhibition of STM proliferation and invasion in the gut of mice.

Previous studies revealed that AC5 predominated in the ileum
and cecum of chicken (Nakphaichit et al., 2011; Sobanbua et al.,
2019). Interestingly, our data showed that AC5 could be detected
in mouse colon, cecum, and ileum with the highest numbers
in the ileum (Figure 3). Mice in the combined group also had
the highest amount of AC5 compared to that of the therapeutic
and prophylactic groups. Mice in the prophylactic group had the
lowest amount of AC5 in their colon, cecum, and ileum. These
results indicated that AC5 can transiently colonize the gut of mice
and is dependent on feeding duration.

Next, we investigated the anti-inflammatory activity of AC5
on STM infection. Non-typhoidal Salmonella induces a robust
gut inflammation in several agricultural animal hosts including
cattle, swine, and poultry (Fasina et al., 2008; Bai et al., 2014;
Yu et al., 2017; Dar et al., 2019; Huang et al., 2019). However,
to date there are few reports on the in vivo gut inflammatory
attenuating effect of probiotic Limosilactobacillus (Yu et al., 2017;
Pradhan et al., 2019; Peng et al., 2020). Our data showed that AC5
reduced the gene expression of pro-inflammatory cytokine (Kc,
Il-6, and Ifng) and Nos2 in mouse colon, cecum, and ileum. The
tight junction protein gene (Zo-1) expression was upregulated
in the gut of AC5-fed mice (Figures 4–7). However, different
gene expressions were observed in different sites of mouse gut.
The results from a prophylactic group of mice (fed with AC5 for
7 days before STM infection) could indicate, at least in part, an
indirect inhibitory growth effect of AC5 on STM (Supplementary
Figure 1). Our data show that numbers of STM in the gut
lumen of the prophylactic group were reduced in comparison
to that of the therapeutic group (Figures 2A,B), while AC5 can

Frontiers in Microbiology | www.frontiersin.org 12 August 2021 | Volume 12 | Article 716761

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-716761 August 17, 2021 Time: 14:58 # 13

Buddhasiri et al. Probiotic L. reuteri KUB-AC5

transiently colonize mouse gut (Figure 3). However, the degree
of gut inflammation is also depending on the numbers of STM in
the gut lumen, and vice versa (Winter et al., 2010). By enhancing
the nutrient advantage for facultative anaerobes in the inflamed
gut lumen, the reduced gut inflammation could come from a
direct inhibitory effect of AC5 on STM in the gut lumen as well.
Surprisingly, there was no statistically significant difference in
the attenuation of gut inflammation between groups of AC5-fed
mice. Reduced gut inflammation by AC5 feeding might be due
to the decrease in STM proliferation by limiting their necessary
resources such as host-derived nutrients. In addition, AC5
prevented the systemic dissemination of STM from the gut into
spleen in this model perhaps due to the luminal STM population
in the gut (Figure 8). The lowest disseminated numbers of STM
in spleen were found in the combined group. This suggested that
the beneficial role of AC5 in an invasive NTS may come from
either the duration of feeding of AC5 or an additional effect of
direct and indirect colonization resistance of AC5. However, a
mouse typhoid model (without antibiotic pretreatment) should
be used for further investigation into whether AC5 attenuates the
severity of systemic disease caused by Salmonella.

CONCLUSION

Oral administration of the probiotic L. reuteri KUB-AC5 reduced
the severity of acute NTS in a mouse model. In vivo anti-
Salmonella (decreasing numbers of STM) and anti-inflammatory
(attenuation of gut and spleen inflammation) effects of AC5 have
been revealed. AC5 is more effective against STM when given as
a combination (prophylactic and therapeutic) indicating the roles
of feeding duration together with the combinatorial effects (direct
and indirect colonization resistance) on the probiotic activities
of AC5. However, other possible anti-inflammatory mechanisms
of AC5, for example, the activation of immunosuppressive
regulatory T cells, production of gut mucosal SIgA antibody, or
alteration in gut microbial metabolites (e.g., short-chain fatty acid
levels) are required further investigations.
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