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ABSTRACT

Background: The opioid epidemic in the United States has precipitated a need for public health agencies to bet-

ter understand risk factors associated with fatal overdoses. Matching person-level information stored in public

health, medical, and human services datasets can enhance the understanding of opioid overdose risk factors

and interventions.

Objective: This study compares approximate match versus exact match algorithms to link disparate datasets to-

gether for identifying persons at risk from an applied perspective.

Methods: This study used statewide prescription drug monitoring program (PDMP), arrest, and mortality data

matched at the person-level using an approximate match and 2 exact match algorithms. Impact of matching

was assessed by analyzing 3 independent concepts: (1) the prevalence of key risk indicators used by PDMP pro-

grams in practice, (2) the prevalence of arrests and fatal opioid overdose, and (3) the performance of a multivari-

ate logistic regression for fatal opioid overdose. The PDMP key risk indicators included (1) multiple provider epi-

sodes (MPE), or patients with prescriptions from multiple prescribers and dispensers, (2) high morphine

milligram equivalents (MMEs), which represents an opioid’s potency relative to morphine, and (3) overlapping

opioid and benzodiazepine prescriptions.

Results: Prevalence of PDMP-based risk indicators were higher in the approximate match population for MPEs

(n¼4893/1 859 445 [0.26%]) and overlapping opioid/benzodiazepines (n¼57 888/1 859 445 [4.71%]), but the exact-

basic match population had the highest prevalence of individuals with high MMEs (n¼664/1 910 741 [3.11%]). Preva-

lence of arrests and deaths were highest for the approximate match population compared with the exact match pop-

ulations. Model performance was comparable across the 3 matching algorithms (exact-basic validation area under

the receiver operating characteristic curve [AUC]: 0.854; approximate validation AUC: 0.847; exact þ zip validation

AUC: 0.826) but resulted in different cutoff points balancing sensitivity and specificity.

Conclusions: Our study illustrates the specific tradeoffs of different matching methods. Further research should

be performed to compare matching algorithms and its impact on the prevalence of key risk indicators in an ap-

plied setting that can improve understanding of risk within a population.
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Lay Summary

The persistence of the opioid epidemic necessitates an understanding of risk factors for fatal opioid overdose across multi-

ple sources of data. However, without a national identifier for individuals that can be used to link the data from multiple

sources together, the data are linked together using personal identifiers in a variety of ways. This study combines prescrip-

tion histories, criminal justice encounters, and deaths using several different approaches to linking the data together at the

person level to provide insight into the impact on understanding risk of fatal opioid overdose. Several risk indicators, preva-

lence of arrests and deaths, and models predicting risk were quantified for 3 approaches to linking being used in practice.

As more studies call for combining cross-sector datasets for more comprehensive analysis, state programs must understand

the implications of the data linking process when designing public health programs and interventions that benefit the com-

munity.

INTRODUCTION

Individuals at risk of opioid-related overdose often interact with

multiple service systems, including healthcare, public health, social,

and human service agencies. As individuals interact with each do-

main, information about their complex needs, characteristics, and

service provisions are recorded in electronic databases. Although the

ease of matching electronic data has improved for single datasets,

matching person-level data across distinct agencies remains a major

impediment to dataset linkage.1 Most datasets remain siloed with-

out a common identifier to efficiently match separate person-level

datasets to support a more comprehensive understanding of an indi-

vidual’s risk of overdose.2 Populations at risk of overdose are not

homogenous, but rather likely to be only partially represented in

clinical, criminal justice, and other data. If linked, analyses using an

integrated database that captures a more comprehensive cross-sec-

tion of a patient’s indicators related to opioid misuse or addiction

could improve the understanding and identification of individuals at

risk for opioid-related overdose and other negative outcomes that

may not be possible if using a single source of data.

Absent a nationwide unique identifier for patients, alternative

analytic techniques are being used to match person-level data to-

gether from different sources using personal demographics and iden-

tifiers. Most commonly, “exact” and/or “approximate” matching

algorithms are utilized.3 Exact matching relies on comparing a set of

identifiers (eg, name, age, sex, etc.) and determining a match when

those identifiers match exactly (eg, persons with the same name and

date of birth [DOB] in 2 databases), while approximate matching

uses a weighted analytic algorithm applied to patient identifiers to

derive a score that determines whether a certain matching threshold

was reached.3 These 2 approaches, exact and approximate match-

ing, are being used in practice today to bring disparate datasets to-

gether.

Approximate matching is a fairly common applied technique

within healthcare, particularly within health information exchanges

(HIEs) and large multi-system health organizations.4 Approximate

algorithms have been found to have a higher degree of matching ac-

curacy and a strong potential to link individuals across datasets

without a common identifier by accommodating discrepancies (eg,

nicknames, transposed digits, changes in surname) in the demo-

graphic variables than exact match algorithms.5,6 A handful of stud-

ies examining opioid overdose outcomes have matched cross-

domain datasets (eg, electronic health records, prescription drug

monitoring program [PDMP], and deaths) together with public do-

main software applying both exact match and approximate match

algorithms.7,8

Despite the improved performance, access to approximate

matching is not always available and exact matching must be

used.9–13 Exact match on the individual’s name and DOB are most

commonly used, with some studies also using sex, county of resi-

dence, and social security number as additional matching criteria.9–

13 One large-scale example of combining data from multiple agen-

cies was a statewide opioid overdose analysis performed by Massa-

chusetts’ state government that linked fifteen datasets together using

a series of exact match algorithms.14 As matching cross-sector data-

sets to understand risks related to opioids becomes more common

among state PDMPs, Departments of Health, and other state and lo-

cal programs, additional research needs to be done to understand

the impact of matching techniques.

A recent analysis examined the impact of an exact match algo-

rithm against a proprietary approximate (probabilistic) algorithm

on the prevalence of key high-risk indicators within PDMP data,

and demonstrated that the degree of the impact varied by measure.15

This study, using statewide Maryland data, builds on these concepts

by comparing 2 exact matching algorithms with an approximate

matching algorithm, all of which are being used in practice today,

with aim of quantifying the relative effect the record linkage

approaches on several independent concepts: (1) the prevalence of

patient risk indicators using PDMP data, (2) the prevalence of

arrests and deaths among patients with PDMP data, and (3) the per-

formance of a risk model for fatal opioid overdose.

METHODS

Study design, population, and data sources
A retrospective cohort analysis began with 2015 Maryland PDMP

data and included individuals with one or more prescriptions. The

MD PDMP collects schedule II-V controlled substances (ie, opioids,

sedatives, stimulants, and other drugs for medicinal use with poten-

tial for abuse) dispensed to Maryland residents by pharmacists, dis-

pensing prescribers, and mail-order pharmacies. The PDMP data

from dispenser information systems were centrally collected by a

statewide vendor’s software that has its own native matching algo-

rithm to determine unique identities (totaling 3 304 446 in 2015)

prior to being processed by the approximate or exact match algo-

rithms. Starting with the vendor-defined identities, the matching

algorithms were applied to the PDMP data such that individuals

were matched within the dataset before being matched with external

datasets. This resulted in the creation of a new unique master identi-

fier for every identity included in the study specific to each matching

algorithm.

After applying the matching algorithms to the PDMP database,

matching was performed across the arrest and mortality data. Indi-

viduals with property- or drug-related arrests between 2013 and

2015 from the Maryland Department of Public Health Safety and

Correctional Services (DPSCS) were matched with individuals in the

PDMP data. Criminal justice involvement is relevant to future
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opioid-related outcomes and 3 years of data were included to ensure

a high enough sample size.16 DPSCS uses a State Identification

Number to positively identify unique individuals within their native

system using the arrestees fingerprints. Deaths from 2015 to 2016

were matched with the PDMP data, with the outcome-of-interest of

opioid-related overdose deaths. Mortality data for investigated

deaths were provided by the Office of the Chief Medical Examiner

(OCME) and contained identifying information for the decedent,

date of death, and cause of death for all drug- and alcohol-related

overdose deaths in MD. The final limited dataset for research con-

tained only the unique identifiers and IRB-approved variables for

analysis. IRB approval was obtained from the Johns Hopkins

Bloomberg School of Public Health and the Maryland Department

of Health (IRB #00007542). Supplementary File S1 depicts a graphi-

cal representation of the final dataset.

Model variables
The target outcome of fatal opioid overdose was defined as having a

cause-of-death indicator in the OCME dataset for illicit or licit

opioids, including any of the following substances: prescription

opioids, hydrocodone, hydromorphone, methadone, morphine, oxy-

codone, oxymorphone, tramadol, heroin, or fentanyl. Intentional,

unintentional, and undetermined intent were all included.

Model variables were derived from the PDMP data based on

common risk indicators found in the literature or established as na-

tional clinical quality improvement outcome measures.7,10,17–19

Model variables included sex, age group, method of payment for

prescriptions (modal), number of opioid prescribers and dispensers,

and prescriptions for methadone, long-acting opioids, buprenor-

phine opioids, shorting-acting schedule II opioids, short-acting

schedule III/IV opioids, benzodiazepines, other nonbenzodiazepine

sedatives, and muscle relaxants.

Arrest, death, and PDMP-based variables
We considered four independent markers that are associated with

high risk of overdose using PDMP data.20 Prevalence of several com-

plex variables based on thresholds most commonly used by PDMP

programs to identify high-risk individuals within a rolling 3-month

window for the duration of the study period was also analyzed20:

(1) multiple provider episodes (MPEs), defined as 5 unique prescrib-

ers and 5 unique dispensers for all controlled substances; (2) high

daily average morphine milligram equivalents (MMEs), defined as �
90 mg/day average daily dose and � 60 days’ supply opioids; and

(3) overlapping opioid and benzodiazepine prescriptions, where

overlap occurs for 25% or more of the days’ supply (for days’ sup-

ply>5 days) if the patient had � 60 days’ supply opioids. The varia-

bles were analyzed separately to mimic the approach PDMP

programs take when evaluating high-risk individuals.

Variables were also constructed for any individual with at least

one arrest and any individual who experienced a fatal opioid over-

dose.

Person-level matching techniques
Prior to removing personal identifiers from the research database,

the datasets were matched using an approximate match algorithm

and 2 different exact match algorithms. The matching algorithms re-

lied on all or a subset of identifiable personal and demographic data

available, described in more detail below.

Approximate match linkage

The approximate match algorithm used in this study was the master

patient index (MPI) technology (IBM InfoSphereVR , v10.1) deployed

and operated since 2010 by Maryland’s state-designated, nonprofit

HIE, CRISP (Chesapeake Regional Information System for our

Patients). The algorithm compares each of the demographic data ele-

ments (using an advanced approach of grouping multiple attributes

together into more unique combinations for fast comparison),

assigns a score to each comparison, then tallies up to a final score to

determine matching. If the final score passes the CRISP-defined

threshold for a match, the records are considered part of the same

master identity and are matched together. Records that did not meet

the threshold remain as separate identities. The demographics lever-

aged by the algorithm include: first name, last name, DOB, gender,

address, phone number, and social security number (if available).

Exact match linkage

Two levels of exact match algorithms were applied to the data based

on availability of the demographic elements, common approaches in

published literature,11,14 and what is being used in practice by state-

based programs attempting to bring multiple datasets together oper-

ationally to understand opioid risk today. The first exact match al-

gorithm (“exact-basic”) used an exact match on first name, last

name, gender, and DOB. The second exact match algorithm (“exact

þ zip”) used an exact match on the same elements as the first algo-

rithm (name, gender, and DOB), plus ZIP Code. Adding ZIP code

presumably provides more conservative and “accurate” matching

among individuals but will not accommodate transient or purposely

evasive individuals. Gender was normalized to male, female, or un-

known. Minor adjustments to first name were made to ensure no

middle names or initials were included in the first name field. To re-

flect current practice, no close-match, near-match, or phonetic

matching logic was applied. The PDMP dataset was processed first

by comparing identities within the dataset and creating a new mas-

ter identifier for any matched identities. Next, the identities in the

arrest and death files were compared with the identities in the

PDMP dataset. If multiple records within a single database had

matching demographics, the master identifier would be applied

across all records, therefore matching records within a single data-

base as well as across databases. This process was repeated for both

exact match algorithms, resulting in 2 separate sets of exact match

master identifiers. See Supplementary Files S2 and S3 for further

details of all 3 matching algorithms.

Statistical analysis
Each matching algorithm requires the demographic data to be at a

high enough quality level to ensure sufficient matching. Prior to data

linkage, the demographic variables used for matching in each data-

set were assessed for completeness (number of occurrences of miss-

ing values for each data field).21 Postlinkage, the characteristics of

the population identified by the different matching algorithms were

described. A multivariate logistic regression analysis for risk of fatal

opioid overdose was performed on the population defined by each

matching algorithm using split-half technique (60% development,

40% validation using random selection) to compare model perfor-

mance when different patient matching algorithms are leveraged for

the same population.22 Model performance was measured using sen-

sitivity, specificity, and area under the receiver operating character-

istic curve (AUC), measuring the ability of the model to discriminate

between individuals truly at risk (sensitivity) from individuals truly
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not at risk (specificity), ranging from 0 to 1. The optimal cutoff

point for the model, which maximizes the sensitivity and specificity,

was compared across the 3 matching algorithms. Finally, the preva-

lence of unique individuals with a PDMP-based high-risk indicator,

an arrest, or an opioid-related overdose death and death rates per

1000 were calculated for the population matched by each algo-

rithm.

RESULTS

Quality of matching fields
All datasets contained the common matching fields (ie, name, DOB,

sex, address, city, state, and zip) with high degrees of completeness

between 93.8% and 100% (Supplementary File S4). The PDMP and

death files had no Social Security Number’s (SSN’s) available for

matching and arrest file had 61.0% completeness. Thus, SSN was

only taken into account by the approximate match algorithm, which

is inherently designed to leverage SSN for matching when supplied,

but could not be used for the exact match algorithms. Although the

address fields were well-populated (completeness between 95.9%

and 100%), they were not standardized in any dataset, limiting the

potential for exact matches, and was also therefore only leveraged

by the approximate algorithm.

Study population
Using the approximate match algorithm, a total of 1 859 445 indi-

viduals were identified within the PDMP dataset, of which 1318

(0.07%) individuals experienced a fatal opioid overdose and 8712

(0.47%) had an arrest record. The exact-basic algorithm resulted in

a total of 1 910 741 individuals (2.8% more identities than approxi-

mate matching), of which, 1167 (0.06%) fatally overdosed and

8589 (0.45%) had an arrest record. The exact þ zip algorithm

resulted in a total of 2 065 019 individuals (11.1% more identities

than approximate matching), of which, 605 (0.03%) fatally over-

dosed and 3839 (0.19%) had an arrest record (Table 1). The full

population’s characteristics were consistent across the 3 matching

methods; however, differences were more pronounced in the death

cohorts. The exact-basic death cohort had 2.98% more males and

2.42% more prescriptions with Medicaid as a method of payment

and the exact þ zip death cohort had 3.58% more individuals aged

50–64 years and 3.31% more Self-Pay prescriptions than the ap-

proximate match population. One of the most distinguishable differ-

ences between the exact and approximate match algorithms was the

�3 opioid prescribers (exact-basic: �2.81%; exact þ zip: �7.57%)

and �3 opioid dispensers (exact-basic: �2.54%; exact þ zip:

�7.93%) variables.

Statistical analysis
The statistically significant predictors in the fatal opioid overdose

risk model were relatively consistent between the approximate

match algorithm and the exact match algorithms, with a few excep-

tions (Table 2). Self-pay was a predictor for the model run on the

exact-basic match (odds ratio [OR], 1.39; 95% confidence interval

[CI], 1.08–1.78) and the exact þ zip match (OR, 1.64; 95% CI,

1.19–2.27) populations but not the approximate match population.

High MME was a predictor for the approximate match (OR, 1.36;

95% CI, 1.02–1.80) and exact þ zip (OR, 1.75; 95% CI, 1.15–

2.68) populations, but not the exact-basic population. Finally, �3

opioid prescribers and �1 methadone fill variables were not statisti-

cally significant predictors for the exact þ zip population, despite

being a predictor for the approximate and exact-basic populations.

Although the performance of the model was comparable across

the 3 matching algorithms (exact-basic validation AUC: 0.854; ap-

proximate validation AUC: 0.847; exact þ zip validation AUC:

0.826), there were different optimal cutoff points balancing sensitiv-

ity and specificity (Table 3). The cutoff point for the approximate

match algorithm was 0.0010 (sensitivity: 67.54%; specificity:

84.29%), resulting in a total of 104 293 high-risk individuals, of

which, 362 died from a fatal opioid overdose (3.47 deaths per 1000

high-risk individuals). This is in comparison with the exact-basic al-

gorithm, which had a cutoff point of 0.0005 (sensitivity: 87.47%,

specificity: 66.26%), resulting in 229 646 high-risk individuals and

384 deaths (1.67 deaths per 1000 high-risk individuals), and the ex-

act þ zip algorithm, which had a cutoff point of 0.00025 (sensitiv-

ity: 85.53%, specificity: 62.17%), resulting in 275 352 high-risk

individuals and 195 deaths (0.71 deaths per 1000 high-risk individu-

als). See Supplementary File S5 for classification tables of each

model run on the population linked by the 3 matching methods.

Arrest, death, and PDMP-based risk indicators and

death rate statistics
Examining the prevalence of PDMP-based risk indicators, arrests,

and deaths identified by each of the algorithms further demonstrates

the impact the matching can have on understanding patient-level

risk (Table 4). Prevalence of PDMP-based risk factors was highest

within the approximate match population for the MPE (n¼4893/

1 859 445 [0.26%]) and overlapping opioid and benzodiazepine

(n¼57 888/1 859 445 [4.71%]) PDMP-based risk measures, but the

exact-basic match population yielded the highest prevalence of indi-

viduals with high MME (n¼664/1 910 741 [3.11%]). Prevalence of

individuals with an arrest and death were highest for the approxi-

mate match population (arrest: n¼8812/1 859 445 [0.47%]; opioid

overdose death: n¼1318/1 859 445 [0.07%]) compared with the

exact-basic (arrest: n¼8589/1 910 741 [0.45%]; opioid overdose

death: n¼1167/1 910 741 [0.06%]) and exact þ zip (arrest:

n¼3839/2 065 019 [0.19%]; opioid overdose death: n¼605/

2 065 019 [0.03%]) match populations.

Finally, deaths per 100 000 in the denominator were calculated

for variables included in the multivariable model (Figure 1). The

population linked using the approximate match algorithm univer-

sally resulted in capturing the highest death rates per predictor as

compared with the exact match algorithms. The highest deaths per

100 000 involved individuals who had any arrest (approximate:

1309; exact-basic: 1246; exact þ zip: 703) or individuals with MPEs

(approximate: 1074; exact-basic: 1058, exact þ zip: 431). All pre-

dictors for the population linked via the approximate and exact-

basic algorithms had a higher death rate than the Maryland average

(49 per 100 000). The exact þ zip algorithm had 2 predictors lower

than the Maryland average, including �1 schedule III or IV opioid

prescriptions (30 per 100 000) and �1 schedule II opioid prescrip-

tions (41 per 100 000).

DISCUSSION

Principal results
Patient matching within and across datasets is critical to construct-

ing a complete picture of risk. Absent a common identifier that can

be used to stitch together the data captured in fragmented datasets,

other methods to match person-level data are being utilized in prac-
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tice by state programs. Understanding how the matching method

impacts the results of a risk model and prevalence of key risk indica-

tors is important when making decisions about and responding to

the opioid crisis. Although the results of this study cannot identify

the absolute performance of models relative to a gold standard, the

findings demonstrate how much variation is likely to exist with dif-

ferent matching approaches. Overall, this study found that preva-

lence of risk was highest in the approximate match population, but

not uniformly, suggesting prevalence was also dependent on the type

of risk indicator. Also, while the predictive model performance was

similar across matching algorithms, the sensitivity and specificity

varied, which has operational implications when designing interven-

tions for the high-risk population identified.

The impact of matching is first reflected in the total number of

individuals within the PDMP database after being processed by each

algorithm. The approximate algorithm consolidated the population to

the fewest identities and the exact þ zip algorithm had the most. Al-

though determining whether the algorithms correctly combined or did

not combine identities was out of scope for this study, leaving some

unknown number of false positives (ie, matching records of separate

persons incorrectly together) and false negatives (ie, not matching the

same person’s records together when they are the same person) within

each population, the results demonstrate the relative impact that the

patient matching approach can have on a study population, which can

in turn impact measuring prevalence of a risk indicator. A nuance to

evaluating the impact of patient matching on the prevalence of risk

indicators highlighted in Table 4 is that it depends upon the nature of

the measure itself. Conceptually, it may seem logical that better patient

matching within a dataset will mean more individuals will meet high-

risk thresholds due to the consolidation of the patient’s data used to

compute the risk indicator. This was the case for MPE, in which the

approximate algorithm resulted in the highest prevalence of individu-

als meeting the threshold. However, this was not the case with high

MME, suggesting that in some cases when working with different

matching methods, individuals could still meet certain PDMP thresh-

olds even with lesser consolidation of an individual’s prescription his-

tory. Some individuals displaying high-risk patterns may be

underestimated while other times the prevalence of a risk indicator in

the population may be overestimated.

The greatest impact of the approach to patient matching was

reflected in the cross-dataset matching between the PDMP data and

the arrest and death data. As fewer individuals were matched with

the arrests and deaths data, the death rates per 100 000 high-risk

individuals are drastically deflated when using the exact þ zip algo-

rithm as compared with the approximate algorithm. If using the ex-

act þ zip algorithm alone to match individuals across datasets, the

results of the analysis will have a noticeably lower prevalence of risk

for the population. It may also miss some of the more high-risk indi-

viduals who have unstable housing or are purposefully evading de-

tection by supplying variations of their demographics. The exact-

basic algorithm is closer to the death rates demonstrated by the ap-

proximate linked population; however, it also has a lower preva-

lence of arrests and deaths. This suggests that using an approximate

matching method may greatly improve finding high-risk popula-

tions, particularly when combining datasets, which should be ex-

plored in future research.

Table 3. Model performance for opioid overdose death for populations matched by each algorithma

Model performance Approximate algorithm

(N¼ 1 859 445)

Exact-basic

algorithm(N¼ 1 910 741)b
Exact þ zip algorithm

(N¼ 2 065 019)c

Optimal cutoff point 0.0010 0.0005 0.00025

Derivation AUC 0.858 0.860 0.837

Validation AUC 0.847 0.854 0.826

Sensitivity 67.54 87.47 60.96

Specificity 84.29 66.26 42.54

# of high-risk patients 104 293 229 646 275 352

% of validation cohort 15.8 33.78 37.85

# of deaths among high-risk patients 362 385 195

Deaths per 1000 high risk patients 3.47 1.67 0.71

AUC: area under the curve.
aPopulation consists of drug and property arrests from 2013 to 2015, PDMP data from 2015, and an outcome of fatal opioid overdose in 2015 or 2016.
bExact-basic algorithm matched first name, last name, gender, and date of birth.
cExact þ zip algorithm matched first name, last name, gender, date of birth, and zip code.

Table 4. Risk indicator prevalence for individuals identified by each matching algorithm

High risk indicators/outcome Identified by approximate algo-

rithm (n¼ 1 859 445)

Identified by exact-basic algorithm

(n¼ 1 910 741)a

Identified by exact þ zip algorithm

(n¼ 2 065 019)b

MPE 4893 (0.26) 4443 (0.23) 2552 (0.12)

High MME 57 088 (3.07) 59 423 (3.11) 63 454 (3.07)

Overlapping opioid/benzo 87 494 (4.71) 88 373 (4.63) 90 476 (4.38)

Arrest 8812 (0.47) 8589 (0.45) 3839 (0.19)

opioid overdose death 1318 (0.07) 1167 (0.06) 605 (0.03)

Note: All Chi-squared tests were significant at the P < .001 level

Benzo: benzodiazepine; MME: morphine milligram equivalents; MPE: multiple provider episode.
aExact-basic algorithm matched first name, last name, gender, and date of birth.
bExact þ zip algorithm matched first name, last name, gender, date of birth, and zip code.
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Model performance, defined in this study as how accurately the

model was able to predict persons who fatally overdosed, did not

vary greatly across the 3 matching algorithms; however, the sensitiv-

ity and specificity differed at the optimal risk model cutoff. The risk

model for the approximate match dataset had a lower sensitivity

and higher specificity, capturing fewer than half of the population

identified as high risk as the model run on the exact match popula-

tions. Balancing sensitivity versus specificity is common practice

with risk modeling and has practical implications for applied use of

the model. When resources are scarce, such as the number of treat-

ment beds, emphasis may want to be made on a higher specificity,

where there is a lower likelihood of capturing individuals not at

high risk, reserving beds for individuals at highest risk for future fa-

tal opioid overdose. The higher specificity of the approximate match

model demonstrated aptness toward interventions where scarce

resources are being distributed, compared with the exact match pop-

ulations. Alternatively, if the intervention allows for more latitude

with who receives a service or resource, such as naloxone distribu-

tion, a higher sensitivity may be desired to cast a wider net, even if

some individuals were incorrectly classified as high risk. The exact-

basic matching may be suitable for these lower-cost, broad interven-

tions based on the higher sensitivity at the risk score cutoff. It may

also support the model serving as an analytic tool to understand

population-level risk factors and effect sizes.

When weighing which algorithm to use in practice, the cost and

complexity of establishing and maintaining the algorithm must be

considered. The benefit of the exact matching is in its simplicity; no

real long-term maintenance and quick to implement, which is why it

is commonly used in practice today.3 Approximate match algo-

rithms can be very complex and take in a larger number of data ele-

ments, leaving a higher opportunity for data quality to impact

matching. Some publicly available approximate matching software

exist, including Link Plus and The Link King, and several software

companies sell approximate matching master data management sol-

utions.5 Organizations leveraging approximate matching MPIs for

operational purposes often have dedicated staff that monitor quality

of the data used for matching, perform periodic clean-up to improve

the matching rate, and assess algorithm weighting for continuous

improvement. Because of this, MPIs are best for ongoing clinical or

analytic purposes that require continuous use. If the matching is

only needed periodically, it may not make financial sense to invest

in a robust approximate match solution. This can be especially im-

portant for State government and PDMP programs that may not

have sufficient access to expertise in deploying approximate match

algorithms outside what a PDMP vendor may offer.

Strengths and limitations
Given the nature of the datasets included in this study, completeness

of patient identifiers was not a barrier to matching. The PDMP pro-

gram requires basic patient information be supplied per state regula-

tions and the arrest and death data ensures accurate patient

information is captured as a matter of law. The approximate match

algorithm contains a robust collection of demographics for Mary-

land residents over a long period of time, leading to improved

matching. However, this strength is also a limitation. One of the

benefits of the MPI (approximate match algorithm) is that it links

records using historical and recent information. Replicating this pro-

cess elsewhere may not be as successful if robust historical data is

not present to improve the matching rate. This study was applied re-

search based on tools available in practice within Maryland, thus fu-

ture research should examine cleaner methods of matching that may

be more applicable to other settings where similar data are available.

Another notable limitation is that generally, literature evaluating

matching algorithms perform “manual” reviews where a human
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assesses how often the algorithm properly classifies 2 individuals as

a match or nonmatch.6,23–25 Although data were matched in an

identifiable manner, this study only used deidentified linked records

for analysis and consequently, this assessment could not be per-

formed.

The timing of the data extracts for the approximate matching

and exact matching was different, causing 2 issues. First, there was a

slight difference in total number of prescriptions in the approximate

versus exact match data extracts. The number of prescriptions was

equalized between the 2 extracts prior to person-level analysis by

creating a unique key based on multiple prescription-level attributes

and removing prescriptions that were not present across all datasets.

Second, the arrest data were linked using approximate matching

within the dataset and delivered for analysis prior to this study. This

resulted in only using the exact algorithm to match the arrest dataset

with the PDMP and death datasets, but not within the arrest file.

Additionally, only 2 exact match algorithms known to be used in

practice today were analyzed, despite many algorithm options and

variations being available for use, such as using partial name

matches or other optimization techniques.26,27 The demographic

elements used for the matching were largely influenced by the data

availability in the datasets used for this study. There also is not a

gold standard to which to compare the performance of the models

in this study, which future work should address.

Future work should investigate the priori probability manage-

ment to reduce selection biases, assess whether algorithms are creat-

ing more burden, and whether use of various algorithms result in

potential adverse outcomes. Although many of the specific details

are not generalizable beyond the particular datasets used in this

study, the context of matching identities across disparate datasets is

typical of one that confronts practitioners and researchers working

with population-level datasets such as PDMP, and may prompt a

more detailed exploration and assessment of existing and potential

matching practices.28–32

CONCLUSIONS

The understanding of risk indicator prevalence within and across

disparate datasets varied across the matching approaches in use in

applied settings. The model performance was not impacted by the

matching approach; however, there are operational implications of

using predictive models for an opioid intervention or program based

on the balance of sensitivity and specificity. Moving forward, the

frequency with which cross-sector datasets will be used to gain a

comprehensive understanding of an individual’s risk of opioid-

related overdose will only increase. Similar approaches will, and

should, also be used to address other public health challenges. Addi-

tional studies that compare the performance of different matching

algorithms in use by state-led programs at the identifiable patient-

level to a gold standard should be performed. Further information

on the impact of different matching methods, such as those explored

in this study, will provide essential tools to state programs currently

combining multiple datasets together to better identify individuals at

high risk for opioid overdose death and design public health pro-

grams and interventions that benefit the community.
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