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Early-life lead exposure recapitulates the selective loss of
parvalbumin-positive GABAergic interneurons and subcortical
dopamine system hyperactivity present in schizophrenia
KH Stansfield1, KN Ruby1, BD Soares1, JL McGlothan1, X Liu2 and TR Guilarte1

Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association
between prenatal lead (Pb2+) exposure and schizophrenia (SZ). Pb2+ is a potent antagonist of the N-methyl-D-aspartate receptor
(NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The
glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic
interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine
neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb2+ exposure in early life is an environmental risk
factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on
postnatal day 50 (PN50), adolescence rats chronically exposed to Pb2+ from gestation through adolescence exhibit loss of PVGI in
SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb2+

exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of
GABAergic interneurons. We also show that Pb2+ animals exhibit a heightened locomotor response to cocaine and express
significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical
dopaminergic hyperactivity. Our results show that developmental Pb2+ exposure reproduces specific neuropathology and
functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR
hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders.
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INTRODUCTION
Schizophrenia (SZ) is a devastating mental disorder believed to be
the result of an adverse neurodevelopmental event with the
clinical expression of the disease in adolescent and young
adults.1,2 Estimates of concordance in monozygotic twins are
~50%, indicating that both genetic and environmental factors are
important in the etiology of SZ.3–5 From an environmental
perspective, various aspects of the broad environment, such as
nutritional deficiency, obstetric complications and influenza out-
breaks, have been implicated in the etiology of SZ.3,6,7 However,
the possibility that human exposures to environmental toxins
during critical periods of brain development may have a role in
the etiology of SZ and related mental disorders has not been
studied to a significant degree.
Since the early 1970s, epidemiological studies originating from

different parts of the world have consistently demonstrated
detrimental associations of childhood lead (Pb2+) exposure on
children’s intelligence, learning ability and neuropsychological
development.8–25 During the last decade, studies have provided
evidence that childhood Pb2+ intoxication is also associated with
psychiatric disorders including major depression, anxiety, delin-
quency or conduct disorder, and SZ in adolescent and young
adults who were exposed to Pb2+ as children.19–25 Human
neuroimaging studies in Pb2+ exposed adolescent/young adults

that have been followed since infancy support the epidemiolog-
ical findings with evidence of gray matter and myelin changes in
brain regions affected in mental disorders.26–31 In particular, the
medial prefrontal cortex (mPFC) and hippocampus (HIPP) appear
to be the two brain regions that are consistently affected in both
Pb2+ exposed children and in SZ.26–29 Therefore, there is
substantial evidence to suggest that developmental Pb2+ expo-
sure produces detrimental effects on brain structures and
neuronal systems in children and adolescents that may influence
the expression of mental disorders across the lifespan.
The recent association between prenatal Pb2+ exposure and an

increased risk of SZ later in life24,25 prompted us to propose that
this association has a neurobiological underpinning, hypoactivity
of the NMDA receptor (NMDAR) complex.32 Further, our recent
study using transgenic mice expressing the human mutant form
of the SZ risk gene disrupted-in-schizophrenia 1 (DISC1), that were
chronically exposed to Pb2+ during development, revealed
behavioral abnormalities and brain structural changes as a result
of the gene–environment interaction that were consistent with a
SZ phenotype.33 Combined, these human and animal studies
provide important evidence that environmental toxins like Pb2+

that are NMDAR antagonists and have been historically present in
the global environment may interact with SZ risk genes and may
be involved in the etiology of mental disorders or alter the
temporal expression and/or severity of the disease.
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The glutamatergic hypothesis of SZ posits that hypoactivity of
the glutamatergic system, and specifically of the NMDAR has an
important role in the pathophysiology of SZ.34–36 There is
extensive evidence that Pb2+ is a potent and selective antagonist
of the NMDAR37–41 and chronic exposure to Pb2+ in early life
arrests the developmental NR2B-to-NR2A NMDAR subunit switch
in the rat brain.40,41 This is important because maturation and
refinement of many brain circuits is coincident with the NMDAR
subunit switch.42–45 One example relevant to the present study is
that of medial ganglionic eminence-derived parvalbumin (PV)-
positive GABAergic interneurons (PVGI) that undergo NR2B-to-
NR2A subunit switch with a functional change in their firing rate
from slow to fast signaling properties.45 In general, dysregulation
of this important developmental NMDAR subunit switch is
associated with neurological and mental disorders. Consistent
with this notion, the Pb2+ induced arrest of the NMDAR subunit
switch during brain development is associated with impaired
synaptic plasticity in the form of long-term potentiation in the
HIPP and deficits in cognitive function in the adolescent rat
brain.46,47

One of the most robust and consistent findings documented in
postmortem brain tissue from SZ subjects and in NMDAR
antagonist animal models of SZ is the loss of PVGI in the mPFC
and HIPP.48–53 PVGI are fast-spiking GABAergic inhibitory neurons
that synchronize pyramidal cell firing in the mPFC and HIPP, giving
rise to gamma oscillations that are critical for cognitive
function.54,55 Alterations in the gamma oscillations in SZ
contribute significantly to the cognitive impairments characteristic
of the disease.56,57 Consistent with this notion, genetic and
pharmacological studies in experimental animals support an
important role of the NMDAR in PVGI function. For example,
genetic ablation of the NR1 subunit of the NMDAR in forebrain
PVGI58 or the administration of NMDAR antagonists59–63 results in
the loss of PV and glutamic acid decarboxylase (GAD67), markers
for GABAergic interneurons in the rodent brain.
One functional consequence of the loss or dysfunction of PVGI

in the mPFC and HIPP is the emergence of a behavioral phenotype
consistent with diverse symptoms in SZ.34,50 Psychosis, the most
characteristic positive symptom in SZ has been linked to
subcortical dopaminergic (DAergic) hyperactivity64 and hyperac-
tivity of subcortical DAergic neurons is a consistent finding in
drug-naive SZ patients measured by PET imaging.65–68 Animal
studies have shown that excess dopamine (DA) in the striatum can
be induced by abnormal activity of pyramidal cells in the mPFC
and HIPP by reducing their GABAergic inhibitory control.69,70

Therefore, the loss or dysfunction of inhibitory PVGI control to
principal neurons in the mPFC and HIPP would be expected to
result in disinhibition of pyramidal cells, the loss of their
synchronized firing, altering the excitatory drive to midbrain
dopamine neurons increasing subcortical DAergic activity.34 On
the basis of this knowledge, we sought to determine whether
chronic developmental Pb2+ exposure (1) alters the density of
PVGI in SZ-relevant regions of the adolescent rat brain and (2)
affects subcortical dopaminergic activity.

MATERIALS AND METHODS
Animal care and animal husbandry
All animal studies were approved by the Columbia University Medical
Center Animal Care and Use Committee and have been carried out in
accordance with the Guide for Care and Use of Laboratory Animals as
stated by the U.S. National Institutes of Health. The adult female Long–
Evans rats (Charles River, Bar Harbor, ME, USA: 250 g) were fed 0 p.p.m.
(control) or 1500 p.p.m. lead acetate in the diet (RMH 1000; Dyets,
Bethlehem, PA, USA). The female rats were bred to normal Long–Evans
males and litters were culled to 10 on postnatal day 1 (PN1). Pups were
weaned on PN21 and fed the same diet as their respective dams. At
postnatal day 50 (PN50), one male rat from each control or Pb2+ exposed

litter was killed and the brain harvested for analysis. Blood Pb2+

concentrations at PN50 were measured using the LeadCare system (ESA
Laboratories, Chelmsford, MA, USA).

Antibodies
Primary antibodies against PV (1:1000; Rabbit Polyclonal, ab11427, Abcam,
Cambridge, MA, USA), Actin (1:1000; Goat Polyclonal, sc-1616, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), GAD67 (1:1000; Mouse Monoclonal,
ab26116, Abcam), calretinin (1:1000 Abcam; ab702, Abcam) and 1:1000
calbindin (1:1000; Abcam, ab11426, Abcam) were used. Goat anti-rabbit
biotinylated secondary antibody (1:200) and avidin–biotin–peroxidase
complex (1:50) solution were purchased from Vector Laboratories
(Burlingame, CA, USA). Corresponding fluorophore conjugated 10 μgml−1

Alexa Fluor 488 and Alexa Fluor 594 was purchased from Molecular Probes
(Eugene, OR, USA). Appropriate florescent secondary antibodies were
purchased for western blotting (IRDye800 and IRDye 680, LI-COR
Biosciences, Lincoln, NE, USA).

Brain tissue preparation
For immunostaining, rats were transcardially perfused with 200ml
phosphate buffer followed by 500ml of 4% paraformaldehyde in 0.1 M
phosphate buffer. Brains were removed and post-fixed for 24 h in 4%
paraformaldehyde before being cryoprotected with 30% sucrose and flash
frozen with 2-methylbutane. Brains were cut into 40-μm thick sections in
the coronal plane through the frontal cortex, striatum and HIPP using a
freezing microtome (Leica SM2000R; Leica Microsystems, Wetzlar, Ger-
many). For fresh frozen tissue, brains were harvested, rinsed in saline and
frontal cortex, HIPP and striatum dissected for western blot or the whole
brain was kept intact for quantitative receptor autoradiography studies.

Immunohistochemistry and immunofluorescence
Free-floating tissue sections were rinsed with Tris-buffered saline (TBS)
followed by pre-treatment with 0.6% H2O2 for 20min, rinsed with TBS, pre-
treated with 0.4% Triton X-100 for 45min, blocked with 5% normal goal
serum for 1 h before being incubated with PV (1:1000) for 24 h at 4 °C. After
rinsing with TBS, sections were incubated with goat anti-rabbit biotiny-
lated secondary IgG for 1 h at room temperature followed by incubation
with the avidin–biotin–peroxidase complex (1:50) for 30min. The reaction
product was visualized using 3,3’-diaminobenzidine (DAB), 0.03% H2O2

with or without 0.04% NiCl2. Sections were mounted and dehydrated
before being coverslipped using Permount media. For immunofluores-
cence, sections were incubated with the primary antibodies: PV and
GAD67 followed by incubation in corresponding flurophore-conjugated
secondary antibodies overnight at 4 °C. Sections were mounted and
coverslipped using pro-long antifade serum (Molecular Probes).

Protein harvesting and western blot
For PV, GAD67, calretinin and calbindin western blots; frontal cortex,
striatal and HIPP tissue from control and Pb2+ exposed PN50 rats were
lysed in radioimmunoprecipitation assay buffer containing 150mM NaCl,
50mM Tris, 5 mM EGTA, 1% Triton, 5% deoxycholate and 20% SDS. Western
blot membranes were incubated in the appropriate primary antibodies:
1:1000 PV (Abcam, ab11427), 1:500 GAD67 (Abcam, ab97739), 1:1000
calretinin (Abcam, ab702), 1:1000 calbindin (Abcam, ab11426) and 1:1000
Actin (Santa Cruz Biotechnology, sc-1616) diluted in blocking solution
overnight at 4 °C. The membranes were visualized using the Odyssey
imaging system (LI-COR). Integrated intensity of the protein of interest was
normalized to β-actin levels from the same blot.

Stereological cell counting of parvalbumin-positive cells
All slides were coded and the experimenter was masked for cell counting.
Boundaries for primary motor cortex (M1), mPFC (including the infralimbic,
prelimbic and cingulated regions), caudal, middle and rostral areas of the
striatum and the dentate gyrus, CA1, CA2, CA3 and CA4 regions of the
pyramidal cell layer of the HIPP were defined using a × 4 objective lens. All
PVGI within the outlined areas were counted using a × 40 oil immersion
lens on an Olympus BX51 Microscope using Visiopharm software
(Hoersholm, Denmark). Cell density (Nv) was calculated using the
equations published in Dorph-Petersen et al.71
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Locomotor activity measurement and drug-dosing paradigm
At PN50, control or Pb2+ exposed rats were placed into one of three
experimental groups for the administration of saline, 5 mg kg−1 or 15
mg kg−1 cocaine–HCL. Before injection, all the rats were placed in an
automated activity chamber (Digiscan Animal Activity Monitor, Omnitech
Electronics) and locomotor activity was recorded for 60min to allow for
behavioral habituation. After 60min had elapsed, the rats were
administered a single intraperitoneal injection of saline, 5 mg kg−1

cocaine–HCL or 15mg kg−1 cocaine–HCL before being placed back in
the activity chamber for an additional 60 min to monitor locomotor
activity. Total distance traveled was measured.

High-performance liquid chromatography analysis of dopamine
and metabolites
Rat striatum was sonicated in 500 µl of 0.1 N perchloric acid before being
centrifuged at 14 000 r.p.m. for 20min at 4 °C according to the method of
Sheleg et al.72 The pellets were dried overnight at 30 °C and the
supernatants were filtered through 0.22-μm filters before being injected
onto an high-performance liquid chromatography with electrochemical
detection (Waters, Milford, MA, USA) for neurochemical analysis of DA and
its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA). The components were separated on a cation exchange column
CMD-150 X 3.2 column; ESA Biosciences, Chelmsford, MA, USA) using an
isocratic mobile phase (CMD-TM mobile phase; ESA Biosciences) including
2.2 mM NaCl pumped at a constant flow rate of 0.5 ml min−1. DA, DOPAC
and HVA were quantified by electrochemical detection using a glossy
carbon-working electrode with a 2.0-mm diameter in situ silver reference
electrode (flow cell, 2 mm GC WE, ISAC, Waters). Dried pellets were
sonicated and dissolved in a final concentration of 0.1 N NaOH and the
protein concentration for each sample was determined using a
bicinchoninic acid assay reagent kit (Pierce, Rockford, IL, USA) and
measured on a Spectramax microplate reader (Molecular Devices,
Sunnyvale, CA, USA). Data are expressed in ng per mg of protein.

D2-dopamine receptor (D2R), dopamine transporter (DAT) and
vesicular monoamine transporter-type 2 (VMAT-2) quantitative
autoradiography
Fresh-frozen brains were sliced at 20-micron thickness on a cryostat (Leica
Biosystems) and mounted on poly-L-lysine-coated slides, and stored at
− 20 °C until used for quantitative receptor autoradiography.

D2R autoradiography
Tissue slides were incubated in 3 nM [3H]-Raclopride in Tris-HCl buffer (pH
7.4) for 30min at room temperature for total binding. Nonspecific binding
was determined in the presence of 10 μM haloperidol (D2R antagonist). The
slides were then washed three times in buffer at 4 °C for 1 min, and then
quickly dipped in dH20 at 4 °C and left to dry overnight.

VMAT-2 autoradiography
Tissue slides were pre-washed in 20mM HEPES-sucrose buffer for 15min at
room temperature. For total binding, slides were incubated in HEPES-sucrose
buffer containing 7.5 nM [3H]-dihydrotetrabenazine (DTBZ) for 1 h. Non-
specific binding was determined by adding 2 μM unlabeled DTBZ. The slides
were then washed three times in Tris-HCl-sucrose buffer for 5min at room
temperature, and quickly dipped in dH20 at 4 °C and left to dry overnight.

DAT autoradiography
Tissue slides were pre-washed in 50mM Tris-HCl buffer for 20min at room
temperature. For total binding, slides were incubated in Tris-HCl buffer
containing 5 nM [3H]-Win 35 428 for 90min at room temperature.
Nonspecific binding was determined by adding 2 μM GBR-12909 (DAT
antagonist). The slides were then washed three times in buffer at 4 °C for
5 s, and quickly dipped in dH20 at 4 °C and left to dry overnight.
After drying, D2R, VMAT-2 and DAT slides were apposed to KODAK

BioMax MR film, MR-1, along with [3H]-Microscales (Amersham, Arlington
Heights, IL, USA), for 6–7 weeks. Reference standards were included with
each film to ensure linearity of optical density and to allow quantitative
analysis of the images. Images were captured, digitized and optical density
was quantified (MCID, InterFocus Imaging, Cambridgeshire, UK). All
autoradiography for D2R, VMAT-2 and DAT was conducted using slides
of coronal brain sections that represented the following areas: rostral

striatum (Bregma 1.60mm), middle striatum (Bregma −0.26mm), caudal
striatum (Bregma −0.92mm), nucleus accumbens core and nucleus
accumbens shell (Bregma 1.60mm). A rat brain atlas was used to define
distinct striatal regions (The Rat Brain in Stereotaxic Coordinates, 4th
edition). Imaging software in MCID was used to delineate and measure
binding intensity in the different regions of the striatum.

Statistical analysis
To examine treatment effect defined as mean difference between specific
treatment groups, we calculated mean and s.e.m. for region-specific PVGI
by treatment group, and used two-sample t-test to detect treatment
group difference in PVGI density in specific brain regions. Brain dopamine
and metabolite concentrations were analyzed using a two-sample t-test to
detect treatment group differences between control and Pb2+ exposed
samples. Size of treatment effect was documented by Cohen’s d. To adjust
P-values for multiple tests, Holm’s Bonferroni step-down method was used.
The same statistical analysis was performed with SAS software 9.3 for the
treatment effect in the quantitative receptor autoradiography results.
Locomotor data were analyzed using a two-way analysis of variance.

RESULTS
Blood lead levels and body weight of rats
As previously described by us, this Pb2+ exposure paradigm does
not produce an overt toxic effect on the body weight as we did
not find a significant effect of the chronic Pb2+ exposure of the
body weight of rats at PN50. That is, the body weight of control
rats was 336 ± 13 g (mean± s.e.m.; n= 30) and Pb2+ exposed rats
body weight was 313± 11 g (mean± s.e.m.; n= 30; P= 0.2). At
PN50, the resulting blood Pb2+ levels in these animals was
22.2 ± 0.9 μg dl−1 (n= 47) for Pb2+ exposed rats and 0.6 ± 0.1
μg dl−1 (n= 64) for control rats, a difference that was highly
significant (Po0.0001).

Identification and stereological cell counting of
parvalbumin-positive GABAergic interneurons in the rat brain
Immunofluorescent double-label confocal imaging of PV and
GAD67 showed that PV co-labeled with GAD67, but not all GAD67-
labeled neurons co-labeled with PV, consistent with the fact that
only a fraction of the total pool of GABAergic interneurons has a
PV phenotype (Figure 1b). Stereological cell counting of PVGI was
performed in the mPFC and in the primary motor cortex (M1;
Figures 1a, c and d). In the M1, stereological cell counting
indicates a significant treatment effect (P= 0.014) with the density
of PVGI in M1 being significantly lower in Pb2+ treated rats relative
to controls. The mean± s.e.m. density of PVGI in control animals
was 5342 ± 401 cells mm−3 (n= 6) and 3442 ± 502 cells mm−3

(n= 6) in Pb2+ treated animals (35.6% reduction; Figure 1d). We
also observed a significant (P= 0.005) decrease in the density of
PVGI in the mPFC of Pb2+ animals relative to controls (Figures 1c
and d). The mean ± s.e.m. density of PVGI in the mPFC of control
animals was 9938 ± 584 cells mm−3 (n= 6); and 6432 ± 636 cells-
mm−3 (n= 6) in Pb2+ exposed animals (35.3% reduction). Western
blots of frontal cortex tissue confirmed the cell counting results as
we observed a significant decrease (20.6%) in PV (control: n= 4;
Pb2+: n= 5; P= 0.035) and GAD67 protein PV (25.8% decrease;
control: n= 4; Pb2+: n= 5; P= 0.035) in Pb2+ treated animals relative
to controls (Figure 2).
To determine whether Pb2+ exposure affected PVGI density in

other brain regions relevant to SZ, we performed stereological cell
counting in the striatum and in the pyramidal and granule cell
layers of the HIPP. In the HIPP, when pyramidal and granule cell
layer cell counts were combined, there was an overall (total) Pb2+

treatment effect on mean PVGI density that was statistically
significantly different relative to controls (P= 0.0004). The mean±
s.e.m. density of PVGI in the HIPP of control animals was
3072 ± 101 cells mm−3 (n= 7) and 2064 ± 181 cells mm−3 (n= 7)
in Pb2+ animals (32.8% reduction; Figures 3b and c). The
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examination of different HIPP subregions showed that the overall
Pb2+ treatment effect on PVGI density was driven by a highly
significant change in the CA3 region (P= 0.0032), with marginal
changes in the CA2 region (P= 0.085; Figure 3c). In addition, the
levels of PV (P= 0.041, 11% reduction) and GAD67 (P= 0.004, 31%
reduction) protein measured by western blot were significantly
reduced in the HIPP from Pb2+ treated rats relative to controls,
confirming the cell counting results (Figure 2).
In the striatum, PVGI density count was performed in the rostral,

middle and caudal aspects of the striatum and these regions were
averaged as the whole striatum (Figure 4c). The mean ± s.e.m.
density of PVGI in the whole striatum from control animals was
716 ± 43 cells mm−3 (n= 9) and 612± 26 cells mm−3 (n= 7) in Pb2+

animals (Figure 4c). The differences in the striatum as a whole
were not significantly different (P= 0.057). However, analysis of the
rostral, middle and caudal aspects of the striatum individually
revealed that the greatest effect of Pb2+ was in the caudal aspects
of the striatum where a highly significant decrease in PVI density
was observed (P= 0.014; Figure 4c). The mean± s.e.m. density of
PVGI in the caudal striatum of control animals was 676 ± 56
cells mm−3 (n= 9) and 460± 24 cells mm−3 (n= 7) in Pb2+ treated
animals representing a 32% reduction in PVGI density (Figure 4c).
Similar to the frontal cortex and HIPP, we found significantly lower
levels of PV (P= 0.0039, ~27% reduction) and GAD67 (P= 0.0033,
~22% reduction) protein in the striatum of Pb2+ animals compared
with controls by western blot (Figure 2).

Figure 1. Parvalbumin-positive cell density in the primary motor cortex (M1) and medial prefrontal cortex (mPFC) of control and Pb2+ treated
rats. (a) Rat atlas depictions of frontal cortex regions traced in green and used for PVGI cell counting. (b) Parvalbumin-positive interneurons
(PV, green) in the mPFC co-labeled with GAD67 (red). However, not all GAD67-labeled cells co-labeled with PV consistent with the fact that
only a portion of GABAergic interneurons are PV positive. Arrowheads point to PV and GAD67 co-labeled cells. Arrows point to GAD67-
positive cells that do not co-label with PV. (c) Representative fluorescence confocal images of PVGI from control and Pb2+ treated animals. (d)
PVGI cell density was significantly lower in M1 and mPFC of Pb2+ animals compared with controls. Data are represented as the mean± s.e.m.
*, significantly different from control. PVGI, parvalbumin-positive GABAergic interneurons.
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Subcortical dopaminergic activity and D2-dopamine receptor
levels in the striatum
The loss or dysfunction of PVGI in the mPFC and HIPP has
been shown to affect subcortical DA system activity.34,50,69,73

Therefore, to determine whether Pb2+ exposed animals expressed
functional subcortical DAergic system changes, we administered
cocaine to control and Pb2+ exposed animals and measured
their locomotor response. Cocaine is a psychostimulant that
enhances synaptic DA levels by blocking DAT in the striatum.74

Locomotor activity (total distance traveled) was measured
for 60 min in control and Pb2+ exposed rats before and after
saline or a low (5 mg kg−1) or high (15 mg kg−1) intraperitoneal
cocaine dose.
Figure 5a shows that Pb2+ exposed animals had an increased

locomotor response to cocaine (saline: 731 ± 82 cm, n= 14; 5
mg kg−1: 1750 ± 366 cm, n= 11; 15mg kg−1: 5786 ± 531 cm, n= 23)
compared with control animals (saline: 655 ± 116 cm, n= 11; 5
mg kg−1: 802 ± 144 cm, n= 10; 15 mg kg−1: 3192 ± 529 cm, n= 18)
(drug dose main effect: F(2,81) = 36.25, Po0.001; Pb2+ dose main
effect: F(2,81) = 9.470, P= 0.002; interaction: F(2,81) = 3.54,
P= 0.03). It should be noted that at all doses of cocaine, the
locomotor response of Pb2+ exposed animals was significantly

higher than controls. Further, the 5 mg kg−1 dose of cocaine did
not elicit a locomotor response in control animals, whereas it had
a robust locomotor response in Pb2+ exposed animals (Figure 5a).
The data indicate that Pb2+ exposed rats express a functionally
hyperactive subcortical DAergic system.
A hallmark feature of SZ is increased levels of D2R and increased

DA release in the striatum. To assess the effect of Pb2+ exposure
on these DAergic markers, we performed quantitative receptor
autoradiography using the D2R ligand [3H]-raclopride and high-
performance liquid chromatography with electrochemical detec-
tion of DA and metabolites in the striatum. We found significantly
higher concentrations of the DA metabolites DOPAC (208%
increase; P= 0.0009) and HVA (146% increase; P= 0.016) in the
striatum of Pb2+ exposed rats relative to controls (Figure 5b),
whereas DA (P= 0.089), DOPAC/DA (P= 0.099) and HVA/DA
(P= 0.099) ratio did not reach statistical significance after adjusting
for multiple comparisons (Figure 5b). Our results also revealed that
Pb2+ animals had an overall higher level of [3H]-raclopride-specific
binding in the striatum (averaged dorsal and ventral striatum)
than control rats (P= 0.0242; Figure 5d). The mean± s.e.m. of [3H]-
raclopride-specific binding in the striatum of control animals was
53.1 ± 1.9 fmol mg−1 tissue (n= 7) and 58.7 ± 0.4 fmol mg−1 tissue
(n= 6) for Pb2+ exposed animals. This change represents a 10.5%
increase in the level of total striatal D2R (Figure 5d). A regional
assessment of [3H]-raclopride binding to D2R between control and
Pb2+ exposed animals showed that the largest effect of Pb2+

exposure on D2R levels occurred in the rostral aspects of the
dorsal striatum (control: 55.0 ± 2.0 fmol mg−1 tissue (n= 7), Pb2+

exposed: 63.3 ± 1.8 fmol mg−1 tissue (n= 7); P= 0.0494) represent-
ing a 15% increase. Together, these findings indicate that chronic
developmental Pb2+ exposure results in a hyperactive DAergic
system. We should also note that these effects of Pb2+ on the
cocaine-induced locomotor response and dopamine markers
occurred in the absence of a change in DAT and VMAT-2 levels
as measured by quantitative receptor autoradiography
(Supplementary Figure 1).

DISCUSSION
In the present study, we show for the first time that chronic
developmental exposure to Pb2+ results in the loss of PVGI cell
density in the mPFC, HIPP and striatum, brain regions that have
been implicated in SZ. Further, the loss of PVGI is associated with
hyperactivity of the subcortical DAergic system, features that are a
hallmark of SZ. The effect of Pb2+ exposure on PVGI cell density
loss appears to be selective to the PV phenotype as the regional
expression of calretinin or calbindin protein, markers for other
GABAergic interneuron types, were not affected in the same
animals (Supplementary Figure 2). Together, our findings suggest
that the Pb2+ induced decrease in GAD67 protein that we have
documented in the rat brain is the result of a specific insult
on PVGI.
The decrease of PVGI cell density in the frontal cortex, HIPP and

striatum of Pb2+ exposed animals ranges from ~32.0 to 35.6%
relative to controls and is consistent with what has been observed
in postmortem brain tissue from SZ subjects and in NMDAR
antagonist animal models of SZ. That is, in postmortem frontal
cortex and HIPP tissue from SZ subjects, reductions in PV and
GAD67 gene and protein expression range in the order of 31–60%
decrease,48,49,75–79 with no significant effect on calretinin
interneurons.48,77,80 Similarly, studies using NMDAR antagonist
drugs in rodents have duplicated the PV/GAD67 deficits observed
in the SZ brain. For example, repeated subanesthetic doses of
ketamine decreases the number of PVGI in the CA1–CA3 regions
of the pyramidal cell layer by 34% and in the dentate gyrus of the
HIPP by 44%.60 Prenatal61 and postnatal exposure81 to another
NMDAR antagonist, (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-
dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), decreases

Figure 2. Parvalbumin (PV) and GAD67 protein expression in the
frontal cortex (FrCtx), hippocampus (Hipp) and striatum (Str).
Western blot revealed a significant reduction in PV (a) and GAD67
(b) protein expression in the frontal cortex (PV: 20% reduction,
P= 0.04, GAD67: 20% reduction, P= 0.04), hippocampus (PV: 15%
reduction, P= 0.04, GAD67: 35% reduction, P= 0.003) and striatum
(PV: 20% reduction, P= 0.003; GAD67: 25% reduction, P= 0.003) of
Pb2+ treated rats (n= 5) relative to controls (n= 4). Integrated
intensity of the protein of interest was normalized to β-actin levels
from the same blot and compared with controls and represented as
a percentage. Data are presented as the mean± s.e.m. *, significantly
different from control.
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the density of PVGI in the prefrontal cortex and HIPP of young
adult rats by ~32%61 and 31–38%,81 respectively. Another study
using phencyclidine-treated neonatal rats also found a 20% loss of
PVGI in the mPFC.63 The percent change in PVGI cell loss in these
NMDAR antagonist animal models of SZ are consistent with the
percent loss in the present study. Finally, Sadikot et al.82 reported
that the density of PVGI is decreased in the mature striatum when
the NMDAR antagonist MK-801 is administered during the
proliferation period (embryonic days 15–18) of PVGI, but observed
no effect on striatal PVGI cell number if the MK-801 was
administered immediately after their proliferation period (embryo-
nic days 18–21). These findings suggest that NMDAR-mediated
glutamatergic transmission has a key role in the development of
PVGI. Together, they indicate that NMDAR antagonists adminis-
tered at different periods of brain development result in the loss
of PVGI markers in the mPFC, HIPP and striatum, consistent with
SZ being a disease of neurodevelopment. It is striking that the
brain regional change and magnitude of the PVGI loss in Pb2+

exposed animals in the present study is similar to those described
in postmortem brain samples from SZ subjects and in NMDAR
antagonist animal models of SZ.

What are putative mechanism(s) by which early-life Pb2+ exposure
results in the loss of PVGI?
Previous work has shown that Pb2+ is a potent antagonist of the
NMDAR and that chronic exposure to Pb2+ in early life alters the
ontogeny of NMDAR subunits, with selective reductions in NR1
and NR2A subunit gene and protein expression in the adolescent
rat brain.46,83 These findings are relevant because genetic deletion
of the NR1 subunit from forebrain PVGI shortly after birth results in
the loss of PV and GAD67 in the same PVGI in which the NR1

subunit was deleted, and these animals express a behavioral
phenotype consistent with SZ.58 The same study also showed that
the deletion of the NR1 subunit in forebrain PVGI after
adolescence did not produce the same abnormalities, indicating
the importance of the insult occurring in early life. Notably, in early
development, PVGI exhibit higher level of NR2A–NMDAR
complexes84,85 with increased sensitivity to NMDAR antagonists
than pyramidal cells86,87 and NR2A-containing NMDAR are
essential for the maintenance of PV and GAD67 protein in cultured
PVGI.84 Therefore, NMDAR complexes expressed on PVGI appear
to be more vulnerable to a developmental insult than pyramidal
cells. This is consistent with studies indicating that the NR2A
subunit of the NMDAR is decreased in PVGI in the SZ brain76,88 and
in animals exposed to the NMDAR antagonist, MK-801.88 Other
evidence shows that chronic blockade of NR2A–NMDAR, but not
NR2B–NMDAR complexes during development decreases PVGI
density and selectively impairs inhibitory transmission from fast-
spiking PVGI.89 Thus, the most parsimonious explanation for why
Pb2+ exposure during brain development results in the loss of
PVGI is that NMDAR hypoactivity induced by Pb2+ inhibition
results in a selective decrease of NR2A–NMDAR complexes on
PVGI, reducing synaptic NR2A–NMDAR downstream signaling,
leading to a loss of PVGI.84

Loss of corticolimbic and hippocampal parvalbumin-positive
GABAergic interneurons results in a hyperactive subcortical
dopaminergic system
As previously noted, the loss of PVGI in the frontal cortex and HIPP
results in disinhibition of pyramidal cells and the loss of their
synchronized firing, altering the activity of midbrain DAergic
neurons.34

Figure 3. Parvalbumin-positive cell density in control and Pb2+-treated rats in the hippocampus. (a) Representative areas used for PVGI cell
counting in the pyramidal CA1 (green), CA2 (blue), CA3 (red), CA4 (yellow) subregions and granule cell layer of the dentate gyrus (DG; purple).
(b) Confocal imaging of immunofluorescence labeled PVGI in the CA1, CA3 and dentate gyrus. (c) PVGI cell density in the pyramidal and
granule cell layers of the dorsal hippocampus. Bar designated total was the average of all hippocampal subregions. Data are represented as
the mean± s.e.m. *, significantly different from control.
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To assess whether Pb2+ exposed animals also expressed altered
subcortical DAergic activity, we administered saline or cocaine
(intraperitoneal; 5 or 15 mg kg−1 body weight) to control and Pb2+

exposed animals and measured their locomotor response as a
functional readout of subcortical DAergic activity. Our results
revealed that the locomotor response to cocaine administration
was significantly higher in Pb2+ exposed animals relative to
controls (Figure 5a), indicative of a hyperactive DAergic system.
On the basis of the locomotor response of Pb2+ exposed animals
to cocaine administration, we hypothesized that DA system
markers were likely to be altered by Pb2+ exposure and we
measured striatal levels of DA, DOPAC, HVA and D2R. Quantitative
receptor autoradiography using the D2R ligand [3H]-raclopride
revealed that Pb2+ exposed animals expressed a significant
increase in D2R levels in the striatum (Figure 5d). The magnitude
of the increase of D2R in the striatum of Pb2+ exposed animals is
similar to what has been observed in the striatum of SZ patients90

and in a DISC1 rodent model of SZ.91

Analysis of DA and metabolites revealed increased levels and
the DA metabolites HVA and DOPAC in the striatum (Figure 5b).
This finding is consistent with an in vivo electrochemical study

showing dopamine overflow in the nucleus accumbens of rats
exposed to similar levels of Pb2+ as in the present study.92 No
significant changes were measured for striatal DAT and VMAT-2 in
Pb2+ exposed rats relative to controls indicating that the increased
locomotor response to cocaine was not due to the changes in DAT
or VMAT-2 (Supplementary Figure 1). Together, our results provide
evidence of increased striatal metabolites indicative of increased
DA turnover and increased D2R levels. These findings resemble
those found in the brain of SZ subjects using PET and SPECT
imaging.93

In summary, animals chronically exposed to environmentally
relevant levels of Pb2+ during brain development express three
key features that are observed in SZ: (1) the loss of PVGI in brain
regions relevant to SZ pathology, (2) subcortical DAergic
hyperactivity and (3) increased levels of D2R in the striatum. The
current findings combined with previous studies showing impair-
ments of hippocampal long-term potentiation,46 adult neurogen-
esis in the HIPP,94 prepulse inhibition of the startle response95 and
cognitive function46,47,96 in similarly Pb2+ exposed and age-
matched animals are consistent with what has been observed in
the SZ brain and in NMDAR antagonist animal models of SZ.

Figure 4. Parvalbumin-positive cell density in the striatum of control and Pb2+ exposed rats. (a) Representative striatal regions used for PVGI
cell counting (rostral, middle and caudal). (b) Immunofluorescence confocal imaging of PVGI in the caudal striatum from control and Pb2+

exposed animals. (c) PVGI cell density results for the striatum. While there was no overall effect of Pb2+ in the whole striatum when rostral,
middle and caudal regions were averaged, we observed a significant decrease of PVGI in the caudal striatum of Pb2+ animals relative to
controls when regions were analyzed individually. Data are represented as the mean (cells)± s.e.m. *, significantly different from control.
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Last, our findings have translational implications to humans
because the Pb2+ exposure paradigm and the resulting levels of
Pb2+ in the blood of adolescent rats used in the present study are
relevant to the blood Pb2+ levels that have been measured for
decades in a significant percentage of children not only in the
United States (http://www.cdc.gov/nceh/lead/data/StateConfir
medByYear1997-2001.htm), but also worldwide.41,97 Consistent
with this notion, recent estimates by the World Health Organiza-
tion indicate that Pb2+ exposure accounts for 0.6% of the global
burden of disease and contributes to ~600 000 new cases of
children with intellectual disabilities every year (http://www.who.
int/ipcs/lead_campaign/en/). Further, data from the National
Health and Nutrition Examination Survey (NHANES) indicate that
~1% of women of childbearing age (15–44 years) in the United
Sates have blood Pb2+ levels that are equal or greater than the
current Center for Disease Control (CDC) level of concern (http://
www.cdc.gov/nceh/lead/publications/leadandpregnancy2010.
pdf). Therefore, a significant percentage of children worldwide
continue to be at risk for neurodevelopmental problems resulting
from Pb2+ exposure during critical periods of brain development
and these effects may contribute significantly to mental disorders
across the lifespan.
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