
Methods Ecol Evol. 2019;10:879–890.	 	 	 | 	879wileyonlinelibrary.com/journal/mee3

 

Received:	18	July	2018  |  Accepted:	26	February	2019
DOI: 10.1111/2041-210X.13171  

R E S E A R C H  A R T I C L E

A scalable model of vegetation transitions using deep neural 
networks

Werner Rammer  |   Rupert Seidl

Department	of	Forest-	and	Soil	Sciences,	 
Institute	of	Silviculture,	University	of	
Natural	Resources	and	Life	Sciences	(BOKU)	
Vienna,	Vienna,	Austria

Correspondence
Werner Rammer
Email:	werner.rammer@boku.ac.at

Funding information
Austrian	Science	Fund,	Grant/Award	
Number:	START	Y895-B25

Handling	Editor:	Sean	McMahon

Abstract
1.	 In	 times	 of	 rapid	 global	 change,	 anticipating	 vegetation	 changes	 and	 assessing	
their	impacts	is	of	key	relevance	to	managers	and	policy	makers.	Yet,	predicting	
vegetation	dynamics	often	suffers	from	an	inherent	scale	mismatch,	with	abun-
dant	data	and	process	understanding	being	available	at	a	fine	spatial	grain,	but	the	
relevance	for	decision-making	is	increasing	with	spatial	extent.

2.	 We	present	a	novel	approach	for	scaling	vegetation	dynamics	(SVD),	using	deep	
learning	 to	 predict	 vegetation	 transitions.	Vegetation	 is	 discretized	 into	 a	 large	
number	(103–106)	of	potential	states	based	on	its	structure,	composition	and	func-
tioning.	Transition	probabilities	between	states	are	estimated	via	a	deep	neural	
network	(DNN)	trained	on	observed	or	simulated	vegetation	transitions	in	combi-
nation	with	environmental	variables.	The	impact	of	vegetation	transitions	on	im-
portant	 ecological	 indicators	 is	 quantified	 by	 probabilistically	 linking	 attributes	
such	as	carbon	storage	and	biodiversity	to	vegetation	states.

3.	 Here,	we	describe	the	SVD	approach	and	present	results	of	applying	the	frame-
work	in	a	meta-modelling	context.	We	trained	a	DNN	using	simulations	of	a	pro-
cess-based	 forest	 landscape	 model	 for	 a	 complex	 mountain	 forest	 landscape	
under	different	climate	scenarios.	Subsequently,	we	evaluated	the	ability	of	SVD	
to	project	long-term	vegetation	dynamics	and	the	resulting	changes	in	forest	car-
bon	storage	and	biodiversity.	SVD	captured	spatial	(e.g.	elevational	gradients)	and	
temporal	 (e.g.	species	succession)	patterns	of	vegetation	dynamics	well,	and	re-
sponded	realistically	to	changing	environmental	conditions.	In	addition,	we	tested	
the	computational	efficiency	of	the	approach,	highlighting	the	utility	of	SVD	for	
country-	to	continental	scale	applications.

4.	 SVD	is	the—to	our	knowledge—first	vegetation	model	harnessing	deep	neural	net-
works.	The	approach	has	high	predictive	accuracy	and	is	able	to	generalize	well	
beyond	training	data.	SVD	was	designed	to	run	on	widely	available	input	data	(e.g.	
vegetation	states	defined	from	remote	sensing,	gridded	global	climate	datasets)	
and	 exceeds	 the	 computational	 performance	 of	 currently	 available	 highly	 opti-
mized	landscape	models	by	three	to	four	orders	of	magnitude.	We	conclude	that	
SVD	 is	 a	 promising	 approach	 for	 combining	 detailed	 process	 knowledge	 on	
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1  | INTRODUC TION

Terrestrial	vegetation	is	of	crucial	importance	for	human	well-	being,	
providing	 a	 wide	 variety	 of	 ecosystem	 services	 to	 society	 (MEA,	
2005)	 and	 forming	 the	backbone	of	 a	 large	number	of	Sustainable	
Development	Goals	 of	 the	United	Nations	 (United	Nations,	 2015).	
However,	vegetation	is	not	static	but	changes	dynamically,	respond-
ing	to	drivers	such	as	land-	use	change	and	climate	change	(Erb	et	al.,	
2017;	Lindner	et	al.,	2010).	Thus,	predicting	future	trajectories	of	veg-
etation	dynamics	is	highly	relevant	to	decision	makers	and	society.

A	key	methodological	challenge	for	vegetation	modelling	lies	in	
addressing	ecosystem	dynamics	across	large	spatial	extents.	Key	en-
vironmental	issues	such	as	climate	change	and	biodiversity	loss	are	
of	global	concern	(Steffen	et	al.,	2015),	and	addressing	them	requires	
policy	responses	at	national	to	global	levels.	Consequently,	there	is	a	
scale	mismatch	between	the	underlying	ecological	processes	of	key	
relevance	in	this	context	(e.g.	vegetation	carbon	uptake,	species	co-
existence)—pertaining	to	the	leaf-		to	plant-	scale—and	the	large	scale	
information	demands	of	decision	makers	regarding	future	vegetation	
dynamics.	Scaling,	which	has	been	a	central	issue	in	ecology	for	de-
cades	(Levin,	1992;	Urban,	O'Neill,	&	Shugart,	1987;	Wiens,	1989),	is	
a	methodological	challenge	that	is	thus	increasingly	important	in	the	
context	of	applying	ecological	understanding	to	evidence-	based	de-
cision	making	(Seidl	et	al.,	2013;	Seppelt,	Lautenbach,	&	Volk,	2013).

Dynamic	global	vegetation	models	(DGVMs)	are	frequently	used	
for	simulating	vegetation	dynamics	across	large	spatial	extents	(Snell	
et	al.,	2014).	This	group	of	models	often	employs	a	highly	 realistic	
model	structure	(e.g.	leaves	or	individual	trees	as	entities	of	the	sim-
ulation),	 and	 assumes	 that	 these	 structures	 represent	 the	 vegeta-
tion	(and	its	responses	to,	for	example,	climate	and	management)	in	
a	given	grid	cell	(with	a	typically	width	of	between	10	and	250	km).	
Recent	advances	in	DGVM	development	have	focused	on	consider-
ably	 improving	 the	 physiological	 representation	 of	 terrestrial	 eco-
systems,	for	example,	by	including	nitrogen	and	phosphorus	cycles	
in	addition	to	the	carbon	(C)	and	water	cycles	typically	simulated	in	
such	models	(Goll	et	al.,	2012;	Smith	&	Azad,	2014).

In	 contrast,	 biotic	 interactions	 such	 as	 seed	 dispersal	 and	 es-
tablishment,	 plant	 competition,	 and	 mortality	 have	 received	 only	
limited	 attention	 in	 vegetation	models	 applied	 across	 large	 spatial	
extents	 (Scheiter,	 Langan,	 &	 Higgins,	 2013).	 Plant	 mortality,	 for	
instance,	 is	often	 represented	by	a	 fixed	 rate	of	 live	biomass	 loss,	
disregarding	the	spatio-	temporal	complexity	of	mortality	processes	
(McDowell	 et	al.,	 2011).	 However,	 biotic	 interactions	 and	 the	 re-
sulting	 demographic	 structure	 of	 vegetation	 are	 considered	 to	 be	
crucial	 for	a	better	understanding	of	C	storage	 (Körner,	2017)	and	

range	dynamics	 (Normand,	Zimmermann,	 Schurr,	&	Lischke,	2014)	
in	terrestrial	ecosystems.	Furthermore,	the	effects	of	spatial	neigh-
bourhood	and	temporal	legacies	are	important	drivers	of	vegetation	
structure	 and	 biodiversity	 (Essl	 et	al.,	 2015;	 Schertzer,	 Staver,	 &	
Levin,	2015;	Thom,	Rammer,	&	Seidl,	2017),	yet	are	rarely	considered	
in	current	DGVMs.

Improving	 the	 simulation	 of	 large-	scale	 vegetation	 dynamics	
with	 regard	 to	 biotic	 interactions	 (e.g.	mortality	 and	 demography)	
and	 spatio-	temporal	 controls	 (e.g.	migration	 and	 legacy)	 can	 build	
on	 the	 extensive	 experience	with	 stand-		 to	 landscape-	level	 vege-
tation	models.	Such	models	simulate	vegetation	demography	as	an	
emergent	property	of	regeneration,	growth,	and	mortality	processes	
(Bugmann,	2001),	and	frequently	account	for	spatio–temporal	inter-
actions	 in	 ecosystems	 (Shifley	 et	al.,	 2017).	However,	 they	 usually	
lack	scalability,	which	limits	their	application	across	large	spatial	ex-
tents,	and	necessitates	scaling	approaches	that	are	able	to	capture	
the	drivers	of	vegetation	development	at	 small	 scales	and	dynam-
ically	 scale	 ecosystem	 dynamics	 across	 spatial	 domains.	 Existing	
approaches	 for	 achieving	 such	 an	 upscaling	 include	 closed-	form	
equations	 (Moorcroft,	Hurtt,	 &	 Pacala,	 2001)	 and	meta-	modelling	
(Acevedo,	Ablan,	Urban,	&	Pamarti,	2001;	Cipriotti,	Wiegand,	Pütz,	
Bartoloni,	&	Paruelo,	2016;	Urban,	2005).

Recent	years	have	seen	the	emergence	of	a	new	class	of	algo-
rithms	 that	 can	 loosely	 be	 summarized	 under	 the	moniker	 of	ma-
chine	 learning.	 These	 approaches	 excel	 at	 identifying	 structure	 in	
complex,	 nonlinear	data,	 and	generate	 accurate	predictive	models	
(Goodfellow,	Bengio,	&	Courville,	2016).	Specifically,	Deep	Learning	
is	 an	 emerging	 machine	 learning	 technique	 at	 the	 core	 of	 recent	
breakthroughs	 in	 computer	 vision,	 speech	 synthesis,	 autonomous	
driving,	and	other	fields	(LeCun,	Bengio,	&	Hinton,	2015).	Yet,	such	
approaches	remain	underexploited	for	scaling	 in	ecological	model-
ling	to	date,	despite	their	inherent	potential	for	generalization.

Here,	 we	 introduce	 the	 scalable	 vegetation	 dynamics	 (SVD)	
model,	 describing	 a	 computationally	 efficient	 approach	 to	 simu-
late	vegetation	transitions	using	deep	neural	networks	(DNNs).	The	
overall	aim	of	the	framework	is	to	dynamically	simulate	vegetation	
transitions	 at	 large	 spatial	 scales,	 and	 assess	 their	 consequences	
regarding	 important	 ecosystem	 attributes,	 including	 but	 not	 lim-
ited	to	C	storage	and	biodiversity.	A	key	goal	 in	 the	design	of	 the	
framework	is	generality,	that	is,	it	can	be	applied	to	a	wide	variety	
of	 systems,	and	utilize	a	number	of	different	data	 sources.	 In	 this	
contribution,	 we	 present	 model	 tests	 and	 applications	 for	 forest	
ecosystems,	applying	SVD	in	a	meta-	modelling	context.	Specifically,	
we	demonstrate	 that	 (i)	 SVD	assimilates	 and	 reproduces	 the	 eco-
system	 responses	 to	 climate	 change	 as	 projected	 by	 a	 detailed	

fine-grained	 ecosystem	 processes	with	 the	 increasingly	 available	 big	 ecological	
datasets	for	improved	large-scale	projections	of	vegetation	dynamics.
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process-	based	model,	(ii)	trajectories	of	important	forest	attributes,	
such	 as	 C	 storage	 and	 biodiversity,	 can	 be	 simulated	 in	 a	 spatio-	
temporally	explicit	manner	with	SVD,	and	(iii)	the	approach	is	com-
putationally	scalable	and	efficiently	simulates	vegetation	dynamics	
of	 large	domains	 (>107	ha)	 at	 high	 spatial	 grain	 (100	ha).	Code	 and	
executable	of	SVD	and	example	applications	are	available	online	at	
GitHub	(https://github.com/SVDmodel/SVD).

2  | MATERIAL S AND METHODS

To	simulate	vegetation	dynamics	across	large	spatial	scales	SVD	in-
tegrates	a	number	of	conceptual	approaches.	The	general	concept	
employed	to	achieve	high	computational	efficacy	is	to	classify	veg-
etation	into	a	fine-	grained	set	of	discrete	states.	Transition	path-
ways	 and	 probabilities	 between	 states	 are	 estimated	 by	 a	 Deep	
Neural	Network	(DNN),	and	are	conditional	on	the	prevailing	envi-
ronmental	conditions	(e.g.	climate)	as	well	as	the	local	context	(e.g.	
spatial	neighbourhood).	The	DNN	can	be	trained	on	empirical	data	
or—as	 in	 this	 contribution—on	 the	 results	 of	 a	 detailed	 process-	
based	model.	Vegetation	 attributes	 such	 as	C	 storage	 and	biodi-
versity	are	 linked	to	discrete	vegetation	states	and	the	residence	
time	of	a	given	cell	 in	that	respective	state.	 In	this	way,	SVD	not	
only	predicts	large-	scale	vegetation	dynamics,	but	also	allows	the	
quantification	of	changes	in	ecosystem	attributes	associated	with	
vegetation	change.	The	following	sections	describe	these	individ-
ual	components	of	SVD	and	their	implementation	in	more	detail.

2.1 | Vegetation transitions

Change	 is	 ubiquitous	 in	 ecosystems,	 as	 they	 proceed	 through	
phases	of	growth	(r),	conservation	(K),	release	(Ω),	and	reorganiza-
tion	(α)	(Holling,	1986).	In	addition	to	this	intrinsic	system	dynamics	
external	drivers	such	as	climate	change	alter	vegetation.	Vegetation	
transitions	 in	 the	 r and K	phases,	such	as	 the	growth	and	succes-
sion	of	 a	 forest	 ecosystem,	 are	 primarily	 driven	by	 the	 prevailing	
topo-	edaphic	and	climate	conditions.	Disturbances	 (either	natural	
or	 anthropogenic)	 are	mainly	 responsible	 for	 transitions	 in	 the	Ω 
and α	 stage.	 Faithfully	 capturing	 vegetation	 transitions	 is	 an	 im-
portant	 focus	of	 ecological	 research	 (Hirota,	Holmgren,	Van	Nes,	
&	 Scheffer,	 2011;	 Ratajczak,	 Nippert,	 &	 Ocheltree,	 2014),	 and	 is	
regarded	 as	 a	 promising	 strategy	 to	 model	 ecosystem	 dynamics	
(Bagchi	 et	al.,	 2012;	 Bestelmeyer	 et	al.,	 2009;	 Liénard,	 Gravel,	 &	
Strigul,	2015;	Yospin	et	al.,	2015).	We	here	define	vegetation	tran-
sitions	as	a	change	in	the	discrete	state	of	an	ecosystem.	States	are	
described	along	the	dimensions	ecosystem	structure,	composition,	
and	functioning.	Indicators	were	selected	to	be	either	widely	avail-
able	for	many	ecosystems	or	easily	determined	from	state-	of-	the-	
art	remote	sensing	approaches.

Structure:	A	key	element	of	vegetation	structure	 is	 the	vertical	
utilization	of	space	by	plants.	Furthermore,	canopy	height	is	a	good	
indicator	of	the	developmental	stage	of	long-	lived,	sessile	organisms.	
We	thus	used	the	dominant	height	of	the	vegetation	canopy	as	an	

indicator	for	ecosystem	structure,	here	classified	into	bins	with	4	m	
class	width.

Composition:	The	composition	of	an	ecosystem	is	quantified	via	
the	most	abundant	species	characterizing	an	ecosystem.	Systems	are	
described	as	either	being	dominated	by	a	single	species	(i.e.,	>66%	of	
the	biomass	in	the	most	abundant	species),	or	by	a	number	of	species	
occurring	in	mixtures	(where	each	species	has	>20%	of	the	biomass).

Functioning:	 As	 processes	 such	 as	 light	 absorption,	 transpira-
tion	and	primary	productivity	are	causally	linked	to	leaves,	we	used	
leaf	 area	 index	 as	 a	 widely	 available	 proxy	 for	 ecosystem	 func-
tioning.	Many	 ecosystem	 processes	 saturate	with	 high	 leaf	 areas,	
which	 is	why	we	 limited	our	classes	 to	 three	 functional	states	 (i.e.	
densely	 vegetated	 [leaf	 area	 index	 LAI	>	4],	moderately	 vegetated	
[2	<	LAI	≤	4],	and	sparsely	vegetated	[LAI	≤	2]).

The	 potential	 number	 of	 different	 vegetation	 states	 being	
captured	 by	 a	 full	 combination	 of	 these	 three	 indicators	 is	 large:	
Assuming	a	species	pool	of	20	species	(that	all	have	the	potential	to	
dominate	species	composition),	4	m	height	classes	up	to	a	potential	
tree	height	of	100	m,	and	three	classes	of	LAI,	more	than	514,000	
distinct	vegetation	states	can	be	distinguished	(i.e.	6,597	×	26	×	3).	
Note	 that	 in	 typical	 applications	 only	 a	 small	 fraction	of	 potential	
states	is	actually	realized.	Also,	while	the	scheme	presented	above	is	
tailored	to	forest	ecosystems,	different	indicators	can	be	used	within	
the	 framework	 presented	 here	 (e.g.	 plant	 functional	 types	 rather	
than	individual	species	for	describing	vegetation	composition).

2.2 | Modelling transition probabilities using deep 
neural networks

In	SVD,	we	use	a	deep	neural	network	 (DNN)	approach	 to	model	
the	probabilities	and	pathways	of	vegetation	transitions.	DNNs	are	
a	powerful	machine	learning	approach	that	is	able	to	learn	complex	
relationships	in	data.	It	has	received	considerable	attention	recently,	
and	 is	 increasingly	 applied	 in	 a	wide	 variety	 of	 fields	 from	 image	
and	 text	 analysis	 to	medical	 diagnosis	 (Esteva	 et	al.,	 2017;	 LeCun	
et	al.,	 2015).	DNNs	 are	 descendants	 of	 artificial	 neural	 networks,	
extending	the	approach	 inter alia	by	allowing	a	substantially	 larger	
number	of	layers	(hence	the	term	‘deep’).	Utilizing	deeper	and	there-
fore	more	powerful	networks	became	feasible	only	in	recent	years,	
through	methodological	and	 technical	advances	such	as	 improved	
training	algorithms	and	higher	computing	power	(Goodfellow	et	al.,	
2016).	DNNs	consist	of	many	artificial	‘neurons’	that	are	organized	
in	layers.	Typically,	each	neuron	in	a	layer	is	connected	to	all	neurons	
of	the	previous	layer.	A	neuron	calculates	a	single	output	value	from	
its	 inputs,	which	subsequently	 serves	as	an	 input	 for	 the	neurons	
of	the	following	 layer.	The	 input	data,	provided	by	the	 initial	 layer	
of	the	network,	is	increasingly	transformed	as	it	percolates	through	
the	network	towards	the	output	layer.	Note	that	a	single	DNN	can	
be	designed	to	handle	multiple	types	of	 input	simultaneously,	and	
can	be	trained	to	provide	simultaneous	information	on	multiple	out-
put	variables.	The	network	architecture	specifies	the	detailed	layout	
of	a	DNN,	including	the	size	(number	of	neurons	in	each	layer	and	
the	number	of	layers)	of	a	DNN,	the	choice	of	layer	types,	the	use	

https://github.com/SVDmodel/SVD
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of	 regularization	 techniques,	 and	 the	 activation	 function	 for	 each	
neuron.	Once	the	network	architecture	 is	determined,	the	param-
eters	 in	a	DNN	(i.e.	the	connection	weights	between	neurons)	are	
estimated	 iteratively	 by	 a	 learning	 algorithm	 during	 the	 training	
of	 the	 network.	 For	more	detail	 on	DNNs	 in	 general,	we	 refer	 to	
Goodfellow	et	al.	(2016),	Angermueller,	and	Pärnamaa,	Parts,	Stegle,	
and	Oliver	(2016).

Here,	we	trained	a	DNN	to	estimate	vegetation	transitions	con-
tingent	on	the	current	state	(S),	the	residence	time	(R,	i.e.	the	time	a	
cell	has	already	remained	in	its	current	state),	the	spatial	neighbour-
hood,	and	the	prevailing	site	and	climate	conditions	(Figure	1).	The	
output	of	the	DNN	is	twofold:	First,	it	predicts	a	probability	distribu-
tion	describing	if	and	when	a	transition	is	likely	to	happen	for	a	given	
focal	 cell	within	 a	 prediction	 horizon	 of	 10	years.	 In	 other	words,	
the	DNN	estimates	the	remaining	residence	time	of	a	cell	within	its	

current	 state	 (ΔR).	 Second,	 the	 target	 state	 of	 the	 transition	S*	 is	
estimated	as	a	probability	distribution	over	possible	future	states.

As	 predictors	 of	 transitions	we	 used	 the	 current	 state	 of	 the	
vegetation	(S)	and	the	residence	time	(R)	that	a	cell	has	been	in	its	
current	state.	In	addition,	soil	depth	and	soil	fertility	(time-	invariant)	
were	considered	as	important	local	context	variables	of	vegetation	
development	and	transition.	Climate	variables	were	considered	as	
time-	variant	 predictors	 of	 vegetation	 transitions.	 Specifically,	we	
used	 mean	 monthly	 temperature	 and	 precipitation	 for	 the	 next	
10	years	 (i.e.	 the	 prediction	 horizon	 of	 the	 DNN)	 as	 predictors.	
The	 influence	of	spatial	context	on	transitions	was	accounted	for	
in	two	tiers:	The	local	neighbourhood	is	represented	by	the	eight	
immediate	neighbours	of	a	100	×	100	m2	focal	cell.	In	addition,	the	
intermediate	 neighbourhood	 considers	 a	 wider	 spatial	 influence,	
and	 contains	 cells	 within	 a	 radius	 of	 300	m	 around	 a	 focal	 cell	

F IGURE  1 Conceptual	view	on	the	scaling	vegetation	dynamics	(SVD)	framework.	Vegetation	transitions	on	a	single	cell	are	estimated	
by	a	Deep	Neural	Network	(b)	contingent	on	environmental	factors	(a),	the	current	vegetation	state	(S),	the	residence	time	(R)	and	the	spatial	
context.	The	model	determines	transitions	by	sampling	from	the	DNN-	derived	probability	distributions	for	the	future	state	(S*)	and	the	
time	until	state	change	(ΔR).	Human	and	natural	disturbances	(c)	add	an	abrupt	pathway	for	vegetation	transitions	and	will	be	described	in	
future	work.	Density	distributions	of	ecosystem	attributes	of	interest	are	linked	to	combinations	of	S	×	R	(d).	These	state-		and	residence	
time-	specific	attribute	distributions	can	subsequently	be	used	to	predict	changes	in	the	spatial	distribution	of	these	attributes	based	on	the	
simulated	vegetation	transitions	SVD	(e)
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(Figure	S1).	 In	 these	 neighbourhood	 tiers,	 species	 shares	 are	 cal-
culated	as	a	proxy	for	the	seed	input	into	the	focal	cell.	In	order	to	
consider	edge	effects,	we	also	included	the	distance	to	the	edge	of	
the	simulated	area	in	the	predictors	describing	the	spatial	context	
of	a	cell.	In	addition	to	environmental	variables	and	spatial	context,	
a	third	group	of	factors	influencing	vegetation	transitions	are	dis-
turbances.	Both	human	and	natural	disturbances	hold	the	potential	
for	rapid	transitions	between	strongly	differing	vegetation	states,	
signifying	the	release	(Ω),	and	reorganization	(α)	phases	of	vegeta-
tion	dynamics	(Holling,	1986).	While	we	here	focus	on	transitions	
through	 the	 growth	 (r)	 and	 conservation	 (K)	 phases	 disturbances	
will	be	integrated	into	future	versions	of	SVD	(see	also	Figure	1).

In	 this	 contribution,	 we	 used	 high-	resolution	 process-	based	
model	 (PBM)	output	 for	 training	 the	network,	 specifically	extract-
ing	 simulated	 vegetation	 transitions	 and	 their	 context	 variables	
from	PBM	simulations.	By	 training	 the	DNN	on	a	 large	number	of	
simulated	transitions	across	a	wide	variety	of	ecosystem	states	and	
a	 broad	 range	 of	 environmental	 conditions,	 the	 network	 learns	 a	
‘meta-	model’	of	the	underlying	PBM.	However,	SVD	is	flexible	with	
regard	 to	 the	network	 architecture	 and	data	 used	 in	 training,	 and	
other	 variables	 and	 datasets	 as	 the	 ones	 used	 here	 could	 be	 har-
nessed	 in	 future	 applications.	 Further	 details	 on	 modelling	 tran-
sition	 probabilities	 using	 deep	 neural	 networks	 are	 given	 in	 the	
Supplementary	Material	S2.

2.3 | Estimating the effects of transitions on 
vegetation attributes

Vegetation	 transitions	 are	 modelled	 as	 changes	 between	 discrete	
states	in	SVD,	with	states	defined	by	indicators	of	vegetation	com-
position,	structure,	and	functioning.	To	estimate	the	effect	of	these	
transitions,	we	track	state-	specific	attributes	of	the	simulated	eco-
system.	The	underlying	notion	is	that	many	ecosystem	attributes	are	
strongly	correlated	with	the	state	of	the	vegetation.	We	start	by	as-
suming	that	all	cells	within	a	certain	vegetation	state	S	(e.g.	‘Norway	
spruce	(Picea abies	(L.)	Karst.)	dominated,	moderately	dense	forests	
(2	˂	LAI	≤	4)	with	a	canopy	height	of	20–24	m’)	share	the	same	attrib-
ute	value	(e.g.	with	regard	to	live	tree	carbon	storage).	Knowing	the	
state	S	of	every	cell	within	the	simulated	area	is	thus	sufficient	for	
estimating	the	ecosystem	attribute	of	interest	for	the	entire	simula-
tion	area.	We	subsequently	refine	this	assumption	in	two	important	
ways.	First,	in	many	cases,	the	residence	time	R	in	a	particular	state	S 
also	influences	ecosystem	attributes.	A	forest	that	recently	transited	
into	a	certain	state	S	(e.g.	with	a	canopy	height	of	just	above	20	m)	is	
likely	to	store	less	live	tree	carbon	than	a	forest	at	the	upper	bound	
of	 the	same	state	 (with	a	canopy	height	of	almost	24	m).	We	thus	
differentiate	vegetation	attributes	within	 states	by	 residence	 time	
(S	×	R),	refining	the	grain	of	our	state-	based	attribute	quantification.	
Second,	even	after	such	a	refinement,	attributes	are	bound	to	vary	
within	 a	 given	 state	 and	 residence	 time	 category.	 In	 order	 not	 to	
overestimate	the	significance	of	vegetation	transitions	for	individual	
attributes	it	is	thus	important	to	consider	the	full	distribution	of	an	
attribute	within	an	S	×	R	category	(and	not	only	its	central	tendency).	

This	 allows	 us	 to	 assess	whether	 changes	 in	 ecological	 attributes	
are	 in	 fact	 significantly	different.	Consequently,	 the	 robustness	of	
attribute	changes	associated	with	vegetation	transitions	can	be	as-
sessed	independently	for	each	attribute	in	a	nonparametric	manner.

Conceptually,	SVD	maintains	a	database	of	vegetation	attributes	
that—for	each	combination	of	S	×	R—provides	a	density	distribution	
for	every	ecosystem	attribute	under	investigation.	In	the	current	ap-
plication,	 this	 database	 is	 populated	with	 values	 determined	 from	
PBM	 simulations.	However,	 since	 vegetation	 transitions	 and	 attri-
butes	 are	 treated	 independently	 in	 SVD,	 the	 attributes	 database	
could	 subsequently	 be	 refined	 by	 including	 data	 from	 additional	
sources	(e.g.	remote	sensing,	terrestrial	forest	inventory).

2.4 | Model implementation

For	implementing	and	applying	the	SVD	framework,	a	training	and	
an	application	phase	are	distinguished.	The	 training	phase	encom-
passes	the	design	and	training	of	the	DNN	and	its	prerequisite	steps	
(e.g.	acquisition	and/or	generation	of	training	data,	populating	of	the	
vegetation	attribute	database).	We	here	utilized	the	open	source	ma-
chine	learning	framework	TensorFlow	(Abadi	et	al.,	2016),	which	is	
widely	used	in	deep	learning	applications.	The	training	phase	 is	an	
iterative	process	of	refining,	training,	and	testing	the	DNN,	employ-
ing	the	diagnostic	tools	provided	by	TensorFlow	(see	Supplementary	
Material	S2	 for	 details).	 It	 concludes	with	 a	 fully	 trained	DNN	 for	
predicting	vegetation	transitions,	which	is	subsequently	used	in	the	
application	phase.	Note	that	the	details	of	the	DNN	architecture	and	
training	process	(e.g.	the	used	data)	are	encapsulated	in	the	trained	
model	via	the	network	structure	and	weights,	which	allows	tailoring	
DNNs	for	specific	applications	and/or	regions.

In	applications,	 the	SVD	model	serves	as	 the	 interface	for	using	
the	trained	DNN	in	dynamic	predictions	of	transitions	given	new	envi-
ronmental	vectors,	and	scales	vegetation	dynamics	to	large	spatial	ex-
tents	(Figure	1,	see	Supplementary	Material	S1	for	technical	details).	
The	time	step	of	the	model	simulations	is	annual.	 In	each	time	step,	
SVD	considers	the	subset	of	cells	for	which	a	transition	was	estimated	
based	on	the	10-	year	prediction	horizon	of	the	DNN	(ΔR).	It	calculates	
a	probability	distribution	for	the	new	state	S*	based	on	DNN	predic-
tors,	and	determines	the	new	state	probabilistically	by	drawing	from	
the	distribution.	For	all	cells	not	subject	to	vegetation	transition	during	
the	time	step	the	residence	time	is	advanced	by	1	year.	At	the	end	of	
each	time	step,	the	ecosystem	attributes	are	updated	by	querying	the	
attribute	database	using	 the	newly	calculated	S and R	 for	each	cell.	
Attribute	values	are	sampled	from	the	respective	density	distributions	
stored	in	the	vegetation	attribute	database.	The	current	spatial	grain	
of	 SVD	 simulations	 are	 regular	 100	m	 grid	 cells,	 that	 is,	 transitions,	
states,	and	attributes	are	calculated	at	the	level	of	1	ha.

2.5 | Model testing and application

To	demonstrate	 the	utility	of	 the	SVD	framework,	we	conducted	a	
number	 of	 simulation	 experiments,	 specifically	 aiming	 at	 (a)	 testing	
the	ability	of	the	SVD	to	reproduce	detailed	PBM	trajectories	during	
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the	r and K	phases	of	vegetation	dynamics	(i.e.	a	DNN-	driven	meta-	
model	of	a	PBM),	and	(b)	demonstrating	the	applicability	of	the	model	
to	large	spatial	scales.	For	testing	and	comparison	to	PBM	simulations	
we	focused	on	Kalkalpen	National	Park	(KANP)	in	the	northern	Alps	in	
Austria.	KANP	is	a	forest	landscape	of	20,850	ha,	containing	a	range	
of	 forest	 types	 extending	 over	 an	 elevational	 gradient	 from	385	m	
to	1,963	m	 (Figure	S6	 in	 the	Supplementary	Material).	As	 reference	
PBM,	we	used	iLand,	the	individual-	based	landscape	and	disturbance	
model	(Seidl,	Rammer,	Scheller,	&	Spies,	2012).	iLand	was	extensively	
tested	and	applied	in	the	region	previously	(Thom	et	al.,	2017;	Thom,	
Rammer,	&	Seidl,	2017)	and	is	thus	a	suitable	PBM	for	meta-	modelling.	
Starting	from	today's	vegetation	at	KANP,	we	simulated	natural	forest	
dynamics	with	iLand	over	500	years	under	four	different	climate	sce-
narios	without	consideration	of	management	and	disturbances.	The	
simulated	vegetation	dynamics	at	a	spatial	grain	of	100	×	100	m2 were 
used	to	train	a	DNN.	The	dataset	contained	a	total	of	16.8	Mio	train-
ing	 examples	 distributed	 over	 1,418	 distinct	 vegetation	 states.	We	
split	the	data	into	a	training	set	(three	of	the	four	climate	scenarios,	
75.4%	of	the	examples),	and	set	aside	data	of	one	scenario	(C3,	24.6%	
of	the	examples)	as	an	independent	validation	set	(see	Supplementary	
Material	S2	for	additional	details	on	KANP,	the	scenarios	considered,	
as	well	as	the	data	and	training	procedure).	In	order	to	assess	whether	
the	DNN	was	able	to	infer	additional	information	from	spatial	context	
variables	(i.e.,	the	vegetation	state	of	neighbouring	cells)	we	trained	
DNNs	with	and	without	spatial	context,	and	compared	their	accuracy	
in	predicting	vegetation	transitions.

Subsequently,	we	tested	the	ability	of	SVD	to	reproduce	the	pat-
terns	of	vegetation	development	obtained	from	the	PBM	in	a	number	
of	experiments.	First,	we	used	SVD	to	simulate	vegetation	dynamics	
at	KANP	starting	from	the	same	initial	conditions	as	the	PBM,	and	
assessed	whether	SVD	was	able	to	reproduce	the	PBM-	derived	veg-
etation	development	under	different	climate	forcings.	In	particular,	
we	compared	the	predicted	state	of	the	landscape	from	SVD	to	PBM	
results	in	terms	of	composition,	structure,	and	functioning	after	100,	
300,	and	500	simulation	years.	This	test	thus	examines	whether	SVD	
is	a	good	meta-	model	of	iLand	under	a	variety	of	climate	scenarios.	
To	facilitate	the	visual	interpretation	of	simulated	species	composi-
tion,	we	mapped	the	most	frequently	occurring	compositional	types,	
and	binned	all	remaining	types	into	an	‘other’	category.

The	second	test	evaluated	the	simulated	trajectories	of	ecosystem	
attributes,	 exemplarily	 focusing	on	 live	 tree	carbon	 (tC	ha−1,	C)	 and	
tree	species	diversity	(exponent	of	the	Shannon	α	diversity,	equaling	
the	first	order	Hill	number,	D,	which	can	be	interpreted	as	the	approx-
imate	number	of	species	with	equal	abundances).	We	used	data	from	
iLand	 simulations	 to	 compile	 a	database	of	 vegetation	 attributes	 in	
SVD,	and	consequently	compared	 the	 state-	based	attribute	predic-
tions	of	SVD	with	detailed	information	on	live	tree	C	and	tree	species	
diversity	as	simulated	by	iLand.	As	these	attributes	are	an	emerging	
property	 of	 detailed	 physiological	 and	 demographic	 processes	 in	
iLand,	this	second	test	examined	the	proposition	that	they	can	be	rea-
sonably	approximated	by	the	S	×	R	attribute	classes	of	SVD.

Finally,	to	demonstrate	the	potential	of	SVD	to	scale	up	vegeta-
tion	dynamics	to	large	spatial	scales	we	applied	the	model	to	a	generic	

landscape	 of	 250	×	1,000	km	 (2.5	×	107	ha,	 i.e.	 approximately	 the	
forest	area	of	France)	at	a	spatial	grain	of	100	×	100	m2.	For	this	test,	
we	assumed	the	gradient	in	mean	annual	temperature	contained	in	
KANP	(i.e.,	a	range	of	5.5°C)	to	vary	linearly	over	the	1,000	km	length	
of	the	simulated	landscape,	ordered	from	the	coldest	(top)	to	warm-
est	(bottom)	conditions.	Starting	the	simulations	from	a	random	ini-
tial	state	(sampled	from	the	1,418	vegetation	states	realized	in	PBM	
simulations),	we	simulated	vegetation	development	over	500	years	
(using	a	stationary	climate	representing	the	conditions	of	the	recent	
past).	We	assessed	the	emerging	spatial	pattern	of	species	composi-
tion	for	ecological	plausibility,	i.e.	whether	a	regular	pattern	over	the	
imposed	climate	gradient	emerged	from	the	randomly	initiated	veg-
etation	state.	This	third	experiment	was	thus	aimed	at	evaluating	the	
ability	of	the	model	to	simulate	transient	patterns	of	spatially	explicit	
species	change	(as	relevant	e.g.	in	the	context	of	species	migration).	
In	addition,	it	also	aimed	at	testing	the	computational	performance	of	
SVD	when	scaling	vegetation	dynamics	across	three	orders	of	magni-
tude	(from	2.0	×	104	ha	to	2.5	×	107	ha).

3  | RESULTS

3.1 | A deep neural network for modelling 
vegetation transitions

The	DNN	 for	 estimating	 vegetation	 transitions	 at	KANP	had	 nine	
hidden	 layers	 and	 1.33	Mio	 learned	 connection	 weights	 (see	
Supplementary	Material	S2	for	details).	It	was	well	able	to	learn	vege-
tation	transitions	and	their	dependency	on	current	vegetation	states	
and	environmental	drivers.	 In	an	assessment	of	DNN	performance	
against	the	independent	validation	data	(i.e.	data	not	used	for	train-
ing	the	network)	it	reached	a	prediction	accuracy	(i.e.	the	percentage	
of	correctly	predicted	classes)	of	86.3%	for	estimating	the	time	until	
transition	(ΔR),	and	85.7%	for	the	state	resulting	from	a	transition	S*. 
Furthermore,	the	correct	new	state	after	a	transition	(S*	as	predicted	
with	 iLand)	was	 contained	 in	 the	 top	 three	most	 probable	 classes	
predicted	by	SVD	 in	97.1%	of	 the	cases.	The	network	generalized	
well,	with	only	slightly	decreased	classification	performance	for	vali-
dation	data	compared	to	training	data	(see	Table	S3).	The	prediction	
accuracy	decreased	slightly	when	disregarding	the	spatial	context	of	
a	cell	(Supplementary	Material	Figure	S4).

3.2 | Simulating vegetation transitions with SVD

The	simulated	vegetation	dynamics	with	SVD	showed	good	agree-
ment	with	 the	trajectories	derived	from	the	PBM	iLand	 (Figure	2,	
Table	1).	Under	the	climate	forcing	C3	(validation	set,	not	used	for	
training	the	DNN),	 the	species	composition	shifted	from	an	 initial	
Norway	 spruce	dominance	 to	European	beech	 (Fagus sylvatica	 L.)	
for	most	parts	of	the	 landscape.	 In	the	 low	elevation	areas	of	the	
landscape	 (northeastern	 corner)	 warm-	adapted	 species	 such	 as	
oak	 (Quercus	 ssp.)	appeared.	These	simulated	patterns	of	climate-	
induced	species	change	over	time	were	in	congruence	with	PBM	sim-
ulations.	Compared	to	the	PBM,	SVD	moderately	underestimated	
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the	share	of	beech	on	the	landscape	after	500	years.	However,	veg-
etation	 structure	and	 functioning	developed	similarly	 in	SVD	and	
the	PBM,	displaying	a	rapid	transition	to	closed	forests	of	tall	tree	
canopies.	Results	for	simulations	under	the	three	other	climate	sce-
narios	showed	that	SVD	responded	realistically	to	different	climate	
signals,	 reproducing	 the	 patterns	 found	 in	 the	 PBM	 simulations	
(Table	1,	Supplementary	Material	Figure	S7).	In	a	cell-	wise	compari-
son	between	SVD	and	PBM	simulations,	average	accuracies	were	
0.565,	0.602,	and	0.946	for	ecosystem	composition,	structure,	and	
functioning	 (average	 values	 over	 three	 points	 in	 time	 (after	 100,	
300,	500	simulation	years)	and	all	climate	scenarios,	Table	1).	When	
SVD	was	driven	by	an	alternative	DNN	neglecting	spatial	context	
information	 in	 making	 predictions	 on	 vegetation	 transitions,	 the	
resulting	spatial	pattern	was	markedly	noisier	(see	Supplementary	
Material	S5).

3.3 | Predicting the response of ecosystem 
attributes to vegetation transitions

The	database	of	vegetation	attributes	for	KANP	contained	density	
distributions	 for	 21,494	 combinations	 of	 S	×	R,	 and	 was	 compiled	
from	7.7	×	107	 data	 points	 generated	by	 the	process	 based	model	
iLand.	Over	all	combinations	of	S	×	R,	 the	mean	values	of	 live	tree	
carbon	 ranged	 from	 1.3	 to	 474.8	tC	ha−1	 (average	 across	 all	 S	×	R 
classes:	 150.7	tC	ha−1),	 and	 tree	 species	 diversity	 ranged	 from	 0	
(no	vegetation)	to	8.8	for	highly	diverse	states	(average:	2.67).	The	
Supplementary	 Material	 provides	 additional	 analyses	 on	 the	 dis-
tribution	of	attributes	over	vegetation	composition,	structure,	and	
functioning	(Figures	S9	and	S10).

Ecosystem	attributes	predicted	by	SVD	 for	 the	 climate	 sce-
nario	 not	 used	 for	 training	 (C3)	 showed	 a	 good	 agreement	 to	

F IGURE  2 Simulated	vegetation	transitions	in	scaling	vegetation	dynamics	(SVD)	for	Kalkalpen	National	Park	under	climate	scenario	
C3	(validation	set,	data	not	used	for	training	of	the	DNN).	(a)	Distribution	of	the	vegetation	state	regarding	composition,	structure	and	
functioning	at	the	landscape	scale	over	500	years.	(b)	Spatial	distribution	of	vegetation	composition,	comparing	SVD	to	the	process	based	
model	(PBM)	iLand	after	100	and	500	simulation	years.	Shown	are	the	18	most	frequently	occuring	compositional	types.	The	used	species	
codes	are	‘piab’	for	Picea abies,	‘pisy’	for	Pinus sylvestris,	‘lade’	for	Larix decidua,	‘fasy’	for	Fagus sylvatica,	and	‘abal’	for	Abies alba.	Dominant	
species	(i.e.	>66%	of	the	biomass)	are	indicated	by	uppercase	species	codes
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300 0.617 0.596 0.476 0.469

500 0.710 0.731 0.572 0.545

Structure 100 0.622 0.623 0.675 0.636

300 0.565 0.585 0.574 0.538

500 0.616 0.624 0.576 0.590

Functioning 100 0.908 0.934 0.926 0.955

300 0.941 0.959 0.943 0.972

500 0.953 0.957 0.950 0.952

TABLE  1 Total	accuracy	(i.e.,	fraction	
of	100	m	cells	correctly	classified	by	SVD)	
for	vegetation	composition,	structure,	and	
functioning	at	three	points	in	time.	The	
accuracy	for	composition	was	calculated	
for	the	18	most	frequently	occurring	
compositional	states	(see	also	Figure	2).	
BL	=	baseline	climate,	C1–C3	=	scenarios	
of	future	climate	change.	Note	that	
reference	data	for	scenario	C3	were	not	
included	in	training	the	DNN	at	the	core	
of	SVD
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PBM	values	for	live	tree	carbon,	and	a	slightly	lower	correspon-
dence	to	reference	values	for	tree	diversity	(Figure	3).	However,	
SVD	 correctly	 predicted	 the	 long-	term	 temporal	 trend	 in	 both	
attributes,	 simulating	 an	 increase	 in	 live	 tree	 carbon	 stocks	

particularly	in	the	first	century	of	the	simulation,	and	a	slow	but	
steady	decrease	in	tree	species	diversity	over	time	(see	Figure	S8	
for	 the	 initial	 values,	 and	Tables	S4	and	S5	 for	 results	under	all	
climate	scenarios).

F IGURE  3 Comparison	of	the	
simulated	attributes	live	tree	carbon	
(a)	and	tree	species	diversity	(b).	The	
boxplots	indicate	the	spatial	distribution	
of	the	respective	attribute	over	time	at	
the	landscape	scale.	The	maps	show	the	
spatial	distribution	of	attributes	after	500	
simulation	years.	Data	is	taken	from	the	
climate	scenario	C3	(validation	dataset)
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abies,	‘pisy’	for	Pinus sylvestris,	‘lade’	for	
Larix decidua,	‘fasy’	for	Fagus sylvatica,	and	
‘abal’	for	Abies alba.	Dominant	species	(i.e.	
>66%	of	the	biomass)	are	indicated	by	
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3.4 | Upscaling of vegetation dynamics

In	 order	 to	 demonstrate	 the	 scalability	 of	 SVD,	 we	 ran	 a	 simula-
tion	for	a	generic	landscape	of	2.5	×	107	ha	at	a	spatial	grain	of	1	ha	
over	500	years	(Fig.	4).	The	initially	randomly	distributed	vegetation	
states	clearly	separated	spatially	after	500	simulation	years,	closely	
tracking	 the	 imposed	 temperature	gradient.	The	emerging	pattern	
showed	a	separation	in	a	zone	dominated	by	Norway	spruce	at	the	
cool	 end	 (north),	 an	 intermediate	 zone	with	mixed	 spruce—beech	
forests,	and	a	beech-	dominated	zone	at	the	warm	end	(south).	The	
model	was	 thus	well	able	 to	 realistically	separate	 the	major	 forest	
types	expected	for	Central	Europe	(see	EEA,	2006)	based	on	climate.	
This	large-	scale	application	of	SVD	also	proved	to	be	highly	compu-
tationally	efficient:	The	simulation	took	less	than	an	hour	on	a	single	
workstation	(i.e.	a	throughput	of	more	than	4	Mio	ha	year	s−1)	while	
consuming	only	moderate	amounts	of	memory	(<3	GB).	This	under-
lines	that	simulating	areas	at	country	to	continental	scale	is	compu-
tationally	feasible	with	SVD.

4  | DISCUSSION

Scaling	has	long	been	a	central	issue	in	ecology	and	remains	a	chal-
lenge	 for	 ecological	 modelling.	We	 here	 present	 a	 novel	 frame-
work	to	scale	vegetation	transitions,	combining	the	discretization	
of	 vegetation	 states	with	 the	predictive	power	of	 a	 deep	neural	
network	for	estimating	transition	probabilities	and	pathways.	Our	
approach	 builds	 on	 established	 concepts	 used	 to	model	 vegeta-
tion	dynamics,	particularly	the	state-	and-	transition	modelling	ap-
proach	 (Bestelmeyer	et	al.,	 2009;	Westoby,	Walker,	&	Noy-	Meir,	
1989;	Yospin	et	al.,	2015).	A	common	element	 in	previous	state-	
and-	transition	 models	 and	 the	 SVD	 approach	 presented	 here	
is	 the	 classification	 of	 vegetation	 into	 discrete	 states.	 However,	
the	 number	 of	 states	 explicitly	 considered	 in	 traditional	 state-	
and-	transition	 models	 is	 limited	 (usually	 in	 the	 order	 of	 10s	 to	
lower	100s)	 (Halofsky	et	al.,	2013;	Hemstrom,	Merzenich,	Reger,	
&	Wales,	2007),	 inter alia	due	 to	 the	exponential	 increase	 in	po-
tential	transitions	that	need	to	be	parameterized.	Using	a	DNN	to	
estimate	transition	probabilities	between	a	 large	number	of	pos-
sible	states	(>514,000	in	the	example	presented	here)	allowed	us	
to	 substantially	 refine	 the	 characterization	 of	 vegetation,	 while	
still	 exploiting	 the	 computational	 advantages	 of	 a	 finite	 set	 of	
states.	A	second	advancement	of	SVD	over	traditional	state-	and-	
transition	models	 is	 the	 explicit	 consideration	 of	 residence	 time	
within	a	vegetation	state	as	a	variable	influencing	the	propensity	
of	a	transition.	This	addition	considerably	improves	the	realism	of	
simulated	vegetation	trajectories	at	the	level	of	an	individual	grid	
cell	over	the	use	of	time-	invariant	probabilistic	transitions	 (often	
troubled	by	‘flickering’	between	states,	or	an	unrealistically	fast/
slow		progression	through	a	sequence	of	states).

We	found	deep	neural	networks	to	work	well	as	the	engine	of	
our	meta-	modelling	approach.	Specifically,	the	DNN	accurately	re-
produced	 the	 complex	 responses	 of	 an	 underlying	 process-	based	

model,	yielding	high	prediction	accuracies	for	both	time	until	transi-
tion	(ΔR)	and	the	state	resulting	from	a	transition	(S*).	Designing	the	
DNN	to	consider	a	prediction	horizon	(here	set	to	10	years)	rather	
than	estimating	transition	probabilities	from	year	to	year	proved	an	
important	 element	 of	 our	 network	 architecture,	 as	 environmental	
effects	on	vegetation	can	be	cumulative	over	several	years	(e.g.	the	
impact	of	drought,	Allen,	Breshears,	&	McDowell,	2015).	The	final	
DNN	was	well	able	to	predict	situations	that	were	not	 included	 in	
the	 underlying	 training	 data,	 and	 thus	 showed	 high	 potential	 for	
generalization,	which	 is	 an	 important	 ability	 in	 the	 context	 of	 up-
scaling	(Goodfellow	et	al.,	2016;	LeCun	et	al.,	2015).	The	separation	
of	 network	 training	 and	 its	 application	 in	 SVD	has	 several	 advan-
tages.	The	DNN	training	procedure	is	flexible	and	can	therefore	be	
easily	 tailored	 to	 specific	 applications.	Furthermore,	 the	DNN	can	
be	continuously	improved	(e.g.	by	including	new	training	data)	with-
out	 requiring	 changes	 to	 the	 SVD	model	 concept.	 The	 separation	
of	 time-	consuming	training	and	application	 is	also	computationally	
efficient:	Compared	to	the	PBM	used	as	a	reference	(which	is	already	
highly	optimized	for	simulation	time,	see	Seidl	et	al.,	2012)	the	DNN-	
driven	SVD	approach	was	three	to	four	orders	of	magnitude	faster	in	
simulating	vegetation	dynamics.

A	 key	 limitation	 of	DNNs—and	machine	 learning	 algorithms	 in	
general—is	 that	 they	 require	 large	 datasets	 in	 order	 to	 being	 able	
to	 abstract	 the	 underlying	 relationships.	 We	 here	 used	 a	 meta-	
modelling	 approach	 (Urban,	 2005),	 i.e.,	 training	 our	 DNN	 on	 ex-
tensive	 simulation	 results	 from	 a	 detailed	 PBM.	 An	 advantage	 of	
meta-	modelling	 over	 using	 empirical	 information	 is	 that	 also	 tran-
sitions	 to	 possible	 novel	 future	 vegetation	 states	 (i.e.	 no-	analog	
conditions,	Williams	&	Jackson,	2007)	are	considered.	However,	the	
downside	of	this	approach	is	that	our	DNN	in	its	current	form	only	
encapsulates	 the	 processes	 represented	 by	 the	 underlying	 PBM,	
and	 is	 trained	only	 for	 the	environmental	 conditions	used	 in	PBM	
simulations.	 To	 increase	 the	 robustness	 of	 SVD-	predicted	 vegeta-
tion	transitions	in	the	future	it	is	thus	desirable	to	increase	the	da-
tabase	on	vegetation	transitions	available	for	training	the	underlying	
DNN.	Such	 future	 improvements	of	 the	 foundation	of	SVD	could,	
for	 instance,	 include	simulation	results	of	the	same	PBM	for	other	
ecosystems	and	environmental	conditions	(e.g.	Seidl,	Albrich,	Thom,	
&	Rammer,	2018;	Silva	Pedro,	Rammer,	&	Seidl,	2016).	The	database	
could,	however,	also	be	extended	to	include	information	from	differ-
ent	PBMs	or	 increasingly	available	model	comparison	experiments	
(Bugmann	et	al.,	2018;	van	Oijen	et	al.,	2013),	in	order	to	reduce	the	
uncertainty	related	to	the	formulation	of	a	single	underlying	PBM.

An	important	role	of	simulation	modelling	is	to	make	projections	
on	 the	 development	 of	 ecosystem	 attributes	 that	 are	 relevant	 to	
managers	and	policy-	makers.	Improving	the	capacity	to	model	eco-
system	attributes	in	space	and	time	can	contribute	to	the	evidence-	
based	decision	making	needed	for	tackling	key	planetary	challenges	
such	 as	 climate	 change	 and	biodiversity	 loss	 (Steffen	et	al.,	 2015).	
We	 here	 showed	 that	 a	 combination	 of	 ecosystem	 composition,	
structure,	and	functioning	can	provide	a	meaningful	proxy	for	quan-
tifying	the	effect	of	vegetation	transitions	on	ecosystem	attributes	
of	 interest.	While	we	here	demonstrate	our	approach	for	 live	tree	
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C	storage	and	local	tree	species	diversity,	it	can	easily	be	extended	
to	a	number	of	other	attributes	in	the	future.	A	particular	strength	
of	our	approach	is	that	the	relationship	between	a	specific	vegeta-
tion	state	and	an	attribute	of	interest	is	purely	data-	driven,	and	can	
consequently	be	 improved	by	amending	the	underlying	vegetation	
attribute	 database,	 e.g.	 by	 assimilating	 empirical	 information	 from	
forest	inventory	and	analysis	data.	However,	an	important	limitation	
of	the	approach	described	here	is	that	vegetation	states	are	defined	
a priori,	 rather	 than	 aiming	 to	 maximize	 their	 explanatory	 power	
	regarding	 certain	 ecosystem	 attributes	 (e.g.	 Peura	 et	al.,	 2016;	
Winter	&	Brambach,	2011).	This	approach	was	selected	because	it	
grants	compatibility	with	widely	available	information	from	remote	
sensing,	which	aids	the	broader	applicability	of	the	model.	However,	
when	extending	SVD	to	simulate	other	ecosystem	attributes	in	the	
future,	the	ability	of	the	combination	of	S	×	R	used	in	SVD	to	suffi-
ciently	capture	differences	in	these	attributes	needs	to	be	evaluated.	
An	important	tool	of	inference	in	this	regard	is	the	probabilistic	spec-
ification	of	attributes	for	each	S	×	R,	which	allows	case-	specific	tests	
on	whether	a	transition	between	two	states	results	in	a	significant	
change	in	ecosystem	attributes.

Our	 approach	 to	 scaling	 vegetation	 dynamics	 complements	
existing	 approaches	 of	 DGVMs.	 In	 comparison	 to	 many	 existing	
DGVMs,	vegetation	demography	is	tracked	more	explicitly	in	SVD,	
which	increases	the	robustness	of	simulated	C	stocks	(Körner,	2017).	
Furthermore,	 the	 effects	 of	 spatial	 neighbourhood	 on	 vegetation	
transitions	are	considered	explicitly	 in	SVD,	which	 results	 in	more	
realistic	 spatio-	temporal	 trajectories	 of	 vegetation	 change	 (Snell	
et	al.,	2014).	We	explicitly	tested	the	effect	of	including	spatial	con-
text	as	predictor	in	our	DNN	and	found	that	it	was	important	for	cor-
rectly	upscaling	patterns	of	vegetation	change	(see	Supplementary	
Figure	S5),	emphasizing	that	spatial	interactions	require	more	atten-
tion	also	at	macroecological	scales	(Rose	et	al.,	2017).	However,	our	
approach	 is	 not	 intended	 to	 replace	 existing	 vegetation	modelling	
approaches	but	 rather	 to	extend	the	toolbox	available	 for	predict-
ing	vegetation	dynamics.	One	possible	 role	of	our	approach	could	
be	 to	 synthesize	 the	 high	 level	 of	 process	 detail	 available	 in	 local	
models,	scale	up	the	emerging	dynamics,	and	consistently	compare	
vegetation	trajectories	to	simulations	of	DGVMs.	To	date,	such	com-
parisons	remain	strongly	limited	by	the	inherent	scale	mismatch	be-
tween	DGVMs	and	stand	level	models	(Bugmann	et	al.,	2018).	SVD	
could	thus	bridge	the	gap	between	local	 (stand	to	 landscape	level)	
models	and	DGVMs,	and	 foster	mutual	 learning	and	 the	advance-
ment	of	vegetation	simulation	(Bonan	&	Doney,	2018).

5  | CONCLUSIONS

SVD	 is	 the—to	 our	 knowledge—first	 vegetation	model	 harnessing	
deep	neural	networks.	Here,	our	objective	was	to	demonstrate	how	
to	model	undisturbed	vegetation	development	(r and K	phases	sensu 
Holling	(1986))	based	on	DNNs.	However,	the	model	presented	here	
is	 only	 a	 first	 step,	 as	 important	 drivers	 of	 vegetation	 transitions	
such	 as	 natural	 disturbances	 and	 ecosystem	 management	 were	

not	considered	here.	Given	 the	promising	 results	of	 this	proof-	of-	
concept	contribution,	our		future	work	will	focus	on	including	these	
elements	into	SVD,	and	on	broadening	the	extent	of	its	underlying	
database.	We	conclude	that	emerging	new	technologies	such	as	ma-
chine	learning	and	iterative	model	improvement	(Dietze	et	al.,	2018)	
have	the	potential	to	instigate	a	new	wave	of	model	development,	
and	usher	in	a	new	era	of	prediction	in	ecology.
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