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Abstract

Face-to-face contacts between individuals contribute to shape social networks and play an important role in determining
how infectious diseases can spread within a population. It is thus important to obtain accurate and reliable descriptions of
human contact patterns occurring in various day-to-day life contexts. Recent technological advances and the development
of wearable sensors able to sense proximity patterns have made it possible to gather data giving access to time-varying
contact networks of individuals in specific environments. Here we present and analyze two such data sets describing with
high temporal resolution the contact patterns of students in a high school. We define contact matrices describing the
contact patterns between students of different classes and show the importance of the class structure. We take advantage
of the fact that the two data sets were collected in the same setting during several days in two successive years to perform a
longitudinal analysis on two very different timescales. We show the high stability of the contact patterns across days and
across years: the statistical distributions of numbers and durations of contacts are the same in different periods, and we
observe a very high similarity of the contact matrices measured in different days or different years. The rate of change of the
contacts of each individual from one day to the next is also similar in different years. We discuss the interest of the present
analysis and data sets for various fields, including in social sciences in order to better understand and model human
behavior and interactions in different contexts, and in epidemiology in order to inform models describing the spread of
infectious diseases and design targeted containment strategies.
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Introduction

Reliable detailed information on the contact patterns occurring

between individuals in day-to-day life contexts carries a great value

in fields such as social sciences or epidemiology of infectious

diseases, in which human interactions are of primary importance.

In particular, the investigation of contact patterns in contexts

where a substantial amount of social mixing between individuals is

expected, such as schools, high schools or workplaces, represents

an important research goal. For instance, the strong mixing of

school children favors the spread of infectious diseases in school

environmentx and makes them an important source of infection

into households from where infections can spread further [1,2]. In

such contexts, a precise description of human contacts can help

identify possible contagion pathways, design realistic models of

epidemic spread and design and evaluate containment strategies

such as targeted vaccination, social distancing or school or

workplace closures.

Many efforts have therefore been devoted to the collection of

data on human contact patterns in various settings and

environments in the last years [3]. The research community has

moreover started to systematically take advantage of recent

technological advances to move from methods ranging from

diaries and surveys [4–13] to new technologies based on wearable

sensors able to detect close proximity [13–18] and even face-to-

face contacts of individuals [19–25]. Biases due to self-reporting

are thus avoided [10,13] and high-resolution data can be collected

in an objective way, allowing to parametrize and inform data-

driven models describing human behavior [26–28] and epidemic

spread in specific settings [21].

Thanks to the use of wearable sensors, face-to-face contact data

collected in unsupervised fashion in different contexts have thus

started to become available, providing the beginning of an ‘‘atlas’’

of human contacts: the contexts investigated include conferences

[20,21,24], a museum [24], a primary school [22], in which a

strong impact of the class and age structure on the contact patterns

was evidentiated, and hospitals [23,25]. Many contexts remain

however to be investigated. Moreover, the longitudinal dimension

of contact patterns has barely been studied [25], and data sets

describing face-to-face contacts in a given population or in a given

setting but at different times have to our knowledge not been

collected or analyzed. Here, we partially address this issue, and

give a new contribution to the collection of contact patterns in

diverse environments, by presenting two high-resolution data sets

describing the contacts between students in a high school. These

data were collected in a French high school in 2011 and 2012

using a proximity-sensing platform based on wearable sensors. We

investigate the mixing patterns of students as described by their

high-resolution temporal contact network. We study how the

mixing is driven by the repartition of students into classes and

investigate if gender differences have an impact on contact
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patterns, as observed in primary school [33]. We moreover study

the evolution of the contact patterns on two widely distinct

different timescales: on the one hand, we examine the stability of

the contact networks and mixing patterns in a given population of

students from one day to the next; on the other hand, we take

advantage of the fact that the two data sets were collected in the

same environment (even if the students changed from one year to

the next) to study the long term stability of contact patterns in the

high school. Finally, we make available on a dedicated webpage

(http://www.sociopatterns.org/datasets/) a novel instance of a

high-resolution time-varying network of contacts between individ-

uals, which can be of interest to the wide interdisciplinary research

community studying complex and temporal networks.

Methods

Study design, high school context, and data collection
We collected data on the close proximity face-to-face encounters

of high school students of several classes in Lycée Thiers,

Marseilles, France during 4 days (Tuesday to Friday) in Dec.

2011 and during 7 days (from a Monday to the Tuesday of the

following week) in Nov. 2012. The data collection involved

students of three different classes in 2011 (gathering 118 students)

and of five classes (gathering 180 students) in 2012. The three

classes participating in 2011 were among the five of 2012, albeit

with different students. These classes, called ‘‘classes prépara-

toires’’, are specific to the French schooling system. They gather

students for studies that take place after the end of the usual high

school studies and last two years. During these two years, students

still study in a high school environment but are de facto mostly

separated from the younger high school students, as their classes

are located in a different part of the high school building and as

they take their lunches separately. At the end of these two years,

students go through competitive exams yielding admission to

various higher education colleges.

The data collection involved classes corresponding to the second

year of such studies, in which students focus on different topics:

‘‘MP’’ classes focus more on mathematics and physics, ‘‘PC’’

classes on physics and chemistry, and ‘‘PSI’’ classes on engineering

studies. All students in this second year must prepare a small

project that they present at the exam, and several students could

build a project based on their participation to the data collection,

together with the use of the collected data in some small scale

analysis or numerical simulation. Thanks to their involvement, the

participation of students to the data collection was close to 100%.

We however limited the data collection to those classes in which at

least one student would prepare a project based on the data, as

engagement is a well-known issue that is efficiently solved through

this kind of incentive [9]. In particular, first year students did not

participate, and some classes participating in the 2012 study were

not included in the first study (2011). The comparison between the

data sets of the two distinct years will be performed taking this

point into account. Overall, we thus obtain data concerning the

contacts of a specific set of students for each year, corresponding to

a specific set of classes, and the data do not contain contacts with

individuals not taking part to the study. Importantly, the study

considers whole classes, and not a subset of students in each class

(this is important because most contacts occur within classes as we

will see later on). Moreover, second year students themselves assert

that they almost do not have any contacts with first year students.

Data were gathered using the measurement platform developed

by the SocioPatterns collaboration [19]: it is based on wearable

sensors that are embedded in unobtrusive wearable badges and

exchange ultra-low power radio packets in order to detect close

proximity of individuals wearing them [19,20]. As described in

detail elsewhere [20,22,23,25], the power level is tuned so that

devices can exchange packets only when located within 1–1.5

meters of one another, and individuals are asked to wear the

devices on their chests using lanyards, ensuring that the devices of

two individuals can only exchange radio packets when the persons

are facing each other. Moreover, the wearable sensors are tuned so

that the face-to-face proximity of two individuals wearing them

can be assessed over an interval of 20 seconds with a probability in

excess of 99%. Two individuals are thus said to be in contact if

their badges exchange radio packets during a 20-second time

window, and the contact event is considered interrupted if the

badges do not exchange packets over a 20-second interval. Finally,

the information on face-to-face proximity events detected by the

wearable sensors is relayed to radio receivers installed throughout

the high school: contacts occurring outside the school premises

were not measured.

Ethics and privacy
Before the study, students and teachers were informed on the

details and aims of the study. A signed informed consent was

obtained for each participating individual (no minors were

involved as students of these classes were all aged at least 18).

All participants were given a wearable sensor and asked to wear it

at all times in the high school. No personal information was

collected: the only information associated with the unique

identifier of each badge was the class and the gender of the

corresponding individual. The ethics committee responsible for

this kind of data collection, which is the French national bodies

responsible for ethics and privacy, namely the Commission

Nationale de l’Informatique et des Libertés (CNIL, http://www.

cnil.fr) approved the study, as well as the high school authorities.

Data analysis
At the most detailed level, the data collecting infrastructure

yields a temporal network of contacts with a temporal resolution of

20 seconds [20]. Starting from these data, we analyze the patterns

of contacts between students and between classes at different

temporal and structural aggregation levels. In the following, i and j

denote individual sensor identification numbers, while X and Y

denote classes.

We first compute the number of contact events of each

individual, the statistical distribution of the duration of such

events, and of the time between successive contacts of an

individual. We moreover build aggregated contact networks on

several time windows: in each of these networks, nodes represent

individuals and a weighted link between two nodes represents the

fact that the two corresponding individuals have been in contact at

least once during the aggregation time window. For each time

window, we can define the following quantities:

N eij is 1 if and only if i and j have been in contact: this

corresponds to the adjacency matrix of the contact network

aggregated over the considered time window,

N the degree ki of a node gives the number of distinct persons

with whom i has been in contact during the time window,

N nij gives the number of contact events recorded between i and j

(nij~nji) during the time window,

N the weight wij of the link between i and j is defined by the

cumulative duration of the nij contacts between i and j

(wij~wji) which occurred during the time window,
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N the strength of a node i, si~
P

j wij , gives the sum of the

durations of the contacts of individual i during the time

window.

We investigate the statistical distributions of the degrees and

weights in the aggregated networks. For each distribution, we

compute average and coefficient of variation squared CV 2

(squared ratio of the standard deviation to the mean of the

distribution: CV 2
v1 corresponds to distributions with low

variance, while CV2
w1 is obtained for high-variance distribu-

tions).

We also compare the properties of networks aggregated over

different time windows, and the evolution of some nodes’

properties (degree and strength) when the aggregation time

window length increases. At a finer resolution, we moreover

investigate the similarly between the neighborhoods of a given

node in contact networks aggregated over different periods. For

instance, for daily aggregated networks, the similarity between the

neighborhoods of an individual i in the contact networks measured

in two different days denoted 1 and 2 is measured through the

cosine similarity

s1,2(i)~

P
jwij,1wij,2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jw
2
ij,1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jw

2
ij,2

q ,

where wij,d is the weight of the link between i and j in the contact

network of day d , i.e., the cumulative duration of the contacts

between i and j occurring on day d. The cosine similarity takes

values between 0 and 1: it is equal to 0 if i had contact with strictly

different individuals in the two days considered, and to 1 if i had

contacts with the same persons in both days, with proportional

durations.

As students are divided into classes, we moreover aggregated the

data in order to study the mixing patterns between classes. The

number of students in class X is denoted by nX . We consider the

following quantities, aggregated over each time window of interest:

N the number of edges between students of class X with students

of c lass Y in the aggregated contact network:

EXY ~
P

i[X ,j[Y eij for X=Y (and EXX ~ 1
2

P
i,j[X eij ),

N the density of edges between class X and class Y :

rXY ~EXY=Emax
XY , where Emax

XY ~nX nY is the maximum

possible number of edges between class X and class Y

(Emax
XX ~nX (nX {1)=2).

N the total number of contacts between students of class X with

students of class Y : NXY ~
P

i[X ,j[Y nij (for X~Y we have

NXX ~ 1
2

P
i,j[X nij ),

N the average number of contacts of a student of class X with

students of class Y nXY ~ NXY

nX
,

N the total time spent in contact between students of class X with

students of class Y : WXY ~
P

i[X ,j[Y wij (for X~Y we have

WXX ~ 1
2

P
i,j[X wij ),

N the average time spent by a student of class X in contact with

students of class Y : wXY ~ WXY

nX
.

The quantities WXY , EXY and rXY define contact matrices that

describe the mixing patterns between the classes. In order to

investigate the temporal stability of these patterns, we moreover

consider the similarity between two matrices A and B of size n|n,

describing the contact matrices in different time windows, defined

as

sA,B~

P
n
i,j~1 AijBijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i,j~1 A2

ij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i,j~1 B2

ij

q :

This similarity takes values between 0 and 1: it is equal to 1 if

the elements of both matrices are proportional (Aij~cBij for all i,j,

with c independent of i and j), and 0 if each time one element of A
is non-zero, the corresponding element of B is zero and vice-versa.

Results

Global analysis
The class names, the number of individuals of each gender and

in each class are given respectively in Tables 1 and 2 for each year.

In order to avoid repetitions, we mainly report here results

corresponding to the data collection performed in 2012. A

comparison between the two data sets is performed later on.

During the 7 days of data collection of 2012, 19,774 contact

events were registered, corresponding to a cumulative duration of

900,940s (approx. 250 hours). Table 3 reports the number of

durations of contacts registered in each day.

Figure 1 reports the distributions of contact and inter-contact

durations measured over the whole data collection. Most contacts

are short, but contacts of very different durations are observed,

including long ones. While the average duration of a contact is 44

seconds, and 88% of the contacts last less than 1 minute, more

than 1% of the contacts last at least 5 minutes. The strong

variability in contact durations is shown by the large value of the

squared coefficient of variation of the distribution, CV 2~5:1. In

fact, the distribution is heavy-tailed: as already observed in

previous studies measuring the durations of contact events

between individuals (see e.g., [15,20]), and no characteristic

contact time scale can be defined. In other terms, the average

contact duration is not representative and both much shorter and

much longer contacts can be observed with non-negligible

probabilities. For transmissible diseases for which the transmission

probability between two individuals depends on their time in

contact, this means that different contacts might yield very

different transmission probabilities: many contacts are very short

and correspond to a small transmission probability, but some are

much longer than others, and could therefore play a crucial role in

disease dynamics. The inter-contact durations is as well very broad

(close to a power-law with exponent smaller than 2): most intervals

between successive contacts are very short, but very long durations

are also observed. This highlights the burstiness of human

contacts, a well known feature of human dynamics observed in a

variety of systems driven by human actions [29,30].

Contact matrices
Figure 2 reports the cumulative durations and the total numbers

of contacts between classes of individuals, computed over the

whole study duration. The second and third columns take into

account the different numbers of individuals in each class, yielding

asymmetric matrices. The large values observed on the matrices’

diagonals show that most contacts (18,101, i.e., 91.5% of all

contacts) involve students of the same class, indicating that

contacts are strongly assortative with respect to class, consistently

to the results obtained in a primary school [22] and as assumed in

a number of complex agent-based models of contact networks
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built from socio-demographic data [31]. Very few contacts are

observed between students of different classes. An additional

substructure can however be noted: the five classes can broadly be

divided into two groups, a group of two classes (MP*1 and MP*2)

and a group of three classes (PC, PC*, PSI*). More contacts are

observed between students of two classes in the same group than

between students of two different groups. This structure can have

two origins: first, the topics studied by classes of each group are

similar; moreover, the classrooms of each group are physically

close in the high school.

Notably, and despite the very different numbers of contacts, the

distributions of contact durations restricted to the contacts within a

given class, or between students of given classes, display similar

statistical properties as the global distribution shown in Figure 1

(not shown): these distributions are broad with strong fluctuations,

and have the same functional shape.

The contact matrices of Figure 2 correspond to a coarse-

grained picture in which each student is assumed to have contacts

with all other students, both within his/her class and outside, even

if the average number and duration of the contacts between two

individuals vary strongly depending on their respective classes.

Figure 3 however shows that this picture is far from correct: it

gives the number of pairs of individuals of given classes who have

been in contact at least once during the study, and the same

quantity normalized by its maximum possible value. For any pair

of classes X and Y, this corresponds to the density of edges

between individuals in the network of contacts aggregated over the

whole study and restricted to these classes. This quantity would be

equal to 1 if all individuals had been in contact. We observe that

the density of edges is instead very small for distinct classes, and

that it is still far from 1 inside each class, even if it takes much

larger values. This shows the interest of investigating contact

patterns in more detail by studying the contact network structure.

Contact network
The contact network aggregated over the whole study has 180

nodes representing the 180 students, and 2220 edges correspond-

ing to the pairs of students who have been in contact at least once

during the data collection. The average shortest path length in this

network is equal to 2.15, and its clustering coefficient is equal to

0.48 (a random network with the same number of nodes and edges

would have a clustering coefficient &0:17). Moreover, the network

has a strong modular structure, as already apparent from the

structure of the contact matrices, and as visible in Figure 4.

Figure 5 displays the distributions of nodes’ degrees and of links’

weights in the global aggregated network. The degree distribution

is narrow (CV 2~0:2), with a tail decaying in an approximately

exponential fashion: the contact network is not heterogeneous in

terms of degrees. The narrow character of the degree distribution

of empirical human contacts has been observed as well in other

contexts [15,21,22,24]. On the other hand, the distribution of

links’ weights exhibits strong fluctuations, with a squared

coefficient of variation equal to 12.6 and a heavy tail that can

be approximately fitted by a power law. The average amount of

time spent in interaction by two persons is 405 seconds (6 min

45 s) during the whole study duration, but this value hides large

heterogeneities. Most cumulated durations are short (64% of the

pairs of individuals who have interacted at least once have been in

contact less than 2 minutes over the whole data collection period),

but large values are also observed: 12% have spent more than 10

minutes in contact and 2.5% more than 1 hour. Moreover, as

shown in Figure S1 in File S1, the heterogeneity of cumulated

contact durations is observed both at the global population level

(Figure 5) and if we restrict the distribution to pairs of individuals

in the same class or in specific given classes: even within a class in

which the density of edges is relatively large, as shown by the

contact matrices, different pairs of individuals can have widely

different interaction durations.

Gender homophily
The term homophily refers to the preference that individuals

exhibit when they interact and build social ties with peers they

consider to be alike. It is a well-known feature of human behavior

and has been studied in many contexts [32]. It is in particular

Table 1. Classes involved in the 2011 data collection.

Class name Number of individuals Male Female

PC 31 16 15

PC* 45 32 13

PSI* 42 32 10

Total 118 80 38

doi:10.1371/journal.pone.0107878.t001

Table 2. Classes involved in the 2012 data collection.

Class name Number of individuals Male Female

MP*1 31 27 4

MP*2 35 27 8

PC 38 24 14

PC* 35 26 9

PSI* 41 29 12

Total 180 133 47

doi:10.1371/journal.pone.0107878.t002
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known from social science studies based on surveys and direct

observation that children tend to exhibit gender preference at

school, and that this gender homophily decreases during

adolescence (Note that gender homophily can also be described

as sex assortativeness in social contacts). Recently, statistical

evidence of gender homophily has also been obtained in a high-

resolution time-resolved data set describing face-to-face proximity

of children in a primary school [33]. The present data set describes

the interactions of young adults in a high school context, and it is

therefore of interest to investigate the possible presence of gender

homophily with the same methods.

Figure 6 displays contact matrices giving the normalized

numbers of contacts and the densities of edges between individuals

of given groups. In these matrices, we consider 10 groups obtained

by dividing each class into two groups according to the students’

gender. As the numbers of male (M) and female (F) students are

strongly different (see Table 2), with much more male than female

students, we consider normalized contact matrices: for the number

of edges, we normalize by the maximum number of edges between

each pair of groups and, for the contact durations, each matrix

element at row X and column Y is normalized by the number of

individuals in group X in order to give the average time spent by a

member of group X with individuals of group Y.

The contact matrices display a block diagonal form, each 2x2

block corresponding to a class. The number and durations of

contacts among female students is typically low; in the global

aggregated contact network, 57.7% of the edges join two male

students, 7.9% join two female students, and 34.4% are between

students of different gender.

These values seem to indicate a preference for contacts with

students of the other gender among female students and for

students of the same gender for male students. This appears as well

through the distribution of the same gender preference index Psg:

for each individual, this index is defined as the fraction of edges, in

the aggregated contact network, with individuals of the same

gender. The corresponding distributions are shown separately for

male and female students as boxplots in Figure 7 for the contact

networks aggregated on each day and over the whole data

collection. The fraction of same-gender neighbors is systematically

high for male students and lower than 0.5 for female students. The

average values of these distributions are given in Table 4.

To interpret these values, we need however to take into account

the very strong imbalance between male and female students,

Table 3. Number and duration of contacts in the different days of the 2012 data collection that lasted 7 days (one full week plus
monday and tuesday of the following week).

Number of contacts Cumulative duration of contacts

Day Number (% of total) Seconds (% of total) Minutes Hours

1st Monday 4,191 (21.2) 199,140 (22.1) 3,319 55

1st Tuesday 3,170 (16) 132,720 (14.7) 2,212 37

Wednesday 1,547 (7.8) 64,540 (6.4) 965 16

Thursday 2,641 (13.4) 106,920 (11.9) 1,782 30

Friday 3,184 (16.1) 154,360 (17.1) 2,573 43

2nd Monday 2,988 (15.1) 156,360 (17.4) 2,606 43

2nd Tuesday 2,053 (10.4) 93,540 (10.4) 1,559 26

Total 19,774 900,940 15,016 250

doi:10.1371/journal.pone.0107878.t003

Figure 1. Left: Distribution P(dt) of contact durations: probability for a contact to last dt, Right: Distribution P(inter t) of inter-contact
durations: probability that the time elapsed between two successive contacts is inter t.
doi:10.1371/journal.pone.0107878.g001

Contact Patterns among High School Students

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107878



which clearly plays an important role here. For instance, in the

limit of a very small fraction of female students, the fraction of

female-female (F-F) interactions would be negligible even in the

case of a fully homogeneous, gender-indifferent, mixing of

individuals. We therefore consider a simple null model for each

aggregated graph, given by a graph with the same number of

nodes and edges but randomly placed edges. The fractions of

edges joining male students is then 54.5% on average, while 6.7%

of the edges join female students (averages over 1000 realizations

of the null model). Moreover, the distributions and averages of the

same gender preference index in the reshuffled networks for each

day and for the global study are shown in Figure 7 and Table 4.

The same gender preference index takes values systematically

slightly lower in the null model than in the data for both male and

female students. This tends to indicate a slight tendency towards

gender homophily for both genders. The boxplots displayed in

Figure 2. Contacts matrices giving the cumulated durations in seconds (first row) and the numbers (second row) of contacts
between classes during the whole study. In the first column, the matrix entry at row X and column Y gives the total duration (resp. number) of
all contacts between all individuals of class X with all individuals of class Y. In the second column, the matrix entry at row X and column Y gives the
average duration (resp. number) of contacts of an individual of class X with individuals of class Y. In the third column, we normalize each matrix
element of the second column matrices by the duration of the study, in days, to obtain at row X and column Y the average daily duration (resp.
number) of contacts of an individual of class X with individuals of class Y.
doi:10.1371/journal.pone.0107878.g002

Figure 3. Contact matrices of edge numbers and densities. Left: the matrix entry at row X and column Y gives EXY , i.e., the number of pairs of
individuals of classes X and Y who have been in contact at least once during the study. Right: the matrix entry at row X and column Y gives rXY , i.e.,
EXY normalized by the maximal possible number of pairs of individuals of classes X and Y (Emax

XY ~nX nY if X=Y , Emax
XX ~nX (nX {1)=2 if X~Y ).

doi:10.1371/journal.pone.0107878.g003
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Figure 7 show however that this tendency is not statistically

significant, and that the observed data is in fact compatible with a

null hypothesis of absence of homophily and of gender indifference

in the contact patterns of the students. We also note that keeping

only the links corresponding to a weight larger than a given

threshold, corresponding e.g., to an aggregated interaction

duration of 2 or 5 minutes over the study duration, changes the

number of edges of each type but does not change the results

concerning the absence of gender homophily.

Another way (and reason) to assess the presence of homophily in

the classes is related to the information of epidemiological models

by data on human contacts. As appears clearly from the contact

matrix and contact network analysis, the population of high school

students is far from being homogeneously mixed, and it is certainly

relevant to use a level of description in which students are divided

into groups corresponding to their respective classes. If a strong

gender homophily were to be observed, corresponding to the

presence of a strong group substructure inside classes, it would as

well be important to consider such substructure in models of

contact patterns in order to describe spreading phenomena in such

population. The assessment of such properties is thus related to the

issue of the amount of information needed to inform models, as

discussed in [21,34,35]. While a detailed analysis of spreading

processes in the population under study goes beyond the scope of

the present investigation, we investigate this point in the File S1

through numerical simulations of a simple Susceptible-Infected

spreading process: we show that a description of the contact

patterns at the level of classes corresponds to a sufficient resolution,

and that it is not necessary to represent the students population at

the finer level of a division into gender groups in each class.

Longitudinal analysis
We now turn to the longitudinal study of the contact patterns.

Of particular interest are the potential similarities between the

properties of contacts occurring in different days, in order to

understand for instance how much information is lost if data are

gathered only during one single day or few days, and how much

data gathering is needed to inform models of human behavior.

Figure 8 reports the evolution of the number of contacts at the

temporal resolutions of one-hour and ten-minutes time windows

(see also File S1). The number of contacts fluctuates strongly over

the course of each day, with strong peaks determined by the

various breaks between lectures, showing that a data collection

limited to a few hours would be insufficient to gather an accurate

picture of the contacts occurring in the high school; however, the

evolution is very similar from one day to another, with maxima

determined by the lunch and class breaks. We also note that

Wednesday afternoon has much less contacts than other days, due

to the fact that students pass exams which typically last the whole

afternoon without any break.

Contact matrices defined for each day, each morning (before

1PM) and each afternoon (after 1PM) periods are displayed in

Figure 4. Network of contacts between students, aggregated
over the whole study duration. Each node represents a student, its
color gives the student’s class and its size is given by its degree. Figure
created using the Gephi software, http://www.gephi.org.
doi:10.1371/journal.pone.0107878.g004

Figure 5. Left: cumulative degree distribution P(k) of the contact network aggregated over the whole study duration, i.e.,
probability that a randomly chosen node has degree §k. Inset: the same distribution in lin-log scale. Right: distribution of edge weights in
the contact network. The weight wij of an edge i-j is given by the total time spent in face-to-face proximity by the two corresponding individuals
during the aggregation time window (here the whole study, i.e., 7 days).
doi:10.1371/journal.pone.0107878.g005
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Figures S3 and S4 of File S1. While the precise values of the

numbers (and cumulative durations) of contacts between classes

fluctuate from one day to the other and from a half-day to another,

the structure of the contact matrices presents a robust pattern, with

higher values on the diagonal and a substructure of two groups of

2 and 3 classes, as observed for the contact matrix aggregated over

the whole study duration. In order to quantify this point more

precisely, we compute the cosine similarities between (i) pairs of

daily contact matrices and (ii) morning and afternoon contact

matrices for each day. The resulting values, given in Table S1 of

File S1, are large, with a minimum of 0.65 and a maximum of 0.99

between daily contact matrices (with most values above 0.9), and

values between 0.53 and 0.94 between morning and afternoon

contact matrices. In order to check if these high values are only

due to the fact that the diagonal elements of the contact matrices

take much larger values than the off-diagonal ones, we also

compute similarities restricted to the off-diagonal elements of the

matrices. The corresponding values are still very large, with a

minimum at 0.56 and a maximum of 0.97, and most values above

0.8. This shows that, despite the fluctuations in the number of

contacts, the structure of the contacts between classes is very

robust across different days, and is well captured by a data

collection performed on any given day.

In order to shed more light into this robustness, we also

compare the contact networks aggregated over daily time

windows. From the point of view of the statistical properties,

Figure 9 highlights the similarity between the statistical distribu-

tions of node degree and contact durations, both for the durations

Figure 6. Left: Densities of edges between groups of individuals (class + gender) of the aggregated network. Right: Normalized
numbers of contacts for the whole study duration.
doi:10.1371/journal.pone.0107878.g006

Figure 7. Boxplots showing the distributions of the fraction of edges with students of same gender for males and females with
empirical data and using the null-model described above. The centre of each box indicates the median of the distribution, its extremities the
25% and 75% quartiles.
doi:10.1371/journal.pone.0107878.g007
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of single contact events and for the daily cumulative durations of

contacts between individuals. In the case of the degree distribu-

tions (shown separately in Figure S5 in File S1), slightly different

average values are observed in different days, but the functional

shapes of the distributions are similar, and the rescaled distribu-

tions are very close. The distributions of contact durations and of

link weights are as well on top of each other, and fitting by a power

law yields similar exponents (see Figures S6 and S7 in File S1).

The strong similarity in the statistical properties of the daily

contact networks is however not the whole story, as Figure 10

shows. On the one hand, the total time spent in contact by an

average student grows regularly over time, both with students of

the same class and with students of different classes, showing that

the amount of time spent in contact each day by a student does not

fluctuate strongly from one day to the next, as also observed in a

primary school [22]. On the other hand, the average number of

distinct individuals with whom a student has been in contact

displays a strictly increasing behavior over the whole study

duration, with no clear saturation trend (Note that Fig. 10 shows

averages: at each time, the number of distinct persons contacted

by a student has a distribution similar to the one shown in Fig. 5),

and this distribution shifts towards larger values while retaining its

shape as time increases. This means that an average student

continues to meet new persons each day, and that his/her

neighborhoods in the contact network, i.e., his/her individual

contact patterns, change from one day to the next. The figure also

shows that students meet a larger number of distinct individuals of

the same class than of other classes, as expected from the previous

analysis of contact matrices and networks, and that both numbers

continue to grow during the whole study.

In order to quantify the change in the students’ neighborhood in

different days, we compute the cosine similarities between the

neighborhoods of each node in each pair of daily aggregated

contact networks. The distributions of these similarities are shown

in Figure 11 for students of each class, distinguishing between the

neighborhoods of each student inside his/her class and with

students of another class. Cosine similarities restricted to intra-class

neighborhoods tend to be larger than the ones restricted to

interclass neighborhoods, indicating a slightly larger stability of

intra-class neighborhoods. The averages are given in Table S3 of

File S1.

The values of the cosine similarities observed are rather far from

1, indicating substantial changes of individual contact patterns

across days. In order however to better grasp the meaning of these

values, i.e., to understand if they ought to be considered ‘‘small’’ or

‘‘large’’, we compare the empirical values to the ones obtained

with several null models. We first consider null models in which

the network edges are placed at random between the nodes of the

networks, either (a) with no restriction or (b) such that edges

joining nodes of classes X and Y are randomly assigned to pairs of

nodes of classes X and Y, i.e., maintaining the overall class

structure of the network. We also consider edge rewirings which

conserve the degree of each node (‘‘Sneppen-Maslov’’ null model

[36]), once again either (a) globally or (b) separately for each class

pair. Finally, we keep the network topology unchanged but we

reshuffle the weights on the edges, either (a) reshuffling the weights

of all edges or (b) reshuffling separately the weights of edges

between each pair of classes.

The averages of the cosine similarities obtained in each null

model are given in Tables S5, S6 and S7 of File S1, and the

distributions are shown as boxplots in Figure 12. The empirical

values of the cosine similarities are larger than the ones obtained

with the null-models, even with the last null-model in which the

topological structure of the contact network and the statistical
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Figure 8. Left: number of contacts per one-hour time-windows. Right: number of contacts per 10-minutes periods for each day.
doi:10.1371/journal.pone.0107878.g008

Figure 9. Properties of daily aggregated network. (a) Cumulative degree distribution of the daily aggregated networks. (b) Cumulative
distribution of degrees rescaled by the average degree vkw of each daily network. The insets show the same data in kin-log scale. (c) Distribution of
edge weights for each daily network. (d) Distribution of contact durations in each day.
doi:10.1371/journal.pone.0107878.g009
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properties of the cumulative contact durations are kept at the level

of each class. This comparison with a set of null models allows us

to determine that the similarities of students’ contact patterns from

one day to another, although they can seem not to be very large in

absolute terms, are much higher than what could be expected

under null hypothesis: in other terms, changes in the contact

neighborhoods of students from one day to another are substantial,

but much less than in a situation in which contacts would occur at

random, and even less than if the cumulative contact durations

were attributed at random on a fixed topological structure of the

contact networks. This emphasizes the need to take this robustness

of contact patterns into account in models of contacts between

individuals, as done e.g., in [21].

Long term stability of contact patterns: comparison
between data collected in different years

We take here advantage of the fact that data were collected in

the same context in two different years to investigate the long term

stability of the contact patterns between students in the high

school. As students participating in the data collection in both

Figure 10. Left: time evolution of the average cumulated time spent by a student in contact with other students during the study.
The average total time is displayed in black, the average time spent with students of the same class in blue, and the average time spent with students
of other classes in red. Right: time evolution of the average number of distinct persons with whom a student has been in contact since the start of the
data collection. The average total number is displayed in black, the average number of individuals of the same class in blue, and the average number
of persons of other classes in red.
doi:10.1371/journal.pone.0107878.g010

Figure 11. Boxplots showing the distributions of cosine similarities of neighborhoods of nodes in pairs of daily contact networks,
for each class, and restricting the neighborhoods to intra-class (violet) and inter-class (blue) neighborhoods. These distributions are
obtained in the following way: in each class, for each person we calculate the cosine similarities of his/her neighborhood inside the class and outside
the class for each pair of days. Each distribution thus corresponds to 21(couples of days)*N(number of students in the class) similarity values. The
center of each box gives the median (value given above each box) and its extremities correspond to the 25% and 75% quartiles. The star symbols
show the mean value of each distribution.
doi:10.1371/journal.pone.0107878.g011
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years were not the same, we cannot study the change in individual

behaviors, but focus on the overall structure of the contact

networks and matrices.

Table 5 compares the main statistics of the aggregated contact

networks of 2011 and 2012, both at the global level and for each

class. Despite fluctuations in the absolute values, which can be

expected as the data concern different sets of individuals and

different durations, similar properties are observed, with high

values of the clustering coefficient and short average paths lengths.

Higher edge densities are also observed within each class,

consistently with the strong class structure observed previously.

Figure 13 displays the distributions of node degrees and link

weights of the contact networks obtained in 2011 and 2012,

aggregated over the whole data collection duration, as well as the

distributions of contact durations. All distributions are very similar,

with an exponential decrease at large degree values for the degree

Figure 12. Boxplots showing the distributions of similarities of nodes’ neighborhoods in different days (for all pairs of days in the
data set), for the empirical data and for the various null models (1000 realizations for each). The centre of the box gives the median, its
extremities the 25% and 75% quartiles, and the whiskers are at distance 1.5 times the interquartile range from the extremities (with saturation at 0
and 1). The first number above each boxplot gives the median of the distribution and the second number gives the average, also shown by a star.
doi:10.1371/journal.pone.0107878.g012

Table 5. Comparison of the properties of the global aggregated networks of the 2011 and 2012 data collections.

2011 2012

Number of nodes 126 180

Number of Edges 1,710 2,220

Number of contacts 10,432 19,774

Total cumulative duration
of all contacts

561,010 (156 hours) 900,940 seconds (250 hours)

Clustering coefficient Average shortest
path length

Density Clustering coefficient Average shortest
path length

Density

Total 0.58 1.95 0.22 0.48 2.15 0.14

PC 0.72 1.39 0.62 0.73 1.39 0.62

PC* 0.75 1.39 0.61 0.53 1.66 0.38

PSI* 0.66 1.51 0.49 0.61 1.62 0.41

MP*1 0.77 1.32 0.68

MP*2 0.60 1.61 0.44

doi:10.1371/journal.pone.0107878.t005
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distributions, and very broad weights and contact duration

distributions which collapse on top of each other for the data

obtained in the different years.

Figure 14 moreover displays the contact matrices describing the

structure and numbers of contacts between classes. As the data

collection of 2012 involved more classes than the one of 2011, we

evaluate the similarity between the contact patterns of two years

by computing the similarity between the matrices collected in 2011

and the contact matrices restricted to the three classes PC, PC*

and PSI* of 2012. We obtain very high values: 91.2% for the

matrices of contact durations, 92.4% for the matrices giving the

number of contacts, and 97.9% for the matrices of the densities of

edges between classes.

The overall contact structures are therefore very robust from

one year to the next, despite the different populations involved. In

order to investigate in more detail these similarities between years,

we show in Figure 15 the temporal evolutions of the number of

contacts registered in one-hour time windows in both cases. The

number of contacts vary strongly within each day in both years,

but the temporal patterns are very similar from one day to another

in both cases, with daily rhythms due to class and lunch breaks. In

both years however, the contacts of each individual in different

days are not completely the same, as shown above in Figure 10

and through the measure of the cosine similarities of neighbor-

hoods in different daily aggregated networks. Interestingly, the

distributions and average values of these cosine similarities take

similar values in both years: for instance, the average values of the

cosine similarities of individual neighborhoods in different days

vary from 0.35 to 0.43 in the 2011 data set and from 0.29 to 0.44

in the 2012 data set. The rates of renewal of the contact

neighborhood of each individual is thus as well a robust property

of these data sets.

Discussion

In this article, we have presented an analysis of two high-

resolution contact data sets collected in a French high school using

wearable sensors, respectively for three classes during four school

days in December 2011 and for five classes during seven school

days in November 2012.

Several important points emerge from our analysis. The

aggregated network of contacts has small diameter and high

clustering, with a strong community structure determined by the

students’ classes, similarly to what was observed in a primary

school [22]. The degree distribution is homogeneous, meaning

that the number of distinct persons with whom an individual has

contacts does not show large fluctuations. On the contrary, and as

observed in other contexts ranging from primary school to

conferences or hospitals [22–25], large variations occur in the

durations of single contact events as well as in the cumulated

durations of the contacts between two individuals: the distribution

of these quantities are heavy-tailed and no specific duration

timescale can be identified.

The contact matrices quantifying the number or duration of

contacts between different classes show a clear structure, with

much larger values on the diagonal (corresponding to contacts

within each class) and an additional substructure of two groups of

respectively two and three classes. While the large values of the

number of contacts inside each class is expected due to the school

structure and schedule, the off-diagonal structure reflects patterns

which are more due to either spatial arrangements of classes inside

the high school or to similarities in the dominant subjects studied

by the students. Overall, and as could be expected, the contact

patterns in such an environment would not be correctly

represented by a homogeneous mixing approximation. As no

strong gender homophily is observed (contrarily to the case of a

primary school [33]), a further subdivision of each class in groups

according to gender does not seem however a necessary step in

modeling processes: the division of the population at the level of

classes appears as an adequate level of description, for instance

when designing a model of contacts to evaluate the outcome of a

spreading process in this population [31,37].

In the context of the design of data-driven realistic models for

human contacts, or for the information of models of spreading

processes, the robustness of contact patterns at different timescales

represents also a crucial information. Strikingly, the properties of

the temporally resolved contact patterns are extremely robust from

one day to the next in several aspects: in terms of the variation of

the contact numbers with time along the course of each day, in

terms of statistical distributions of contact durations, and in terms

of the contact matrices, which have a very high similarity from one

day to another. Interestingly, this similarity between contact

patterns in the high school remains very strong when comparing

data collected in two different years, with different students

populations.

The contact patterns of each individual are however not the

same in different days, and we give an estimation of the renewal of

contacts by measuring the average cosine similarity of their

neighborhoods in daily contact networks. The obtained values

show that the contacts of a random individual vary substantially in

different days, but much less than in null models in which contacts

are renewed at random from one day to the next. Moreover, the

observed values of these similarities are similar in the two data sets

corresponding to two different years, and can thus be considered

as a feature to be included in realistic models of human contacts in

such an environment.

Figure 13. Distribution of degrees (a), distribution of weights (b) and distribution of contact durations (c) for 2011 and 2012.
doi:10.1371/journal.pone.0107878.g013
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Comparison of data collected in different environments of

similar nature is also important, in particular to highlight similar

patterns in specific structures and therefore to inform mathemat-

ical models. Few studies using wearable sensors, and giving access

to high-resolution data on contacts between individuals, are

however available. We compare in Figure 16 some statistical

properties of the data sets presented here with the data set made

public by Salathé et al. in Ref. [15], which gives the durations of

Figure 14. Contact matrices giving the cumulated durations of contacts (1st line), the number of contacts (2nd line) and densities of
edges between classes (3rd line) for 2011 (1st column) and 2012 (2nd column).
doi:10.1371/journal.pone.0107878.g014
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close proximity events between 788 high school students during a

typical day at school. Given the different definitions of contact in

the two studies, the average number of distinct neighbors in the

aggregated contact networks are different: 24.7 for the present

study and 299.5 for [15]. Once rescaled however, the distributions

of degrees of the aggregated networks are similarly short-tailed,

albeit with slightly different functional shapes. Most importantly,

the distributions of the contact durations and of the edge weights

in the contact networks are very similar in the two studies, with

similar slopes and heavy-tails.

Data sets such as the ones presented here are of interest in

various fields, including in social sciences in order to better

understand and model human behavior and interactions in

different contexts, and in epidemiology in order to inform models

describing the spread of infectious diseases. In this respect, data

gathering in contexts such as schools, where many contacts are

expected between students, favoring the possible spread of diseases

among them and successively in the community, are particularly

invaluable. Such data may also help devise and evaluate data-

driven containment strategies. For instance, the fact that the

contact matrices are highly structured, with most contacts

occurring within classes and additional structures of 2 or three

classes, as also in a primary school [22], indicates that containment

strategies such as the closure of single classes or groups of classes

when a disease outbreak is detected could represent viable

alternatives to full school closures [37].

The use of wearable sensors appears as an appealing method to

measure contacts between individuals. It has both advantages and

limitations with respect to more traditional approaches such as the

use of survey or time-use data [3,5,7,8,12] or the construction of

synthetic populations from socio-demographic data [31,38], which

have yielded important insights and allowed to inform large-scale

epidemiological models.

On the one hand, surveys are costly and often have often a low

response [12], and the precise formulation of the question might

influence the answers. Answers are also subject to memory biases,

which are difficult to estimate [10] but can be large [13].

Moreover, surveys often collect ego-networks on single days (see

however [6,10]), and it is then difficult to estimate some properties

of the contact networks known to be relevant for the spread of

infectious diseases, such as the number of triangles and the fraction

of repeated contacts from one day to the next [21,39]. In contrast,

the cost of the deployment of wearable sensors is nowadays

affordable, they can be used during several consecutive days within

a specific population, and they provide an objective definition of

contact that does not rely on memory of individuals.

On the other hand, surveys yield large-scale data sets providing

age-based contact matrices of crucial importance in parametrizing

models of infectious diseases. Notably, surveys can include a

distinction between different types of contact, and in particular

inform on the occurrence of physical contacts, which is known to

be important in epidemiology [40,41], while wearable sensors do

Figure 15. Number of contacts per one-hour periods for the 2011 (left) and 2012 (right) data sets.
doi:10.1371/journal.pone.0107878.g015

Figure 16. Comparison of the distributions of (a) durations of contact events, (b) cumulated contact durations, (c) degree in the
aggregated network, for the data sets analyzed here and the data set of Ref. [15].
doi:10.1371/journal.pone.0107878.g016
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not yield such information. Deployments of wearable sensors are

moreover typically limited to relatively small-scale settings and

specific contexts, and do not give information on contacts

occurring between individuals participating to the measures and

other individuals (e.g., here, students from non-participating

classes). Another potential issue concerns the possibility that

individuals changed their behaviour because they were wearing

badges and knew they were participating in a scientific measure.

Unfortunately, it is impossible to completely rule out this potential

bias as an accurate check would require monitoring an indepen-

dent data source for face-to-face contacts such as video, and

because of scalability issues this would be feasible only for small

control groups. The robustness of a series of statistical character-

istics across contexts involving different types of participants

[15,20–25] tends in this respect to be reassuring.

Overall, the use of sensors appears as complementary to the use

of surveys, in particular by providing information at a finer scale:

they indicate how far schools, classes or workplaces are from being

fully mixed, as the data give access to the density of the contact

networks of each class and between classes; they give reliable

information with high temporal resolution on contact durations

and on their statistical distributions, shown to be highly

heterogeneous, an important property in the context of infectious

disease transmissions. In this respect, further data gathering efforts

in different contexts are thus certainly of interest, in particular to

further assess the robustness of our results and to compare data

obtained in different contexts. Furthermore, the combination of

such data with other data sources such as surveys might represent

an interesting further step.
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