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Abstract: This paper presents an algorithm for segmentation and shape analysis of erythrocyte
images collected using an optical microscope. The main objective of the proposed approach is to
compute statistical object values such as the number of erythrocytes in the image, their size, and
width to height ratio. A median filter, a mean filter and a bilateral filter were used for initial noise
reduction. Background subtraction using a rolling ball filter removes background irregularities.
Combining the distance transform with the Otsu and watershed segmentation methods allows for
initial image segmentation. Further processing steps, including morphological transforms and the
previously mentioned segmentation methods, were applied to each segmented cell, resulting in an
accurate segmentation. Finally, the noise standard deviation, sensitivity, specificity, precision, negative
predictive value, accuracy and the number of detected objects are calculated. The presented approach
shows that the second stage of the two-stage segmentation algorithm applied to individual cells
segmented in the first stage allows increasing the precision from 0.857 to 0.968 for the artificial image
example tested in this paper. The next step of the algorithm is to categorize segmented erythrocytes to
identify poorly segmented and abnormal ones, thus automating this process, previously often done
manually by specialists. The presented segmentation technique is also applicable as a probability map
processor in the deep learning pipeline. The presented two-stage processing introduces a promising
fusion model presented by the authors for the first time.

Keywords: image segmentation; erythrocytes; red blood cells; Otsu; watershed

1. Introduction

Red blood cell (RBC) images studied in this paper were obtained using an optical
microscope. Optical microscope imaging is widely used in life sciences because of its
simplicity, affordability and excellent capabilities in that field of study. Modern optical
microscopes are often equipped with a digital camera to gather digital images of the
studied structures. For example, erythrocytes whose radius is in the range of 6–8 µm are
often studied using an optical microscope equipped with magnification capable of imaging
structures of that size to count the number in a given volume, measure the size of red
blood cells and evaluate their shape. Methods capable of automating tasks could save a
considerable amount of time wasted for analysing optical microscope images by hand.

The goal of the presented algorithm is to address that problem by proposing an
approach for red blood cells images segmentation captured using optical microscope. The
algorithm is capable of separating even erythrocytes which are close to each other and
calculate the width to height ratio for each of them. Another goal is to show how the
proposed algorithm can cooperate with CNN. The presented algorithm allows to increase
the precision of segmentation in comparison with one of the state-of-the-art approaches
(distance map and watershed algorithm combination) with cost of increased computational
complexity. Authors present approach giving good results when big labelled dataset for
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training is not available and could be used as probability map processor in deep learning
pipeline. Deep learning model is another state-of-the-art approach. The limitation of this
approach is the need for a sufficiently large dataset to train the model. Our approach is a
good choice when large data set is not available. It also gives slightly better segmentation
precision compared with another state-of-the-art method mentioned earlier, again due to
computational complexity.

An approach utilizing the deep learning model as the authors’ classical algorithm
pipeline results classification tool was also given. The authors’ algorithm is applicable
in scientific research when the automatic calculation of erythrocytes’ number and shape
are required.

Background

The main difference between the algorithms is the segmentation methods used when
performing the study. Segmentation is one of the most important steps when processing
images, especially medical images. Most segmentation algorithms are based on examining
differences in brightness of individual pixels in an image, or combining similar pixels
into groups, or using algorithms based on artificial intelligence [1,2]. In the case of the
algorithm we are considering, segmentation is based on separating erythrocytes from other
blood components by combining the distance transform with the Otsu thresholding and
watershed algorithm.

In the literature, works related to erythrocyte segmentation are based on two con-
ceptions. The first is segmentation using image analysis whilst the second is based on
neural networks. For comparison purposes, three representative segmentation algorithm
examples were selected. The third algorithm (U-net neural network) could be considered
as one of the best methods for segmentation tasks. When trained on an adequate sized
learning set, it gives good results [3].

The first algorithm uses image processing to find and mark erythrocytes infected by
malaria [4]. The presented algorithm is using an edge-based algorithm for segmentation
purpose. The authors examine both noise removal algorithms and traditional edge-based
segmentation methods. The decision support system has been created and shown in this
article. The following steps have been taken to achieve that goal: colour space translation,
illumination correction, noise reduction, edge enhancement, fuzzy C-means clustering
method (FCM method), connected component analysis and minimum perimeter polygon
method (MMP method) (Figure 1). The final image obtained using this algorithm shows
the edge of diseased erythrocytes.

Figure 1. The flowchart of segmentation of malaria parasite infected erythrocytes.

The second of the chosen segmentation algorithms presented in the paper concerns
the segmentation of leukocytes and erythrocytes in blood smears. The pixel-wise classi-
fication has been combined with template matching algorithm locate and segment cell
contours of leukocyte and erythrocyte regions. The presented algorithm explicitly deals
with Gumprecht’s shadow problem, which is related to squashed leukocytes with hard to
identify borders. This algorithm shows a similar approach to the segmentation algorithm
presented in this paper. For edge-preserving, an image smoothing non-linear Kuwahara
filter was used [5]. The algorithm uses an HSI (hue, saturation, intensity) image for colour
normalisation and binarization for foreground extraction. To find erythrocytes, localization
template matching is used (Figure 2).
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Figure 2. The flowchart of the erythrocyte and leukocyte segmentation method.

Both of these algorithms are based on image analysis. The third algorithm is based
on a convolutional neural network with U-Net architecture [6,7]. This type of algorithm is
used widely for the segmentation of biomedical images such as damaged tissue detection
and segmentation in Ki-67 brain tumour specimens [8]. The architecture used makes it
possible to get precise segmentation even with very few training images. In this approach,
a standard contracting network is combined with successive layers where max pooling
was replaced by upsampling, creating a characteristic u-shaped architecture (Figure 3).
Other types of artificial neural network architectures perform well in biomedical image
segmentation [9].

Figure 3. U-net architecture. The number of channels is denoted above each box.
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2. Methods Used

An algorithm (Algorithm 1) was created that allows segmentation of erythrocytes in
the image. The algorithm is divided into eight steps: noise removing, background subtrac-
tion, distance map, initial segmentation, morphological erosion, morphological dilation,
segmentation and contour extraction with long and short axis calculation (Figure 4).

Figure 4. Diagram of proposed algorithm.

Algorithm 1 Authors’ algorithm
Input: Microscopic erythrocytes image 16-bit depth.
Output: Image containing contours and axis of erythrocytes.
1: Convert image to Grayscale.
2: Apply Mean filter (radius r = 1).
3: Apply Background subtraction using rolling ball algorithm (radius r = 100).
4: Noise Removing (Algorithm 2)
5: Initial segmentation (Algorithm 3)
6: Individual cell processing (Algorithm 4)
7: Combining individually processed erythrocytes contours and axes with original image.
8: return result

2.1. Removing Noise

Removing noise is an important step in segmentation tasks. In our approach, the
initial filtering step is composed of two stages. Firstly, a median filter is used to remove
noise containing bright spots and then a mean filter is used to additionally smooth the
image. A bilateral filter is used to preserve the erythrocyte edges.

2.1.1. Median Filter Application

Median filtering is one of the nonlinear image processing methods. In this technique,
for each image pixel, a median value is calculated for a given neighbourhood. The calcu-
lated value replaces the considered pixel in the filtered image. If it can be assumed that
a spot with brighter or darker pixels is noise, then a median filtering technique is a good
choice to remove that kind of noise [10–12]. For example, if we look at a 3 × 3 filter mask
then nine pixels are considered. Assuming the neighbouring values of pixels are 90, 90, 90,
90, 90, 90, 90, 90, 225, then, after using a median filter (Equation (1)), the new value is 90.
Spot noise is removed without influencing the considered pixel value after filtration. If a
mean filter is applied instead, then the new value becomes 105, which is more influenced
by spot noise.

h(x, y) = median
(s,t)∈Sxy

{g(s, t)} (1)

where:

• h(x, y)—calculated median of the values in the s * t area of the original image;
• g(s, t)—area of original image with center in point (x,y);
• Sxy—set of coordinates under mask of size m * n.
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2.1.2. Application of Bilateral Filter

A bilateral filter is a technique which is applied when noise should be removed while
keeping the edges intact. This is the advantage of this method over simple Gaussian
smoothing. This method uses convolution with a Gaussian kernel with the weighted
average of pixels in the given neighbourhood (Equation (2)). This method differs from
simple Gaussian filtering because, in addition to the spatial weight dependencies, the
distance between pixels in the intensity range is also considered [13,14]. If the difference
in luminescence values between the two considered pixels is negligible, the operation
applied on them is similar to the application of a Gauss filter. The smaller the difference in
luminescence, the less significant the degree of application of the filter becomes. A detailed
description was published by authors in the earlier article [15]. Equation (3) presents how
the filtered image is created.

B[I]p =
1

WpB
∑
q∈S

Gδs(||p− q||)Gδr (||Ip − Iq||)Iq (2)

where normalization factor is equal:

WpB = ∑
q∈S

Gδs(||p− q||)Gδr (||Ip − Iq||) (3)

and :

• Gδs —spatian domain Gaussian
• δs and δr—measures of image filtering
• I—input image
• p and q—distance parameters

2.2. Background Subtraction

Background subtraction is a method used for obtaining an even distribution of back-
ground values across an image. The algorithm uses a spherical or some other differently
shaped structural element, which moves on the surface resulting from the treatment of the
image as a three-dimensional plot, where the image dimensions and the pixel value form
its axes. While moving on this surface, the structural element cannot penetrate the narrow
peaks so that the background profile can be defined for all pixels in the image and then
subtracted from the image [16,17]. The background subtraction method is presented in
Figure 5.

(a)

Figure 5. Cont.
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(b)

Figure 5. Background subtraction: Image fragments with corresponding intensity profiles plot. Image (a) present results
before background subtraction and (b) after background subtraction.

2.3. Distance Map

The distance map (Figure 6) method calculates the Euclidean distance to the back-
ground for each foreground (object pixel). Background pixels becomes white and object
pixels are darker with increasing distance to the background [10,18].

(a) (b)

Figure 6. Example of a binary image (a) and its distance map (b).

2.4. Segmentation
2.4.1. Otsu Segmentation

Otsu segmentation is a fast and robust method that gives good results for images with
objects well separated from the background. The high speed of the algorithm is achieved
thanks to using a histogram to calculate thresholds. First the histogram is computed,
then the algorithm finds the threshold that minimises the weighted within-class variance
which is equal to the maximising between-class variance. One or more thresholds could be
calculated. Finally, the image is segmented using the computed thresholds [19,20].

2.4.2. Watershed Segmentation

In the watershed segmentation algorithm, a two-dimensional monochrome image
is considered as a three-dimensional map where the third dimension is pixel intensity.
Higher intensity values correspond to ridges and lower values correspond to valleys. The
algorithm performs a flooding operation. An imaginary water level rises and floods the
valleys around local the minima called catchment basins. When catchment basins are about
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to overflow in the next flooding step, a dam on its surrounding ridge is built to prevent the
basins merging [10,21].

3. The Proposed Methodology

The erythrocyte images analysed in this article are processed after conversion to
grayscale. The difficulties in this segmentation task are noise, uneven background and
the fact that sometimes objects are not well separated. For a better uneven background
visualisation, window/level transformation was applied (Figure 7).

(a) (b)

Figure 7. Original grayscale image (a), image after window/level transformation applied (b).

3.1. Initial Processing and Segmentation

Fiji implementation [17] of background subtraction based on a rolling ball algo-
rithm [16] performs very well for those images which spot erythrocyte objects on a homo-
geneous but uneven background. After background subtraction, succeeding filtering steps
were performed using Insight Segmentation and Registration Toolkit (ITK) implementa-
tion [22] (Algorithm 2). A median filter (Figure 8b) and then a mean filter (Figure 8c), and
finally a bilateral filter (Figure 9) are applied.

Algorithm 2 Noise Removing
Input: Preprocessed image.
Output: Noise removed image.
1: Apply median filter (mask radius = 4).
2: Apply mean filter (mask radius = 3).
3: Rescale image to 8-bit depth.
4: Bilateral filter (domain sigma (σd = 3), range sigma (σr = 3))
5: return result

(a) (b) (c)

Figure 8. Noise removal: original image (a), after median filter (b), after median and mean filters
applied (c).
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Figure 9. Image after bilateral filter applied.

Otsu segmentation (ITK implementation [22]) was performed on the filtered image
to obtain initial segmentation (Figure 10a, Algorithm 3). Holes in segmented objects
were filled using ITK fill holes implementation [22–24] (see (Figure 10b).Then the distance
map image was obtained from the slightly eroded (ITK implementation [22], Figure 8a)
segmented image using an ITK algorithm [22] with a slightly modified output that produces
an image with white background and decreasing values with increasing distance of objects
pixels from the background (Figure 11b).

Watershed segmentation (ITK implementation [22]) applied to the distance map image
allows for an initial segmentation of erythrocyte objects, even those not separated after
initial Otsu segmentation (Figure 12a). Then the objects which are small and near to the
edges are removed, resulting in a segmented image (Figure 12b) prepared for individual
object processing for more accurate segmentation results (Algorithm 4).

(a) (b)

Figure 10. Image after Otsu segmentation (a) and with object holes filled (b).
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Algorithm 3 Initial Segmentation
Input: Image with noise removed.
Output: Initially segmented image.
1: Apply otsu binarization algorithm.
2: Apply filling holes algorithm.
3: Morphologically erode image (radius = 2).
4: Calculate distance map.
5: Watershed segmentation (threshold = 0.004, level = 0.4).
6: Small objects removal (sizeThreshold = 25).
7: Remove near to the edge objects border (touching pixels number threshold = 0), object

is removed if at least one pixel is placed in image border.
8: return result

Algorithm 4 Individual cell processing
Input: Initially Segmented image.
Output: Fully segmented image.
1: for each for each each long axis point find short erythrocyte axis: do
2: Select ROI – select rectangle ROI around the considered object with the given margin

(margin m = 10).
3: Create mask and dilate it (dilatation radius r = 6).
4: Create masked image.
5: Binarize each image using Otsu algorithm.
6: Fill holes.
7: Select biggest object.
8: Get contour of the object.
9: Calculate Euclidean distances between all contour points. Two contour points with

the largest distance between them define the long axis.
10: for each long axis point find short erythrocyte axis: do
11: Find perpendicular to long axis, straight line through the point being considered.
12: Find all contour points with a distance to that line less or equal to sqrt(2).
13: if At least two contour points with distance between them larger than threshold

(t = 4) do not exist: then
14: Go to the next long axis point.
15: else
16: Consider two points with largest distance between them as two cluster

positions.
17: Assign all others points to clusters based on Euclidean distance criterion.
18: for each cluster: do
19: Select one point closest to the considered straight line.
20: Label selected points pair as cross point candidates and calculate distance

between them.
21: if selected points pair distance is greater than for pair tested before: then
22: Mark considered points pair as cross points.
23: if selected points pair distance is equal to distance for pair tested before:

then
24: select pair with line connecting them passing through the point closest to

the long axis center and mark as cross points
25: if no cross point candidates pair exist: then
26: Go to the next erythrocyte (short axis cannot be determined).
27: return result
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(a) (b)

Figure 11. Eroded image (a) and its distance map (b).

(a) (b)

Figure 12. Watershed segmented image (a) and after removing objects which are small and near to
the edges presented as a binary image (b).

3.2. Individual Object Processing and Segmentation

After initial segmentation (Algorithm 2), each identified object is processed individu-
ally. For each object, a rectangular region of interest with a small margin on each side is
considered. If there are objects placed near to one being considered, then their location is
utilized to create a mask (Figure 13b). Another mask is obtained from the slightly dilated
object shape currently being considered (Figure 13c,d). The combination of masks obtained
in this way produces the final mask for the region of interest being considered (Figure 13e).

Otsu segmentation performed on the filtered image region of interest combined with
the mask obtained in the previous step produces a segmented image with darker (green)
and brighter (blue) classes (Figure 14a). Erythrocytes are shaped as biconcave discs. The
class with darker pixels is selected as containing erythrocyte borders (Figure 14b). Then
the obtained shape is processed using the fill holes algorithm (ITK implementation [22],
Figure 14c) and if at this step more than one object exists, the biggest one is selected.
Finally, the segmented object contour is extracted (Figure 14d). The contour obtained is
used to calculate the long and short axes of the erythrocyte. To determine the long axis, the
Euclidean distance between all contour points is calculated.

Two contour points with the largest distance between them define the long axis
(Figure 15). The short axis is defined as the longest possible straight line with both ends
placed on the object contour and perpendicular to the long axis. For all long axis points, a
perpendicular, straight line through the point being considered is calculated. Then the two
cross points between the considered straight line and the contour are calculated. First the
distance of all contour points to the considered straight line is calculated.

Points with a distance less than or equal to
√

2 are considered as cross point candidates.
If at least two candidates are present and at least two candidates have a distance between
them larger than the threshold, the algorithm proceeds. Two candidates with the largest
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distance between them are selected and are considered as the two cluster positions. All
other candidates are assigned to one of the clusters based on Euclidean distance criterion.
For each cluster one point closest to the considered straight line is selected and identified as
a cross point. This procedure is repeated for all long axis points. The longest line becomes
the short axis. If more than one line is the longest, only the one passing through the point
closest to the long axis centre is selected.

(a) (b)

(c) (d)

(e)

Figure 13. Selected Region-of-interest(ROI) (a), ROI masked using neighbouring object (b), mask of
object being considered (c), dilated mask of object being considered (d) and final combined mask (e).
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(a) (b)

(c) (d)

Figure 14. Otsu segmentation (a), segmented object (b), segmented object with filled holes (c),
extracted object contour (d).

Figure 15. Examples of erythrocyte contours (red), short (green) and long (blue) axis marked.

3.3. Described Segmentation Technique as Probability Map Processor in Deep Learning Pipeline

The approach presented by authors could act as a processor for probability maps
resulting from deep learning pipelines. For this paper, the image set BBBC038v1 [25] was
used, available from the Broad Bioimage Benchmark Collection. Firstly images clustering
was performed to obtain sets of similar images. Deep learning model performs better
on datasets containing similar images. Images were clustered using HSV color space
and k-means clustering. All images were rescaled to 256 × 256 size. We trained a deep
learning model using 480 images belonging to one cluster. The analogical approach could
be performed on other clusters. Resulting probability maps were processed using two
approaches. The first method is state of the art approach which is Otsu segmentation,
erosion, distance map and watershed applied sequentially. The second method is the
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authors’ approach described in this paper. For both approaches, only the bilateral filter
was applied during the filtering step. The authors’ pipeline performs better in splitting
connected objects (Figure 16).

(a) (b)

(c) (d)

Figure 16. (a) Probability map segmented using state of the art. approach and closeup of connected
objects (c), authors proposal results as an overlay on the original image (b) and closeup of connected
objects (d). The authors’ proposal results are slightly more precise in the task of segmentation
connected objects.

3.4. Described Segmentation Technique Combined with Deep Learning for Results Categorization

The authors’ algorithm could be extended using deep learning techniques. The authors
used this algorithm to segment 13 red blood cells images, obtaining 1339 individual cell
images. Those images were arbitrarily divided into three categories: normal (1021 items),
abnormal (88 items) and wrongly segmented (230 items) red blood cells (Figure 17). The
data set was downsampled to achieve even samples distribution in all classes. Finally, the
data set contained 88 samples for each class. It is worth mentioning that the authors are
not specialists in the area of cell biology, so normal/abnormal categorization is based on a
basic understanding of this subject. The obtained data set has a great imbalance between
categories and is relatively small, so the proposed deep learning model is described only
to show the possible application of the authors’ algorithm. The proposed approach could
be used to exclude wrongly segmented cells from, for example, cell size statistics or to
automatically find possibly abnormal cells that could be evaluated by specialists. The
model was built using Keras api on top of TensorFlow.

The authors used a transfer learning approach building a model from MobileNetV2
model [26] with weights pre-trained on ImageNet without top fully connected layer which
was replaced by respectively GlobalAveragePooling2D, Dropout, BatchNormalization,
Dense(1280 units, ReLU activation), Dropout, BatchNormalization, Dense (3 classes pre-
dictions, softmax activation). MobileNetV2 is a new version of the lightweight MobileNet
model utilizing some tricks to boost network performance [26,27]. During training, Mo-
bileNetV2 layers were set as non-trainable, data augmentation was used to overcome the
small data set size and 30% of data was used as a validation data set. Sample model results
are presented in Table 1). To achieve better results, the data set size should be increased.
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Figure 17. Example of a segmented cells categorized as normal, abnormal or wrongly segmented.

Table 1. Validation data set predictions result.

Precision Recall Item Count

Abnormal 0.79 0.58 26

Normal 0.70 0.81 26

Wrong_Segmentation 0.72 0.81 26

4. Results

Most of the cells on the studied images were well segmented. Red blood cells which
are close to each other are separated. For all segmented objects, the contour and both long
and short axes were found (Figures 15 and 18). To evaluate the results, the exact position of
all objects and background pixels must be known. Contours of objects could be marked by
hand but this is time consuming and its precision is insufficient.

Results Evaluation-Comparison to State of the Art

The algorithm output binary image provides a base for artificial mock image construc-
tion. All objects and background pixel positions are known so the algorithm segmentation
result obtained using that image can be statistically evaluated. The relevance for that
method of algorithm evaluation is correlated to the level of similarity between the artificial
and original images. Background and object intensity values were set to be similar to the
original image.

In optical microscope images, such erythrocytes in the inner area have intensity values
greater than those near the edge. The binary image was eroded to obtain that inner area.
The background was altered using a two-dimensional Gaussian function to imitate the
original image background profile. The original background is brighter near the centre of
the image and darker when moving towards the edges. Gaussian smoothing was applied to
imitate the original objects’ blurred edges, then noise with few defined values of standard
deviation was added (Figures 19 and 20).
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Figure 18. Example of an output image fragment.

Figure 19. Example of an artificial mock image (Gaussian smoothing radius equals 3 and noise
standard deviation equals 30).

(a) (b)

Figure 20. Fragments of mock test images with Gaussian smoothing radius equal to 3—(a), 5—(b)
and noise standard deviation equal to: 15—(a), 30—(b).



Sensors 2021, 21, 1720 16 of 19

A few combinations of that step with different parameter values were tested and sta-
tistical evaluation measures of binary classification such as sensitivity, specificity, precision,
negative predictive value, accuracy and the number of detected objects were calculated
(Table 2).

Table 2. Segmentation evaluation test results of the authors’ algorithm where the real number of
objects located in the image is equal to 124.

Gaussian Smoothing Radius 3 5

Noise standard deviation 6 15 30 6 15 30

Sensitivity 0.988 0.988 0.994 0.996 0.996 0.993

Specificity 0.997 0.997 0.997 0.997 0.997 0.996

Precision 0.978 0.980 0.978 0.981 0.976 0.968

Negative predictive value 0.998 0.998 0.999 0.999 0.999 0.999

Accuracy 0.996 0.996 0.997 0.997 0.997 0.995

Number of objects detected 124 124 124 124 124 124

The method was checked for initial segmentation correction—without individual ery-
throcyte processing step (Table 3). Two different Gaussian smoothing radii of the structural
element were taken: 3 and 5. For some metrics (Tables 2 and 3), values do not change
significantly with increasing noise standard deviation. Some metrics are even getting
better for more noisy images. When differences are small and taking into consideration the
fact that noise is generated using pseudorandom numbers, we could suppose that such
metrics are not influenced significantly by the standard deviation of the added. Only one
metric shows a significant trend. Precision metrics for gaussian smoothing range equals
to 5 is significantly decreasing when noise standard deviation is increasing. For initial
segmentation only (Table 3) trend is visible even for Gaussian smoothing radius equal
to 3. Hence, the authors’ approach seems to be more noise-resistant for cases when less
smoothing is used.

Table 3. Segmentation evaluation test results for initial segmentation only (without individual cell
processing step) where the real number of objects located in the image is equal to 124.

Gaussian Smoothing Radius 3 5

Noise standard deviation 6 15 30 6 15 30

Sensitivity 0.994 0.995 0.997 0.999 0.999 0.999

Specificity 0.999 0.998 0.996 0.985 0.982 0.978

Precision 0.990 0.984 0.971 0.902 0.882 0.857

Negative predictive value 0.999 0.999 0.999 0.999 0.999 0.999

Accuracy 0.998 0.997 0.996 0.987 0.984 0.980

Number of objects detected 124 124 124 124 124 124

Moreover, the algorithm was tested on randomly cropped and rescaled images. The
test set was created using the mock image mentioned earlier created with Gaussian smooth-
ing radius equals 3 and noise standard deviation equals 6. The image was randomly
cropped five times and then each cropped image was additionally rescaled with 0.7 and 1.3
scaling factors resulting in a test set containing 15 images with different aspect ratios and
sizes (width or height vary from 322 to 1333 pixels). The obtained results (Table 4) show
that the proposed approach performs similarly on images with different erythrocytes sizes.
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Table 4. Segmentation evaluation test results of randomly cropped and rescaled mock images
(values are averaged over all images results) with original full size mock image segmentation results.

Image Type Full Size Mock Image Cropped and Resized Images

Sensitivity 0.994 0.969

Specificity 0.999 0.990

Precision 0.990 0.930

Negative predictive value 0.999 0.996

Accuracy 0.998 0.988

5. Discussion

As a conclusion, according to the results presented in Table 2, the authors have worked
out a decent algorithm allowing the segmentation of erythrocyte images obtained from
an optical microscope. Statistical evaluation measurements are excellent, even for highly
noised artificial images.

The presented approach could be used to expedite RBC image analysis tasks where
real-time processing is not needed due to high computational complexity. Initial segmen-
tation time dependents on image size. Individual cell processing time dependents on
image size, object size and number of objects selected for processing (see Table 5). For
the core algorithm presented in this paper, a training dataset is not required because it
is not a trainable algorithm. When the presented algorithm is combined with CNN as a
probability map processor in the deep learning pipeline (Section 3.3) or CNN used for
results categorization (Section 3.4) increasing the training data set is desirable. The deep
learning models’ architectures that were used are widely known and in general, with the
increasing size of the training dataset, results are getting better to some extent because
the model achieves better generalization. The results presented in Table 3 are obtained
using the initial segmentation step but without the individual cell processing part. The
initial segmentation step is based on a known approach combining distance transform and
watershed segmentation which performs well when the separation of connected objects is
expected. That approach is considered the baseline.

Noise filtration and background subtraction algorithms used by the authors in this
step are described in this paper. Evaluation of the results shows that both algorithms
detected the correct number of objects. Considering precision (defined as true positives
to true positives plus false positives ratio) as evaluation metrics, the standard approach
results in slightly better segmentation for the two least distorted mock images (smoothing
radius 3, noise standard deviation 6 and 15).

Table 5. Computational cost for two example images (256 × 256 px with 8bit depth) processed using
i5 4670k processor.

Step Image 1 (19 objects) Image 2 (10 objects)

Initial segmentation time [s] 0.4 0.35

Individual cell processing time [s] 0.85 0.57

Full Processing time (Initial segmentation 1.25 0.92with individual processing) [s]

6. Conclusions

The image processing algorithm combination presented in this paper is a mix of known
and widely used methods in a way that we found suitable for solving the given problems.
It is worth mentioning that it is not a universal algorithm because of the computational
complexity resulting from the usage of many image processing techniques in the algorithm
pipeline. The algorithm is therefore not suitable for use in real-time applications but it is
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not a disadvantage in erythrocytes segmentation tasks where the speed of segmentation is
not a must.

Despite the fact that the used individual methods considered separately are not new,
the use of two stage processing is a novel combination of these methods. The use of second
stage processing applied to individual cells allows us to increase precision from 0.857 to
0.968 for an artificial image example (Table 6).

Table 6. Summary table of initial segmentation only (without individual cell processing step)—first
stage considered as baseline and second stage results (individual cell processing step).

Stage First Stage Baseline Second Stage

Precision 0.857 0.968

Number of objects detected 124 124

Combining CNN with image processing algorithms in a way appropriate to the
considered problem can give good results. Two approaches described in this paper are
good examples of such synergy.

Artificial neural network-based methods (U-net for example) give good segmentation
results but in many cases post-processing using classic image processing methods is
necessary. Simple thresholding or watershed and distance map combined segmentation
are often applied as postprocessing techniques for U-net probability maps. Moreover,
considerable large image sets segmented by an expert had to be used to train such networks.
Classic image analysis methods could help the artificial neural network-based methods
achieve better results and be applied to tasks where large expert labelled image sets are not
available or in the approach described in Section 3.3.

The authors are currently working on the further development of their algorithm.
The work will be extended by automatization of the process of selecting parameters of
particular methods as well as an adaptation algorithm to accept images regardless of their
colour intensity. Changes may also affect the method of segmentation of erythrocytes in
the microscope image.
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