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Background: Immunotherapy, including checkpoint inhibition, has remarkably improved prognosis in
advanced melanoma. Despite this success, acquired resistance is still a major challenge. The T cell costimula-
tory receptor TNFRSF9 (also known as 4-1BB and CD137) is a promising new target for immunotherapy and
two agonistic antibodies are currently tested in clinical trials. However, little is known about epigenetic regu-
lation of the encoding gene. In this study we investigate a possible correlation of TNFRSF9 DNA methylation
with gene expression, clinicopathological parameters, molecular and immune correlates, and response to
anti-PD-1 immunotherapy to assess the validity of TNFRSF9 methylation to serve as a biomarker.

Methods: We performed a correlation analyses of methylation at twelve CpG sites within TNFRSF9 with
regard to transcriptional activity, immune cell infiltration, mutation status, and survival in a cohort of
N = 470 melanoma patients obtained from The Cancer Genome Atlas. Furthermore, we used quantitative
methylation-specific PCR to confirm correlations in a cohort of N = 115 melanoma patients’ samples (UHB
validation cohort). Finally, we tested the ability of TNFRSF9 methylation and expression to predict progres-
sion-free survival (PFS) and response to anti-PD-1 immunotherapy in a cohort comprised of N = 121 patients
(mRNA transcription), (mRNA ICB cohort) and a case-control study including N = 48 patients (DNA methyla-
tion, UHB ICB cohort).

Findings: We found a significant inverse correlation between TNFRSF9 DNA methylation and mRNA expres-
sion levels at six of twelve analyzed CpG sites (P < 0.005), predominately located in the promoter flank

Abbreviations: 95% Cl, 95% confidence interval; ARID2, AT-rich interactive domain-containing protein 2; BRAF, V-raf murine sarcoma viral oncogene homolog B1; IDH]1, Isocitrate
dehydrogenase 1; CTLA4, Cytotoxic T-lymphocyte associated protein 4; CR, Complete response; FFPET, Formalin-fixed and paraffin-embedded tissue; HIF1-«;, Hypoxia-inducible
factor 1-alpha; IFN-y, Interferon gamma; IL-2, Interleukin 2; IRB, Institutional Review Board; LAG3, lymphocyte activating 3; LHR, Likelihood Ratio; MYC, MYC proto-oncogene;
MAPK, Mitogen-activated protein kinase; MR, Mixed response; NA, Not assessable; NAT, Normal adjacent tissue; n.c., Normalized counts; NF-kB, Nuclear factor 'kappa-light-chain-
enhancer’ of activated B-cells; NK cells, Natural killer cells; OS, Overall survival; PBMCs, Peripheral blood mononucleated cells; PD, Progressive disease; PD-1, Programmed cell death
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region. Consistent with its role as costimulatory receptor in immune cells, TNFRSF9 mRNA expression and
hypomethylation positively correlated with immune cell infiltrates and an interferon-y signature. Further-
more, elevated TNFRSF9 mRNA expression and TNFRSF9 hypomethylation correlated with superior overall
survival. In patients receiving anti-PD-1 immunotherapy (mRNA ICB cohort), we found that TNFRSF9 hyper-
methylation and reduced mRNA expression correlated with poor PFS and response.

Interpretation: Our study suggests that TNFRSF9 mRNA expression is regulated via DNA methylation. The
observed correlations between TNFRSF9 DNA methylation or mRNA expression with known features of
response to immune checkpoint blockage suggest TNFRSF9 methylation could serve as a biomarker in the
context of immunotherapies. Concordantly, we identified a correlation between TNFRSF9 DNA methylation
and mRNA expression with disease progression in patients under immunotherapy. Our study provides ratio-
nale for further investigating TNFRSF9 DNA methylation as a predictive biomarker for response to
immunotherapy.

Funding: AF was partly funded by the Mildred Scheel Foundation. SF received funding from the University
Hospital Bonn BONFOR program (0-105.0069). DN was funded in part by DFG Cluster of Excellence Immuno-
Sensation (EXC 1023). The funders had no role in study design, data collection and analysis, interpretation,

decision to publish, or preparation of the manuscript; or any aspect pertinent to the study.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context

Evidence before this study

The immune checkpoint TNFRSF9 (Tumor necrosis factor recep-
tor superfamily member 9) is an attractive new target for cancer
immunotherapy and currently, two agonistic antibodies are
tested in clinical trials including melanoma. So far, little is known
about the regulation of immune checkpoint genes, in particularly
on an epigenetic level, which is fundamental for the develop-
ment of more accurate mechanism-based biomarkers. Based on
the results and data of a current landscape paper provided by
The Cancer Genome Atlas Network and a current multicenter
study on predictive biomarkers for response to anti-PD 1 ther-
apy, we investigated the prognostic and predictive significance
of TNFRSF9 methylation in melanoma patients with and without
PD-1 directed immunotherapy.

Added value of this study

Our present study suggests a high biological significance of
TNFRSF9 gene methylation and strongly indicates that TNFRSF9
methylation plays a role in the transcriptional regulation of
TNFRSF9. Our results demonstrate significant correlations
between TNFRSF9 hypomethylation and patients’ survival, point-
ing to a prognostic significance of TNFRSF9 methylation. Finally,
our independent validation analysis in melanoma patients
treated with anti-PD-1 immune checkpoints provides first evi-
dence of TNFRSF9 methylation as a potential predictive bio-
marker for response to immunotherapy.

Implications of all the available evidence

Our data provide rationale for further investigating TNFRSF9 DNA
methylation as a predictive biomarker in melanoma to assist the
identification of patients that might benefit from agonistic
TNFRSF9 therapy as well as anti-PD-1 immune checkpoint block-
ade or a combination therapy of the two.

1. Introduction

The tumor necrosis factor receptor superfamily member 9
(TNFRSF9), also known as 4-1BB and CD137, is an immune costimula-
tory receptor [1]. TNFRSF9 is expressed on activated immune cells

including natural killer (NK) cells, effector T cells and antigen present-
ing cells, among them dendritic cells, macrophages, and B cells [2—5].
TNFRSF9 expression is tightly controlled and has been demonstrated to
be upregulated from 12 h to up to 5 days, depending on the specific T
cell stimulus [6—8] with a peak expression after 24 h [9].

In mouse models, in vivo effects of TNFRSF9 signaling activation
were demonstrated to include CD8" T cell activation and tumor eradi-
cation [1,10]. Induction of the TNFRSF9 signaling pathway, via recep-
tor binding, recruits TNFR-associated factor 1 and 2, leading to
activation of the transcription factor NF-kB and the mitogen-acti-
vated protein kinase (MAPK) cascade [3,11,12]. In CD8" T cells,
TNFRSF9 signaling promotes activation, proliferation and production
of cytokines, interleukin 2 (IL-2) and interferon gamma (IFN-y)
[13—15]. Furthermore, TNFRSF9 signaling contributes to upregulation
of members of the anti-apoptotic Bcl-2 family, thus protecting against
activation-induced cell death [16—19]. In regulatory T cells (Tregs),
agonistic TNFRSF9 antibody treatment can lead to inhibition of
immune suppressive functions, augmenting the antitumor response
[20]. Yet, the influence of TNFRSF9 on Treg cells is controversial and
TNFRSF9 has also been shown to maintain the suppressive capacity
of Tregs [21,22]. As well as its expression on activated immune cells,
TNFRSF9 is also expressed by inflamed or hypoxic endothelial cells
[23] and has been detected on tumor endothelial cells [22]. Hypoxia-
mediated TNFRSF9 signaling was shown to promote migration of
tumor-infiltrating lymphocytes (TILs) into malignant tissue [24].
Overall, the mechanisms summarized above make TNFRSF9 an
attractive target for immunotherapy and agonistic monoclonal anti-
bodies are currently being tested in multiple clinical trials.

Preclinical evidence for the potential therapeutic relevance of
TNFRSF9 in melanomas was shown in a B16.SIY model by Weigelin
et al, which demonstrated that agonistic TNFRSF9 antibodies
restored the function of CD8" TILs to secrete IL-2. Furthermore, com-
bined treatment with anti-LAG3 (lymphocyte activating 3) antibod-
ies increased the amount of CD8" effector TILs among rejuvenated
exhausted TILs [25]. In another preclinical study, utomilumab, a
human IgG2 agonistic antibody to TNFRSF9, demonstrated its ability
to inhibit tumor growth in a human peripheral blood lymphocyte
(PBL)-SCID xenograft tumor model [26]. Currently, there are several
ongoing clinical trials investigating two TNFRSF9 agonists, urelumab
(Bristol-Myers Squibb, NY, USA; ClinicalTrials.gov Identifiers:
NCT02253992, NCT02845323, NCT02534506, NCT02451982,
NCT02658981, NCT03431948, NCT02652455) and utomilumab
(Pfizer, NY, USA; ClinicalTrials.gov Identifiers: NCT03258008,
NCT03704298, NCT03440567, NCT03414658, NCT03318900,
NCT03364348, NCT03636503, NCT03390296, NCT02554812,
NCT03217747, NCT03290937, NCT02951156) in different tumor
types including melanoma.
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The rapidly evolving landscape of therapeutic options in advanced
melanoma requires the development of companion diagnostics for
patient stratification, as not all patients respond equally to a particu-
lar medication. Prognostic biomarkers might help to identify patients
with localized but aggressive disease who may potentially benefit
from an adjuvant treatment. Predictive biomarkers may guide the
choice of the most promising therapy. Mechanism-driven biomarkers
for immune checkpoint modulators include CD8" TIL density, muta-
tional load, and immune checkpoint gene expression [27]. A current
multicenter study investigated clinical, genomic and transcriptomic
data of melanoma patients to discover predictive features for individ-
ual response to anti-PD1 therapy [28]. However, to facilitate the
development of more accurate mechanism-based biomarkers, precise
knowledge on the regulation of immune checkpoint genes, specifi-
cally on an epigenetic level, is critical.

DNA methylation is an important epigenetic regulation mecha-
nism, playing a fundamental role in T cell differentiation and T cell
exhaustion [29—31]. A multitude of studies report on aberrant methyl-
ation of inhibitory immune checkpoint genes, i.e. PD-1, PD-L1, PD-1
ligand 2 (PD-L2), and cytotoxic T-lymphocyte associated protein 4
(CTLA4), in various malignancies [30,32—40]. Moreover, early data sug-
gest CTLA4 methylation is a predictive biomarker for anti-PD-1 and
anti-CTLA-4 antibodies in patients with metastatic melanoma [41].

TNFRFS9 expression has been suggested as a biomarker for TILs in
ovarian cancer and melanoma [42]. A predictive significance for
response to combined anti-PD-1/CTLA-4 therapy has been demon-
strated experimentally for the expression of TNFRSF9 on blood and
tumor CD8" T cells and CD4" T [43]. To our knowledge there is so far
no study investigating TNFRFS9 methylation as a predictive bio-
marker in melanoma patients treated with immune checkpoint
blockade. In this work we analyzed correlates of TNFRSF9 methylation
with mRNA expression, clinicopathological parameters, and patient
outcome as well as molecular and immune correlates. We investi-
gated the prognostic and predictive significance of TNFRSF9 methyla-
tion in melanoma patients with and without anti-PD-1 directed
immunotherapy. Our results provide rationale to further investigate
TNFRSF9 methylation as a prognostic biomarker in melanoma and as
a predictive biomarker for melanoma patients who may benefit from
treatment with TNFRSF9 agonists.

2. Methods
2.1. Patients

2.1.1. TCGA cohort

The data we used for our analyses are partly based on datasets of
The Cancer Genome Atlas Research Network (TCGA, http://cancerge
nome.nih.gov/). On the whole we included a total of N = 470 samples
from the TCGA skin cutaneous melanoma (SKCM) cohort. We ana-
lyzed one sample per patient. Only data from primary solid and meta-
static tumor tissue samples were extracted to our collective, whereas
solid normal tissues and additional metastatic tumor tissues were
excluded from our analyses. In patients providing primary solid as
well as metastatic tumor tissue only primary solid tumor tissue was
included. We obtained supplementary clinicopathological and molec-
ular data (Supplemental Table 1) from a trial previously published by
the TCGA Research Network [45]. Datasets containing information
about sample purity and ploidy estimates calculated using the ABSO-
LUTE algorithm [73] were also adopted from the TCGA Research Net-
work. The leukocyte fraction within the tumor samples was
quantified by Saltz et al. and Thorsson et al. who used DNA methyla-
tion array data to identify pure leukocyte cells [46,74]. We addition-
ally used the results provided by Thorsson et al. [46] who calculated
RNASeq signatures as estimates for distinct immune cell infiltrates
using the CIBERSORT algorithm [75]. Further data on infiltrating lym-
phocytes were again adopted from the TCGA Research Network [45].

We included data on lymphocyte distribution (0—3; 0 = no lympho-
cytes within the tissue, 1 = lymphocytes present involving <25% of
the tissue cross sectional area, 2 = lymphocytes present in 25 to 50%
of the tissue, 3 = lymphocytes present in >50% of tissue), lymphocyte
density (0—3; 0 = absent, 1 = mild, 2 = moderate, 3 = severe), and a
lymphocyte score (0—6, score defined as the sum of the lymphocyte
distribution and density scores).

The TCGA Research Network obtained informed consent from all
patients in accordance with the Helsinki Declaration of 1975.

2.1.2. Validation cohort

In the validation analysis tumor tissue samples of N = 115 mela-
noma patients of the University Bonn were included (UHB validation
cohort). The cohort was composed of tissue obtained from primary
melanomas, subcutaneous and cutaneous metastases, and lymph node
metastases. The tumor tissue included was obtained from patients
naive to systemic antitumor treatment, including targeted therapies or
immune checkpoint blockade. Our study was approved by the Institu-
tional Review Board (IRB) of the University Hospital Bonn.

2.1.3. Anti-PD-1 treated patients

Methylation and mRNA expression was investigated in two
groups of patients who received PD-1 directed immune checkpoint
blockage. TNFRSF9 methylation levels were available from a case-con-
trol study group comprised of N = 48 anti-PD-1-treated patients who
did not respond (N = 19) or responded (N = 29) to therapy (UHB ICB
cohort). The study was approved by the local IRB. TNFRSFO mRNA
levels from samples of N = 121 anti-PD-1-treated patients were
obtained from a recently published work by Liu and co-workers [28]
(mRNA ICB cohort).

2.2. Primary cell lines and isolated immune cells

Primary melanocyte (N = 8) and melanoma cell lines (N = 44) were
included from the Gene Expression Omnibus (GEO) database [76,77]
(GEO accessions: GSE44662 and GSE122909) [78,79].

Peripheral blood mononuclear cells (PBMCs, N = 54), monocytes
(N = 52), B cells (N = 60), CD8" T cells (N = 28), and CD4" T cells
(N = 54) isolated from peripheral blood donated by healthy individu-
als was obtained from four published datasets (GSE82218, GSE71245,
GSE87650, GSE59250) [80—83].

2.3. mRNA expression analysis

The mRNA expression analyses are based upon data generated by
the TCGA Research Network (http://cancergenome.nih.gov/) using
the Illumina HiSeq 2000 RNA Sequencing Version 2 analysis (Illu-
mina, Inc,, San Diego, CA, USA). Expression data of level 3 were
obtained from the TCGA webpage and were available from N = 468
patient samples. Normalized counts (n.c.) per genes were calculated
using the SeqWare framework via the RSEM (RNA-Seq by Expecta-
tion Maximization) algorithm [84]. In addition, we included whole-
transcriptome sequencing data reported as expression in transcripts
per million (TPM) provided by Liu et al. [28].

2.4. DNA preparation and bisulfite conversion

DNA from formalin-fixed and paraffin-embedded tissue (FFPET)
specimens (UHB validation cohort and immunotherapy case-control
study (UHB ICB cohort)) was conducted after macrodissection of
tumor tissues from sections mounted on glass slides. Tissue lysis and
bisulfite conversion was performed using the innuCONVERT Bisulfite
All-In-One Kit (Analytik Jena, Jena, Germany) according the manufac-
turer’s instructions.
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2.5. Methylation analysis

Data on gene methylation (Infinium HumanMethylation450 Bead-
Chip, lllumina, Inc., San Diego, CA, USA) from the TCGA Research Network
were available from N = 470 patient samples and were downloaded from
the UCSC Xena browser (www.xena.ucsc.edu). Methylation levels (8-val-
ues) were calculated: Beta-value = (Intensity_Methylated)/(Intensity_
Methylated + Intensity_Unmethylated + «) [85]. The constant off-
set o was set to 0. HumanMethylation450 BeadChip data (S-val-
ues) from isolated immune cells were downloaded from GEO
database (GSE44662, GSE122909, GSE82218, GSE71245,
GSE87650, GSE59250). Methylation data from the case-control
study including N = 48 anti-PD-1 treated patients’ samples was
generated using the Infinium MethylationEPIC BeadChip. B-val-
ues (values between 0 and 1) were multiplied with the factor
100% in order to approximate percent methylation (0% to 100%).

TNFRSF9 promoter methylation analysis of N = 115 melanomas
from the University Hospital Bonn (UHB validation cohort) was per-
formed using quantitative methylation-specific real-time PCR
(qMSP) technology developed by Lehmann and Kreipe [86] in order
to determine the promoter methylation levels at CpG site targeted
by bead 6 (forward primer: actccataatcactataatacaataa, reverse
primer: gtagtgtatttttgatgtttggta, probemethyiatea: 6-FAM-ccattact-
taaacacaaccgata-BHQ-1, probeynmethylatea: HEX-accattacttaaacacaac-
caatat-BHQ-1). All oligonucleotides were purchased from biomers.
net (Ulm, Germany). The qMSP assays amplifies the target sequence
on chromosome 1: 7,941,202-7,941,277 (Genome Reference Con-
sortium Human Build 38, GRCh38.p13, http://www.ensembl.org
[87], Fig. 1). PCR reactions were performed in 20 w1 volumes (buffer
composition as previously described [88] containing 20 ng bisulfite
converted DNA (quantified via UV-vis spectrophotometry) and
0.4 uM each primer and 0.2 uM each probe. qMSP was carried out
using a 7900HT Fast Real-Time PCR system (Applied Biosystems,
Waltham, MA, USA) with the following temperature profile: 10 min
at 95 °C and 40 cycles with 15s at 95 °C,2 s at 62 °C,and 60 s at
52 °C. We calculated percentage methylation levels using cycle tres-
hold (CT) values obtained from probes specifically binding to bisul-
fite-converted methylated (CTmethylated) and unmethylated

(CTunmethylated) DNA, respectively (Methylation [%] = 100%/
(1 + 2CTmethylated—CTunmethylated)‘

2.6. Statistics

Statistical analyses were performed using SPSS, version 23.0 (SPSS
Inc., Chicago, IL, USA). Analyses regarding potential correlations of
characteristics were calculated using Spearman’s rank correlation
(Spearman’s p). Significance levels for the Spearman’s rank correla-
tion coefficients were computed using a large sample normal theory
approximation that utilizes a t-distribution. Mean value comparisons
were performed using Wilcoxon—Mann—Whitney U (two groups)
and Kruskal—-Wallis (>2 groups) test. One-way ANOVA and post-hoc
Bonferroni test were applied to perform multiple comparisons
between groups. In order to reduce the influence of age-related
deaths overall survival was censored after 5 years (1825 days).
Kaplan—Meier method, likelihood ratios and Cox proportional haz-
ards regression were used for the performance of survival analyses.
For Kaplan—Meier analysis methylation levels and mRNA expression
levels were dichotomized based on an optimized cut-off (lowest P-
value). Cox proportional hazards analyses were performed with con-
tinuous methylation and log2-transformed mRNA expression data
(mRNA expression levels of 0 n.c. were set to 0.1 and levels of 0 TPM
were set to 0.01 prior to log2-transformation). P-values refer to log-
rank and Wald tests, respectively. Two-sided P-values lower than
0.05 were considered statistically significant.

2.7. Role of the funding source

The funders had no role in study design, data collection and analy-
sis, interpretation, decision to publish, or preparation of the manu-
script; or any aspect pertinent to the study. DD confirms that he had
full access to all the data in the study and had final responsibility for
the decision to submit for publication.

3. Results

3.1. Methylation of TNFRSF9 inversely correlates with mRNA expression
The Infinium HumanMethylation450 BeadChip contains twelve

beads targeting CpG sites within the TNFRSF9 gene locus (Fig. 1).

Eleven CpG sites (targeted by beads one to eleven) were located in
the promoter region (beads one to five are located in the promoter,

— Reverse strand 31.57kb
7.915Mb 7.920Mb 7.925Mb 7.930Mb 7.935Mb 7.940Mb
p36.23
16 LI
17 12
18 13
112 111 19 14
110 15
1 qMSP assay
L — —— & —+ & O {+—
< TNFRSF9-204 protein coding
C———— —— & 4+ & 01
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O— ——
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%GC |
7.915Mb 7.920Mb 7.925Mb 7.930Mb 7.935Mb 7.940Mb
Legend

Promoter flank
== Promoter
¥ CpG site (bead)
I CpG sites (QMSP assay)

Fig. 1. Genomic organization of the TNFRSF9 gene. Shown are regulatory elements, CG-density and target sites of HumanMethylation450 BeadChip beads and the quantitative
methylation-specific PCR (qMSP assay). The modified illustration was exported from www.ensemble.org (release 98) [87] and is based on Genome Reference Consortium Human
Build 38 patch release 13 (GRCh38.p13). Beads are numbered as follows: cg16839093 (1), cg27305704 (2), cg18859763 (3), cg07836592 (4), cg23959705 (5), cg06956444 (6),
cg14614416 (7), cg18025409 (8), cg14153654 (9), cg08840010 (10), cg17123655 (11), cg16117781 (12).
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Table 1

Correlations of TNFRSF9 methylation with TNFRSF9 mRNA expression, lymphocyte score and overall survival. TNFRSF9 methylation was determined at 12 different CpG sites
targeted by HumanMethylation450 BeadChip beads (Fig. 1). TNFRSF9 expression was analyzed as log2-transformed variable. Significant data are shown in boldface.

Correlation with mRNA expression®

Correlation with lymphocyte score®

Correlation with total mutations® Overall survival

Analyte Bead no.  Spearman’s p P-value Spearman’s p P-value Spearman’s p P-value Hazard Ratio [95% CI] ~ P-value
mRNA NA NA NA 0.51 <0.001 0.04 043 0.92[0.87-0.97] 0.002
cg16839093 1 0.06 0.23 0.08 0.13 0.12 0.039 0.20[0.03-1.33] 0.096
cg27305704 2 0.01 0.89 -0.07 0.21 0.15 0.007 0.69[0.31-1.53] 0.36
cg18859763 3 —-0.06 0.22 —-0.02 0.67 0.12 0.034 0.51[0.15-1.76] 0.29
cg07836592 4 -0.01 0.91 —-0.03 0.58 0.13 0.020 0.47[0.15-1.53] 0.21
€g23959705 5 0.10 0.025 0.14 0.012 0.14 0.013 0.59[0.17-2.10] 0.42
cg06956444 6 -0.47 <0.001 -0.31 <0.001 -0.01 0.91 3.42[1.28-9.14] 0.014
cg14614416 7 -0.32 <0.001 -0.22 <0.001 —0.04 0.51 6.28 [2.06-19.2] 0.001
cg18025409 8 -0.19 <0.001 —-0.04 0.44 -0.01 0.84 1.80[0.84-3.85] 0.13
cg14153654 9 —-0.02 0.62 0.07 0.20 —-0.03 0.66 3.03[1.01-9.07] 0.048
cg08840010 10 -0.27 <0.001 -0.23 <0.001 —-0.03 0.57 2.85[1.23-6.63] 0.015
cg17123655 11 -0.32 <0.001 —-0.18 0.001 0.05 0.41 3.89[1.25-12.1] 0.019
cg16117781 12 -0.43 <0.001 -0.23 <0.001 —-0.04 0.52 3.57[1.65-7.76] 0.001

NA: Not Applicable.

2 Correlations were performed including N = 468 (TNFRSF9 methylation and mRNA expression), N = 317 (total mutations and TNFRSF9 mRNA expression), N = 318 (total muta-
tions and TNFRSF9 methylation), N = 328 (lymphocyte score and TNFRSF9 mRNA expression), N = 329 (lymphocyte score and TNFRSF9 methylation) samples.

beads six to eleven in the downstream promoter flank) and one in the
gene body (bead twelve).

DNA methylation in promoters is frequently associated with tran-
scriptional gene silencing [44]. We analyzed the correlation between
methylation of the twelve CpG sites and mRNA expression in N = 468
malignant melanoma from the TCGA Research Network [45]. We
found significant inverse correlations between TNFRSF9 DNA methyl-
ation and mRNA expression levels at six of twelve analyzed CpG sites
indicating that TNFRSF9 mRNA expression may be regulated by gene
methylation (Table 1). The inverse correlation was most pronounced
in the promoter flank CpGs probed by bead six and seven, as well as
in the gene body CpG targeted by bead twelve. Methylation of the
CpGs within the promoter (targeted by beads one to five) showed no
significant inverse correlation with mRNA expression.

We found significantly different TNFRSF9 mRNA expression levels
among four types of tumor tissue sites (Supplemental Table 1).
Regional lymph node metastases showed a higher level of mRNA
expression compared to tissue obtained from primary tumors, cutane-
ous or distant metastases. Accordingly, significant differences in
TNFRSF9 methylation levels were found at eight of twelve CpG sites
(targeted by beads one, five to eight, and ten to twelve). We further
analyzed correlations of TNFRSF9 methylation with TNFRSFO mRNA
expression with regard to tumor tissue site (Supplemental Tables 1
and 2). Inverse correlations between TNFRSF9 methylation and
TNFRSF9 mRNA expression in lymph nodes were similar to the general
analysis including all tumor sites. However, we observed inverse cor-
relations between TNFRSF9 methylation and mRNA expression in pri-
mary tumor tissue, distant and cutaneous/subcutaneous metastases to
be more pronounced than in samples from lymph node metastases.

3.2. Methylation of TNFRSF9 correlates with immune cell infiltrates

As TNFRSF9 is an immune stimulatory gene we predicted that its
expression could augment activity of tumor infiltrating immune cells.
Therefore, we investigated correlations between TNFRSF9 mRNA lev-
els and methylation with lymphocyte score, leukocyte fraction, and
RNASeq signatures of tumor infiltrating immune cell subsets. As
expected, we found a significant correlation between TNFRSF9 mRNA
expression with lymphocyte score and leukocyte fraction within the
analyzed tumor infiltrating immune cells (Table 1, Supplemental
Table 1, and Fig. 2). Accordingly, we observed significant inverse cor-
relations between TNFRSF9 methylation and lymphocyte score at
CpG sites within the gene body and promoter flank regions probed
by beads six, seven and ten to twelve (Table 1). Furthermore, there
were significant inverse correlations between CpG methylation in

several regions of the promoter flank and the gene body (bead target
sites six to eight, ten to twelve) with the leukocyte fraction (Fig. 2). In
line with the observed positive correlation between TNFRSF9 mRNA
expression and leukocyte fraction, tumor cell content (percentage
tumor cell nuclei in sample) showed a significant negative correlation
with TNFRSF9 mRNA expression (Supplemental Table 1).

To follow up on our results based on the TCGA data we set up a val-
idation cohort composed of N = 115 melanoma samples (UHB valida-
tion cohort). We designed a methylation-specific qPCR (qMSP) assay
targeting CpG site six, located within the promoter flank region
(Fig. 1), which had shown highly significant correlations between
methylation and lymphocyte score in the TCGA cohort. In a histopath-
ological examination we quantified leukocyte and tumor cell content
as well as lymphocyte score. Mean lymphocyte score was 1.2 [95% CI,
0.9-1.4], mean percentage leukocytes in the tumor made up 5.8% [95%
Cl, 4.6—7.0%] and mean percentage of tumor cells were 93.7% [95% CI,
92.4-95.0%]. We observed significant inverse correlations between
methylation of the CpG site six targeted by the qMSP assay and both
lymphocyte score (p =—0.239, P = 0.010) and the leukocyte content
(0 =—0.247, P =0.008). Accordingly, we observed a positive correlation
between methylation of CpG site six with tumor cell content
(p=0.279, P=0.003) in our validation cohort (UHB validation cohort).

We further performed correlative analyses stratified by tumor tis-
sue types contained in the TCGA cohort in order to exclude the influ-
ence of sample type specific features, e.g. higher numbers of
lymphocytes in lymph node metastases potentially leading to higher
immune scores (Supplemental Table 3). Inverse correlations between
TNFRSF9 methylation and lymphocyte score in the promoter flank
regions were confirmed in four CpG sites for lymph node metastases,
three CpG sites in distant metastases and two CpG sites in subcutane-
ous/cutaneous metastases. Methylation at CpG sites targeted by beads
6 and 10 correlated inversely with lymphocyte score for all metastatic
sites. However, primary tumors showed a positive correlation between
TNFRSF9 methylation and mRNA expression in the promotor region.
Accordingly, a significant correlation between TNFRSF9 mRNA expres-
sion and lymphocyte score, was confirmed in the subgroup analysis
for tissue obtained from lymph nodes metastases, distant metastases,
and cutaneous/subcutaneous but not for primary tumors.

3.3. TNFRSF9 methylation differs significantly between subsets of
leukocytes

The strongest inverse correlation between methylation and tumor
leukocyte fraction was found at CpG site targeted by bead twelve
(Spearman’s p = —0.484, P < 0.001). Hence, we expected significant
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Fig. 2. Correlation of TNFRSF9 methylation and mRNA expression with immune cell infiltrates. Shown are Spearman’s p correlation coefficients of significance (P<0.05)
between TNFRSF9 methylation and mRNA expression with leukocyte fraction (mRNA: N = 468; methylation: N = 470) and distinct immune cell infiltrate signatures (mRNA: N = 468;
methylation: N = 469). Immune cell infiltrates include RNA signatures of lymphocytes (including naive B cells, memory B cells, naive CD4" T cells, activated and resting CD4* memory
T cells, T follicular helper cells, regulatory T cells, CD8" T cells, y§ T cells, activated and resting NK cells, and plasma cells), macrophages (including monocytes and MO/M1/M2 macro-
phages), dendritic cells (including resting and activated dendritic cells), mast cells (including activated and resting mast cells), CD4" T cells (including naive, activated memory, and
resting memory CD4" T cells), eosinophils, and neutrophils. P-values and Spearman’s p correlation coefficients can be found in Supplemental Table 1; n.s.: not significant.

methylation differences between melanoma cells compared to
immune cells and potentially among immune cell subtypes. In order
to test our hypothesis, we analyzed primary melanoma cell lines, pri-
mary melanocyte cell lines, and isolated leukocytes from peripheral
blood donated by healthy individuals. Data on the isolated leukocytes
were obtained from published datasets, data for primary melanocyte
and melanoma cell lines were included from the Gene Expression
Omnibus (GEO) database (Fig. 3). We were able to confirm methyla-
tion differences between all analyzed leukocytes (PBMCs, monocytes,
B cells, CD4* and CD8" T cells) and melanoma cell lines as well as mel-
anocytes (Fig. 3). As expected, melanoma cell lines showed high lev-
els of TNFRFS9 methylation at the gene body CpG site targeted by
bead 12.

We found a positive correlation between TNFRFS9 methylation
and leukocyte fraction at the promoter flank CpG site targeted by
bead nine (Spearman’s p = 0.108, P = 0.019) (Fig. 2), whereas there
were no correlations with the lymphocyte score (Table 1). We there-
fore hypothesized there would be high methylation of total PBMCs
compared to melanoma cells but no difference between melanoma
cells and lymphocytes. As expected, the analysis showed no distinct
differences between methylation of melanoma cells and CD4*/CD8" T
cells from blood of healthy donors. We did not find correlations
between TNFRFS9 methylation and leukocyte fraction in the promoter
region targeted by beads one to four. Accordingly, there were no sig-
nificant differences between methylation in melanoma cells and
immune cells under investigation (Fig. 3). Our analysis revealed dif-
ferences in TNFRSF9 methylation within the single immune cell sub-
types analyzed in the blood of healthy donors (Fig. 3).

3.4. Methylation of TNFRSF9 correlates with the infiltration signature of
immune cell subsets

To gain further information concerning the composition of the
immune cell infiltrates of the tumor samples contained in the TCGA
cohort we used RNA signatures of tumor infiltrating leukocyte sub-
groups which we obtained from a study published by Thorsson et al.
[46] (Fig. 2). The detailed analysis of the RNA signatures of infiltrating
leukocyte subgroups revealed an infiltration signature of CD8" T cells,

activated NK cells, activated CD4" T memory cells, proinflammatory
M1 macrophages, Tregs and resting dendritic cells positively corre-
lated with TNFRSF9 mRNA expression. In contrast we found an
inverse correlation of infiltration signatures of resting NK cells, naive
CD4" T cells and anti-inflammatory M2 macrophages with TNFRSF9
mRNA expression (Fig. 2). Similarly, correlations between TNFRSF9
methylation, in the promoter flank and gene body regions, and RNA-
Seq signatures of tumor infiltrating immune cells depended on differ-
entiation, activation status and inflammatory potential of the
different leukocyte subsets. Infiltration signatures in the subgroups
of activated NK cells, activated CD4" memory T cells and proinflam-
matory M1 macrophages demonstrated inverse correlations with
TNFRSF9 methylation, whereas significant correlations between
TNFRSF9 methylation and infiltration signatures were found in the
corresponding subgroups of resting, naive or anti-inflammatory leu-
kocytes. Furthermore, we found the infiltration signature of Tregs to
be inversely correlated to TNFRSF9 methylation (Fig. 2).

3.5. Methylation of TNFRSF9 inversely correlates with an interferon-y
signature

TNFRSF9 signaling has been shown to promote the secretion IFN-
y and the activation of CD8" T cells [3]. CD8" T cells within the tumor
microenvironment are associated with the activation of IFN-y path-
ways [27,47]. We therefore investigated correlations between
TNFRSF9 methylation and mRNA expression levels with an IFN-y sig-
nature defined by the expression of IFN-y and IFN-y—regulated
genes (STAT1, STAT2, JAK2, and IRF9; Table 2). TNFRSF9 mRNA
expression levels positively correlated with an IFN-y signature. Con-
cordantly, we observed an inverse correlation of TNFRSF9 methyla-
tion levels (predominantly in the regions of the promoter flank and
in the gene body) with an IFN-y signature (Table 2).

3.6. Methylation of TNFRSF9 and mRNA expression is associated with
age

A detailed analysis of associations between TNFRSF9 methylation
and TNFRSF9 mRNA expression with clinicopathological parameters
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Table 2

Correlations of TNFRSF9 methylation and mRNA expression with IFN-y-signature. Correlations of TNFRSF9 methylation and mRNA expression with IFN-y and IFN-y-regu-
lated genes (STAT1, STAT2, JAK2, and IRF9). DNA methylation was determined at twelve different loci targeted by HumanMethylation450 BeadChip beads (Fig. 1). Significant
data are shown in boldface. Data were obtained from N = 468 (methylation) and N = 467 (mRNA expression) tumor samples, respectively.

IFN-y STAT1 STAT2 JAK2 IRF9
Analyte Beadno.  Spearman’sp  P-value  Spearman’sp  P-value  Spearman’sp  P-value  Spearman’s p  P-value  Spearman’sp  P-value
mRNA NA 0.85 <0.001 0.74 <0.001 0.31 <0.001 0.57 <0.001 047 <0.001
cg16839093 1 0.04 0.42 0.06 0.18 0.04 0.40 0.13 0.006 0.03 0.57
cg27305704 2 0.01 0.88 0.05 0.30 0.06 0.22 0.10 0.035 0.01 0.81
cg18859763 3 -0.08 0084 -0.10 0.035 0.00 0.98 0.02 0.61 —-0.06 0.24
cg07836592 4 —-0.02 0.64 -0.02 0.74 0.01 0.80 0.10 0026 -0.02 0.62
cg23959705 5 0.07 0.15 0.09 0.064 0.05 0.27 0.13 0.005 0.08 0.082
cg06956444 6 -044 <0.001 —-0.40 <0.001 -0.07 0.12 -0.23 <0.001 -0.20 <0.001
cgl14614416 7 -0.33 <0.001 -0.24 <0.001 -0.11 0020 -0.14 0.002 -020 <0.001
cg18025409 8 -0.17 <0.001 -0.21 <0.001 -0.02 0.61 -0.10 0.035 -0.09 0.051
cg14153654 9 -0.07 0.13 -0.13 0.006 —0.02 0.70 0.00 0.99 -0.05 0.24
cg08840010 10 -0.32 <0.001 -0.31 <0.001 -0.14 0.002 -0.05 0.24 -0.27 <0.001
cg17123655 11 -0.35 <0.001 -0.36 <0.001 -0.07 0.12 -0.18 <0.001 -0.19 <0.001
cg16117781 12 -0.39 <0.001 -0.33 <0.001 -0.14 0002 -0.24 <0.001 -0.19 <0.001

NA: Not Applicable.

was performed in order to identify prognostically and biologically
relevant correlates (Supplemental Table 1). We found a significant
positive correlation between age and TNFRSF9 methylation in four
out of twelve analyzed loci (targeted by beads one, six, eight, and
eleven). There were no relevant gender-specific differences in
TNFRSF9 methylation and mRNA expression.

3.7. Methylation of TNFRSF9 and mRNA expression is associated with
genomic aberrations

We further investigated correlations between TNFRSF9 methyla-
tion and mRNA expression with genomic alterations. Methylation of
CpG sites in the promoter (targeted by beads one to five) significantly
correlated with the number of total mutations. In particular, we
found a significant correlation between methylation of CpG sites in
the promoter with mutations in ARID2 (AT-rich interactive domain-
containing protein 2, targeted by beads one to five) and IDH1 (Isoci-
trate dehydrogenase 1, targeted by beads two, three and five). Fur-
thermore, we found a significant correlation between TNFRSF9
methylation and BRAF mutation status in five CpG sites under investi-
gation (bead target sites five, eight and ten to twelve). Regarding
TNFRSF9 mRNA expression, we found significant correlations with a
UV signature, indicated by C > T transitions at dipyrimidines, but no
significant correlation with mutational load or BRAF, ARID2 or IDH1
mutation status.

3.8. Association of TNFRSF9 methylation and mRNA expression with
patients’ survival

Finally, we studied the association of TNFRSF9 methylation and
mRNA expression with patients’ survival. Methylation and mRNA
expression levels were tested as continuous log2-transformed vari-
ates without prior dichotomization in order to avoid biases due to
the introduction of cutoffs for patient sample classification. In univar-
iate Cox proportional hazards analysis, elevated TNFRSF9 mRNA
expression showed a significant correlation with better patient sur-
vival (Hazard ratio [HR] = 0.92, [95% CI: 0.87—0.97], P = 0.002, Wald
test; Table 1). Concordantly, elevated methylation levels at six out of
twelve CpG sites located in the promoter flank region and the gene
body region (bead target sites six, seven, and nine to twelve) were
significantly correlated with poor outcome (Table 1). We further
dichotomized mRNA levels and methylation levels based on
optimized cut-offs for patient classification. Kaplan—Meier survival
analyses confirmed the better prognosis of patients with high mRNA-
expressing (above cutoff) tumors and tumors showing hypomethyla-
tion (below cutoff) of the CpG sites located in the promoter flank

region and the gene body region (Fig. 4). Of note, and in contrast to
the CpG sites in the promoter flank and gene body region, hyperme-
thylation of CpG sites located in the promoter region targeted by
beads one, two, and five was associated with better survival. Finally,
we investigated the influence of melanoma sample type on the asso-
ciations of TNFRSF9 methylation and mRNA expression with overall
survival (Supplemental Table 4). We observed significant correlations
of TNFRSF9 methylation and survival not only in lymph node metas-
tases but also in distant metastases samples (Supplemental Table 4).
Hence, survival differences are unlikely to be biased by the different
analyzed sample types.

3.9. Association of TNFRSF9 methylation and mRNA expression with
anti-PD-1 response and progression-free survival

Finally, we analyzed TNFRSF9 methylation and mRNA expression
in FFPE tumor tissues with regard to response and progression in
melanoma patients who received anti-PD-1 directed immunother-
apy. TNFRSF9 mRNA expression levels were available from N = 121
anti-PD-1 treated melanoma patients (mRNA ICB cohort) included in
a study recently published by Liu et al. [28]. Our analysis demon-
strated continuous log2-transformed mRNA levels to be significantly
associated with progression-free survival (PFS) (HR = 0.92, [95% CI:
0.85-0.99], P = 0.022, Wald test). This result was confirmed in
Kaplan—Meier survival analysis after result dichotomization based
on an optimized cut-off (1.05 TPM, Fig. 5). Moreover, TNFRSF9 mRNA
expression levels were significantly associated with response to anti-
PD-1 immunotherapy (Fig. 6).

We additionally correlated continuous methylation levels with
PFS in a case-control study comprised of N = 29 responding and
N = 19 non-responding anti-PD-1 treated melanoma patients (UHB
ICB cohort). Among the CpG sites under investigation we found
methylation of CpG site targeted by bead 12 to be significantly corre-
lated with PFS (HR = 8.34, [95% CI: 1.24—56.1], P = 0.029, Wald test).
Again, we confirmed this result in Kaplan—Meier survival analysis
after introduction of an optimized cut-off (75% methylation) for
patient sample classification (Fig. 5). As expected, we also found
higher mean methylation levels in samples from non-responding
tumors (62.7% methylation) in comparison to samples from respond-
ing (53.4% methylation) tumors (Fig. 6), which, however, did not
reach statistical significance (P = 0.17, Wilcoxon Mann—Whitney U).

4. Discussion

Epigenetic alterations, including changes in DNA methylation, have
already been identified as a characteristic of T cell differentiation



A. Frohlich et al. / EBioMedicine 52 (2020) 102647

TNFRSF9 mRNA 7]

>39 n.c. (N=155)
<39 n.c. (N=293)
P=0.001

216839093 (1) 1

>6.02% (N=123)
<6.02% (N=327)
P=0.003

¢g27305704 (2)

>2.60% (N=152)
<2.60% (N=298)
P=0.006

4,000 8,000 12,000

Follow-up Time [Days]

0 4,000 8,000 12,000

Follow-up Time [Days]

4,000 8,000 12,000

Follow-up Time [Days]

223959705 (5)

>13.17% (N=246)
<13.17% (N=204)

P=0.014 | 1

206956444 (6)

>76.30% (N=228)
<76.30% (N=222)

P=0.003 | A

cg14614416 (7)

>72.42% (N=184)
<72.42% (N=266)

P<0.001

4,000 8,000 12,000
Follow-up Time [Days]

0 4,000 8,000 12,000
Follow-up Time [Days]

4,000 8,000 12,000
Follow-up Time [Days]

cg18025409 (8)

>9.43% (N=239)
<9.43% (N=211)
P=0.010

cg14153654 (9)

>21.06% (N=306)
<21.06% (N=144)
P=0.002

¢g08840010 (10)

>77.30% (N=189)
<77.30% (N=261)
P=0.005

4,000 8,000 12,000

Follow-up Time [Days]

0 4,000 8,000 12,000

Follow-up Time [Days]

100
30

S

= 60

<

=z

2

=

2 40 A

=

5

>

© 204
0-
100 A
80

S

= 60 T

<

=z

>

5

240 A

=

5

>

S 5
oA
100
80

S

= 60

=

>

E -

240

=

5

>

& 44
o
100 1
80

S

= 607

<

=z

z

=

240

3

5

>

© 201
0

cg17123655 (11) 7

>81.70% (N=208)
<81.70% (N=242)
P=0.008

cgl6117781 (12)

>56.10% (N=292)
<56.10% (N=158)
P<0.001

4,000 8,000 12,000

Follow-up Time [Days]

0 4,000 8,000
Follow-up Time [Days]

12,000

4,000 8,000 12,000

Follow-up Time [Days]
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Fig. 5. Kaplan—Meier analysis of progression-free survival in two cohorts of anti-PD-1 treated melanoma patients stratified according to TNFRSF9 methylation and mRNA
expression. Methylation of CpG site targeted by bead 12 was investigated in a case-control study comprised of N = 19 patients with progressive disease and N = 29 patients with
response (partial and complete), respectively, to PD-1 directed immunotherapy. TNFRSF9 mRNA expression was evaluated in N = 121 samples from a recently published cohort of
patients who received anti-PD-1 directed immunotherapy [28]. Patient samples were dichotomized based on optimized cutoffs. P-values refer to log-rank tests.

[29,31,41,48,49]. Accordingly, DNA methylation is being discussed as a
quantitative surrogate biomarker for T cell exhaustion [30]. Expression
of the immune checkpoint CTLA-4 for example has been shown to cor-
relate inversely with promoter methylation in diverse malignancies,
supporting the use of CTLA4 hypomethylation as a biomarker for T cell
exhaustion [37,39,50] and for response to immunotherapy [41]. In our
present study we investigated a possible association of TNFRSF9 DNA
methylation with mRNA expression, clinicopathological, molecular
and immune parameters, survival, and response to immune check-
point blockade in melanoma patients. The rationale behind our study
was to investigate the prognostic and predictive value of TNFRSF9
methylation in melanoma and to provide a rational for further testing
TNFRSF9 methylation as a predictive biomarker in patients treated
with TNFRSF9 agonists alone or in combination with PD-1 antagonists.
We observed inverse correlations between TNFRSF9 mRNA expression
levels and TNFRSF9 methylation. In addition, we found significant cor-
relations between TNFRSF9 methylation and mRNA expression with
lymphocyte score, leukocyte fraction, and signatures of tumor infiltrat-
ing leukocytes. Our results strongly support the hypothesis that
TNFRSF9 DNA methylation regulates TNFRSF9 mRNA expression in
tumor infiltrating immune cells. Finally, we showed that TNFRSF9 DNA
methylation and expressions allows for the prediction of response to
anti-PD-1 targeted immunotherapy.

TNFRSF9 is expressed on both T cells and antigen presenting cells
and possesses the capacity to enhance effector functions of activated
T lymphocytes, to augment cytokine production and promote expan-
sion of TILs [21]. In addition, TNFRSF9 is expressed on tumor endo-
thelial cells and stimulation of TNFRSF9 has been shown to mediate
leukocyte extravasation resulting in augmented migration of TILs
into malignant tissue [22]. In a mouse study, Palazdn et al. identified
hypoxia to be the microenvironmental factor inducing tumor endo-
thelial TNFRSF9 expression via hypoxia-inducible factor 1-alpha
(HIF1-¢). The authors also demonstrated that HIF1-o induces
TNFRSF9 upregulation in TILs, resulting in an augmented antitumor
response [24]. TNFRSF9 expression on T cells is activation dependent.
In healthy donors, this characteristic enables identification and isola-
tion of small numbers of antigen-specific CD8" T cells [9]. Further
studies demonstrated that TILs expressing TNFRSF9 represented a
tumor-experienced T cell lineage, leading to the conclusion that
TNFRSF9 expression could be used to identify tumor antigen-experi-
enced T cells, providing the rationale for adoptive T cell therapy
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Fig. 6. TNFRSF9 methylation and mRNA expression with regard to response to
anti-PD-1 immunotherapy. TNFRSF9 mRNA expression levels in samples from a
recently published anti-PD-1-treated cohort comprised of N = 49 responding patients
(partial, mixed, and complete), N = 56 non-responding patients, and N = 16 patients
with stable disease [28]. TNFRSF9 methylation at CpG targeted by bead 12 in melanoma
samples from N = 19 responding (complete and partial responses) and N = 29 non-
responding patients. P-values refer to Wilcoxon Mann—Whitney U and Kruskal—Wallis
test, respectively. Mean levels are indicated by bars.

[51,52]. Correspondingly, our data demonstrated a significant corre-
lation between TNFRSF9 mRNA expression and an infiltration signa-
ture of activated CD4* memory cells and a negative correlation with a
signature of naive CD4" T cells. Conversely, TNFRSF9 methylation cor-
related positively with the signature of naive CD4" T cells but nega-
tively with the signature of activated memory cells. We observed a
similar pattern for NK cells and macrophages in different stages of
activation and differentiation. That is, TNFRSF9 mRNA expression cor-
related with infiltration signatures of the activated and pro-inflam-
matory leukocyte subset, whereas inverse correlations were
observed for resting NK cells and anti-inflammatory macrophages.
The results are in line with the reported biological function of
TNFRSF9 as a co-stimulatory receptor on activated immune cells. Fur-
thermore, our data reflect the complex regulatory functions of
TNFRSF9, as indicated by the inverse correlations of TNFRSF9 mRNA
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expression with an infiltration signature of dendritic cells and the sig-
nificant correlation with a signature of Tregs. TNFRFS9 signaling has
been reported to promote proliferation and survival of Tregs [53]. In
the development of dendritic cells however, TNFRSF9 signaling was
suggested to play a negative functional role [54].

Our results demonstrate a correlation between TNFRSF9 expres-
sion and immune cell infiltrates which is consistent with the
reported function of TNFRSF9 to enhance lymphocyte activation
and infiltration in malignancies. In melanoma and ovarian cancer
TNFRFS9 expression was suggested as a biomarker for TILs [42].
Beyond, our results indicate that methylation of TNFRSF9 might
serve as a surrogate biomarker for tumor infiltrating immune cells.
Tumor infiltrating lymphocytes are known to be associated with
favorable prognosis in primary and advanced melanoma [48,55].
The recent landscape paper of the TCGA cohort further suggested
that T cell signaling has prognostic significance, which was in par-
ticular true for CD8" effector T cells [45]. Even though in vitro sig-
naling of TNFRSF9 was shown to support both CD4" and CD8" T cell
response, in vivo signaling was demonstrated to predominantly
affect CD8" T cell response [56]. Infiltration of CD8" T cells is associ-
ated with an activation of the IFN-y pathways [27,47]. We observed
a significant correlation of TNFRSF9 mRNA expression with an IFN-
y signature. Correspondingly, TNFRSF9 methylation correlated
inversely with mRNA expression of IFN-y and IFN-y-regulated
genes. Previous studies demonstrated the ability of TNFRSF9 to
induce high levels of IFN-y, thereby improving tumor eradication
[1]. A phase I trial combining the TNFRSF9 agonist, utomilumab,
with anti PD-1 antibody, pembrolizumab, demonstrated antitumor
activity in patients with advanced malignancies [57]. Although the
study was not designed to detect relationships between clinical
outcome and potential biomarkers, the authors observed a correla-
tion between clinical benefit and elevated CD8" memory cells and
IFN-y in the peripheral blood. IFN-y signature correlates with
immune cell infiltration, and both variables are known to correlate
with patient survival in melanoma and many other types of cancers
[58]. As such, a correlation between elevated levels of IFN-y,
immune cell infiltration and TNFRSF9 expression seems predict-
able, given the fact that TNFRSF9 is predominantly expressed on
immune cells. The question of causality remains; whether TNFRSF9
expression is the source or result of immune cell infiltration and
proinflammatory antitumor response. An experimental study fol-
lowing up on the role of TNFRSF9 in the interaction between TILs
and tumors cells in melanoma and ovarian cancer demonstrated
that TNFRSF9 was preferentially expressed on tumor-reactive sub-
sets of TILs and that direct contact with tumor cells stimulated the
expression of TNFRSF9 [42]. These results indeed support the idea
that initially TNFRSF9 expression is the result of immune cell infil-
tration. Based on their results the authors suggested TNFRSF9 as a
biomarker for tumor-reactive TILs, assuming that TNFRSF9 expres-
sion might predict improved prognosis in ovarian cancer and mela-
noma. Our results support this idea.

As discussed in our study, TNFRFS9 signaling has been shown to
support CD4* and CD8* T cell responses. In CD8* T cells TNFRFS9 signal-
ing promotes cytokine production, including IFN-y [1]. We therefore
assume that TNFRFS9 expression might indicate increased cytokine lev-
els. Ye et al. demonstrated that CD137 positive TILs and tumor-associ-
ated lymphocytes (TALs) secreted IFN-y in response to autologous
tumor cell stimulation, whereas CD137 negative TILs and TALs did not.
The study showed that increased CD137 expression among CD8" TILs in
the presence of tumor cells was MHC-dependent, ruling out activation-
independent effects mediated by cytokines alone [42]. It has been
highly documented that IFN-y correlates with immune cell infiltration
and both variables serve as generally accepted prognostic biomarkers
in malignancies. Our results, in conjunction with published knowledge
on TNFRFS9, support the idea to further investigate the prognostic value
of TNFRSF9 expression and its epigenetic regulation.

Beyond the prognostic significance of TNFRSF9 methylation, our
study primarily aims at supplying a rational for further testing of
TNFRSF9 methylation as a predictive biomarker in a cohort of patients
treated with TNFRSF9 agonists. Despite its value as prognostic bio-
markers, immune checkpoint mRNA expression and IFN-y have only
insufficiently proven their suitability as predictive biomarker for
patients treated with immunotherapy [59]. Whereas TILs or IFN-y
are general biomarker, the identification of a specific biomarker of
concomitant prognostic and predictive significance could extend the
possibilities of patient-tailored therapy and be of great value in par-
ticular in the adjuvant setting. A current trial studied predictive bio-
markers for response to immune checkpoint blockade in 37 lymph
node metastases after ex vivo exposure to immune-checkpoint block-
ade in resected stage Il melanoma [43]. The experimental study
demonstrated TNFRSF9 expression on CD8" peripheral blood T cells
to be associated with progression-free survival in resected stage III
melanoma patients who received adjuvant treatment with ipilimu-
mab + nivolumab combination therapy, but not nivolumab alone. So
far, agonistic TNFRSF9 antibodies have only been used in clinical tri-
als, limiting the availability of data and samples from TNFRSF9 anti-
body treated patients. To investigate the feasibility of TNFRSF9
methylation as a predictive biomarker, we therefore investigated
patients who received anti-PD-1 directed immune checkpoint block-
age as a representative immunotherapy study group (mRNA ICB
cohort). In this group, we demonstrated TNFRSF9 mRNA expression
levels to be significantly associated with increased PFS and with
response to anti-PD-1 immunotherapy. Furthermore, we found
methylation to be significantly correlated with PFS and a marked
trend towards higher mean methylation levels in non-responding
tumors in comparison to tumors responding to anti-PD-1 therapy
(UHB ICB cohort). These results provide first evidence of a predictive
value of TNFRSF9 methylation in melanoma patients treated with
immunotherapy. Given that mechanisms of anti-tumor response,
including immune cell infiltration and IFN-y expression, and immune
checkpoint signaling are interlinked, we assume that the predictive
significance of TNFRSF9 will also hold true for patients treated with
agonistic TNFRSF9 antibodies. Analysis of TILs and TIL signature
demands immunohistochemistry and RNAseq, with the latter being
limited in FFPET. Beyond, TNFRSF9 expression has been shown to be
stimulation dependent and temporally limited, whereas DNA meth-
ylation constitutes a rather robust marker. Here, methylation analysis
could present an additional diagnostic tool. We therefore assume
methylation of TNFRSF9 to be a sensible prognostic and predictive
biomarker reflecting the complex molecular interplay of tumor
microenvironment.

A recent study demonstrated that TNFRSF9 co-stimulation in CD8*
T cells leads to changes in DNA methylation and chromatin reprog-
ramming in diverse immune-related genes [60]. In our study we
investigated associations of methylation in TNFRSF9 with genomic
alterations. We found a positive correlation between TNFRSF9 pro-
moter methylation and the presence of somatic mutations in ARID2
and IDH1. Mutations in ARID2, encoding a component of the chroma-
tin-remodeling complex, and the epigenetic regulator IDH1 are
known to play a role in melanomagenesis [61]. The association of
mutations in epigenetic enzymes and TNFRSF9 methylation could
point to a possible significance of TNFRSF9 promoter methylation
during malignant transformation. To our knowledge a tumor cell-
intrinsic role of TNFRSF9 in melanoma has not been described yet
and should be followed up in functional experiments.

We found significant higher levels of TNFRSF9 methylation in BRAF
wildtype compared to mutated melanoma. A recent study identified a
network of BRAF-regulated transcription factors, including HIF1-c,
that controls glycolysis in melanoma cells, is critical for response to
BRAF inhibition and is modulated by BRAF inhibition in melanoma
[62]. A strong link between BRAF mutation and DNA hypermethyla-
tion, also referred to as CpG island methylator phenotype (CIMP), has
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been described in colorectal cancers [36,63]. A similar association in
melanoma, however, could not be confirmed [64|. Comprehensive
analyses of the data provided by TCGA identified a negative correla-
tion between BRAF mutations and methylation changes in melanoma
[45,46]. These results are in line with previous work demonstrating
that mutations in BRAF [65] enhance the immune infiltrate, while
those in IDH1 reduce immune cell infiltration [66]. The possibility of
TNFRSF9 playing a role in the cross-talk of transcriptional regulators
in melanoma needs to be followed up in future experimental studies.

We found significant correlations between age and TNFRSF9
methylation which is in line with published studies. Age-associated
methylation changes of regulatory elements have been shown to pre-
dominantly affect genes involved in immune processes [67,68], e.g.
immune checkpoint genes [69,70] or genes controlling T cell immune
response [71], which might serve as a possible explanation for carci-
nogenesis in elderly patients. A recent study revealed age-related
genome-wide changes in DNA methylation in human PBMCs (periph-
eral blood mononucleated cells), with a functional analysis showing a
strong enrichment of genes involved in cancer in older subjects [72].

In conclusion, our results suggest that TNFRSF9 mRNA expression
is regulated via DNA methylation. The observed correlations between
TNFRSF9 DNA methylation, TNFRSF9 mRNA expression and known
features of response to immune checkpoint blockage suggest that
TNFRSF9 methylation could be a biomarker in the context of immuno-
therapies. Our study provides first evidence of TNFRSF9 as a potential
predictive biomarker for response to anti-PD-1 checkpoint blockade.
Based on our results, we recommend testing TNFRSF9 DNA methyla-
tion as a predictive biomarker in patients treated with TNFRSF9 ago-
nists and PD-1 antagonists.
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