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Abstract
1.	 In times of rapid global change, anticipating vegetation changes and assessing 
their impacts is of key relevance to managers and policy makers. Yet, predicting 
vegetation dynamics often suffers from an inherent scale mismatch, with abun-
dant data and process understanding being available at a fine spatial grain, but the 
relevance for decision-making is increasing with spatial extent.

2.	 We present a novel approach for scaling vegetation dynamics (SVD), using deep 
learning to predict vegetation transitions. Vegetation is discretized into a large 
number (103–106) of potential states based on its structure, composition and func-
tioning. Transition probabilities between states are estimated via a deep neural 
network (DNN) trained on observed or simulated vegetation transitions in combi-
nation with environmental variables. The impact of vegetation transitions on im-
portant ecological indicators is quantified by probabilistically linking attributes 
such as carbon storage and biodiversity to vegetation states.

3.	 Here, we describe the SVD approach and present results of applying the frame-
work in a meta-modelling context. We trained a DNN using simulations of a pro-
cess-based forest landscape model for a complex mountain forest landscape 
under different climate scenarios. Subsequently, we evaluated the ability of SVD 
to project long-term vegetation dynamics and the resulting changes in forest car-
bon storage and biodiversity. SVD captured spatial (e.g. elevational gradients) and 
temporal (e.g. species succession) patterns of vegetation dynamics well, and re-
sponded realistically to changing environmental conditions. In addition, we tested 
the computational efficiency of the approach, highlighting the utility of SVD for 
country- to continental scale applications.

4.	 SVD is the—to our knowledge—first vegetation model harnessing deep neural net-
works. The approach has high predictive accuracy and is able to generalize well 
beyond training data. SVD was designed to run on widely available input data (e.g. 
vegetation states defined from remote sensing, gridded global climate datasets) 
and exceeds the computational performance of currently available highly opti-
mized landscape models by three to four orders of magnitude. We conclude that 
SVD is a promising approach for combining detailed process knowledge on 
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1  | INTRODUC TION

Terrestrial vegetation is of crucial importance for human well-being, 
providing a wide variety of ecosystem services to society (MEA, 
2005) and forming the backbone of a large number of Sustainable 
Development Goals of the United Nations (United Nations, 2015). 
However, vegetation is not static but changes dynamically, respond-
ing to drivers such as land-use change and climate change (Erb et al., 
2017; Lindner et al., 2010). Thus, predicting future trajectories of veg-
etation dynamics is highly relevant to decision makers and society.

A key methodological challenge for vegetation modelling lies in 
addressing ecosystem dynamics across large spatial extents. Key en-
vironmental issues such as climate change and biodiversity loss are 
of global concern (Steffen et al., 2015), and addressing them requires 
policy responses at national to global levels. Consequently, there is a 
scale mismatch between the underlying ecological processes of key 
relevance in this context (e.g. vegetation carbon uptake, species co-
existence)—pertaining to the leaf- to plant-scale—and the large scale 
information demands of decision makers regarding future vegetation 
dynamics. Scaling, which has been a central issue in ecology for de-
cades (Levin, 1992; Urban, O'Neill, & Shugart, 1987; Wiens, 1989), is 
a methodological challenge that is thus increasingly important in the 
context of applying ecological understanding to evidence-based de-
cision making (Seidl et al., 2013; Seppelt, Lautenbach, & Volk, 2013).

Dynamic global vegetation models (DGVMs) are frequently used 
for simulating vegetation dynamics across large spatial extents (Snell 
et al., 2014). This group of models often employs a highly realistic 
model structure (e.g. leaves or individual trees as entities of the sim-
ulation), and assumes that these structures represent the vegeta-
tion (and its responses to, for example, climate and management) in 
a given grid cell (with a typically width of between 10 and 250 km). 
Recent advances in DGVM development have focused on consider-
ably improving the physiological representation of terrestrial eco-
systems, for example, by including nitrogen and phosphorus cycles 
in addition to the carbon (C) and water cycles typically simulated in 
such models (Goll et al., 2012; Smith & Azad, 2014).

In contrast, biotic interactions such as seed dispersal and es-
tablishment, plant competition, and mortality have received only 
limited attention in vegetation models applied across large spatial 
extents (Scheiter, Langan, & Higgins, 2013). Plant mortality, for 
instance, is often represented by a fixed rate of live biomass loss, 
disregarding the spatio-temporal complexity of mortality processes 
(McDowell et al., 2011). However, biotic interactions and the re-
sulting demographic structure of vegetation are considered to be 
crucial for a better understanding of C storage (Körner, 2017) and 

range dynamics (Normand, Zimmermann, Schurr, & Lischke, 2014) 
in terrestrial ecosystems. Furthermore, the effects of spatial neigh-
bourhood and temporal legacies are important drivers of vegetation 
structure and biodiversity (Essl et al., 2015; Schertzer, Staver, & 
Levin, 2015; Thom, Rammer, & Seidl, 2017), yet are rarely considered 
in current DGVMs.

Improving the simulation of large-scale vegetation dynamics 
with regard to biotic interactions (e.g. mortality and demography) 
and spatio-temporal controls (e.g. migration and legacy) can build 
on the extensive experience with stand-  to landscape-level vege-
tation models. Such models simulate vegetation demography as an 
emergent property of regeneration, growth, and mortality processes 
(Bugmann, 2001), and frequently account for spatio–temporal inter-
actions in ecosystems (Shifley et al., 2017). However, they usually 
lack scalability, which limits their application across large spatial ex-
tents, and necessitates scaling approaches that are able to capture 
the drivers of vegetation development at small scales and dynam-
ically scale ecosystem dynamics across spatial domains. Existing 
approaches for achieving such an upscaling include closed-form 
equations (Moorcroft, Hurtt, & Pacala, 2001) and meta-modelling 
(Acevedo, Ablan, Urban, & Pamarti, 2001; Cipriotti, Wiegand, Pütz, 
Bartoloni, & Paruelo, 2016; Urban, 2005).

Recent years have seen the emergence of a new class of algo-
rithms that can loosely be summarized under the moniker of ma-
chine learning. These approaches excel at identifying structure in 
complex, nonlinear data, and generate accurate predictive models 
(Goodfellow, Bengio, & Courville, 2016). Specifically, Deep Learning 
is an emerging machine learning technique at the core of recent 
breakthroughs in computer vision, speech synthesis, autonomous 
driving, and other fields (LeCun, Bengio, & Hinton, 2015). Yet, such 
approaches remain underexploited for scaling in ecological model-
ling to date, despite their inherent potential for generalization.

Here, we introduce the scalable vegetation dynamics (SVD) 
model, describing a computationally efficient approach to simu-
late vegetation transitions using deep neural networks (DNNs). The 
overall aim of the framework is to dynamically simulate vegetation 
transitions at large spatial scales, and assess their consequences 
regarding important ecosystem attributes, including but not lim-
ited to C storage and biodiversity. A key goal in the design of the 
framework is generality, that is, it can be applied to a wide variety 
of systems, and utilize a number of different data sources. In this 
contribution, we present model tests and applications for forest 
ecosystems, applying SVD in a meta-modelling context. Specifically, 
we demonstrate that (i) SVD assimilates and reproduces the eco-
system responses to climate change as projected by a detailed 

fine-grained ecosystem processes with the increasingly available big ecological 
datasets for improved large-scale projections of vegetation dynamics.
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process-based model, (ii) trajectories of important forest attributes, 
such as C storage and biodiversity, can be simulated in a spatio-
temporally explicit manner with SVD, and (iii) the approach is com-
putationally scalable and efficiently simulates vegetation dynamics 
of large domains (>107 ha) at high spatial grain (100 ha). Code and 
executable of SVD and example applications are available online at 
GitHub (https://github.com/SVDmodel/SVD).

2  | MATERIAL S AND METHODS

To simulate vegetation dynamics across large spatial scales SVD in-
tegrates a number of conceptual approaches. The general concept 
employed to achieve high computational efficacy is to classify veg-
etation into a fine-grained set of discrete states. Transition path-
ways and probabilities between states are estimated by a Deep 
Neural Network (DNN), and are conditional on the prevailing envi-
ronmental conditions (e.g. climate) as well as the local context (e.g. 
spatial neighbourhood). The DNN can be trained on empirical data 
or—as in this contribution—on the results of a detailed process-
based model. Vegetation attributes such as C storage and biodi-
versity are linked to discrete vegetation states and the residence 
time of a given cell in that respective state. In this way, SVD not 
only predicts large-scale vegetation dynamics, but also allows the 
quantification of changes in ecosystem attributes associated with 
vegetation change. The following sections describe these individ-
ual components of SVD and their implementation in more detail.

2.1 | Vegetation transitions

Change is ubiquitous in ecosystems, as they proceed through 
phases of growth (r), conservation (K), release (Ω), and reorganiza-
tion (α) (Holling, 1986). In addition to this intrinsic system dynamics 
external drivers such as climate change alter vegetation. Vegetation 
transitions in the r and K phases, such as the growth and succes-
sion of a forest ecosystem, are primarily driven by the prevailing 
topo-edaphic and climate conditions. Disturbances (either natural 
or anthropogenic) are mainly responsible for transitions in the Ω 
and α stage. Faithfully capturing vegetation transitions is an im-
portant focus of ecological research (Hirota, Holmgren, Van Nes, 
& Scheffer, 2011; Ratajczak, Nippert, & Ocheltree, 2014), and is 
regarded as a promising strategy to model ecosystem dynamics 
(Bagchi et al., 2012; Bestelmeyer et al., 2009; Liénard, Gravel, & 
Strigul, 2015; Yospin et al., 2015). We here define vegetation tran-
sitions as a change in the discrete state of an ecosystem. States are 
described along the dimensions ecosystem structure, composition, 
and functioning. Indicators were selected to be either widely avail-
able for many ecosystems or easily determined from state-of-the-
art remote sensing approaches.

Structure: A key element of vegetation structure is the vertical 
utilization of space by plants. Furthermore, canopy height is a good 
indicator of the developmental stage of long-lived, sessile organisms. 
We thus used the dominant height of the vegetation canopy as an 

indicator for ecosystem structure, here classified into bins with 4 m 
class width.

Composition: The composition of an ecosystem is quantified via 
the most abundant species characterizing an ecosystem. Systems are 
described as either being dominated by a single species (i.e., >66% of 
the biomass in the most abundant species), or by a number of species 
occurring in mixtures (where each species has >20% of the biomass).

Functioning: As processes such as light absorption, transpira-
tion and primary productivity are causally linked to leaves, we used 
leaf area index as a widely available proxy for ecosystem func-
tioning. Many ecosystem processes saturate with high leaf areas, 
which is why we limited our classes to three functional states (i.e. 
densely vegetated [leaf area index LAI > 4], moderately vegetated 
[2 < LAI ≤ 4], and sparsely vegetated [LAI ≤ 2]).

The potential number of different vegetation states being 
captured by a full combination of these three indicators is large: 
Assuming a species pool of 20 species (that all have the potential to 
dominate species composition), 4 m height classes up to a potential 
tree height of 100 m, and three classes of LAI, more than 514,000 
distinct vegetation states can be distinguished (i.e. 6,597 × 26 × 3). 
Note that in typical applications only a small fraction of potential 
states is actually realized. Also, while the scheme presented above is 
tailored to forest ecosystems, different indicators can be used within 
the framework presented here (e.g. plant functional types rather 
than individual species for describing vegetation composition).

2.2 | Modelling transition probabilities using deep 
neural networks

In SVD, we use a deep neural network (DNN) approach to model 
the probabilities and pathways of vegetation transitions. DNNs are 
a powerful machine learning approach that is able to learn complex 
relationships in data. It has received considerable attention recently, 
and is increasingly applied in a wide variety of fields from image 
and text analysis to medical diagnosis (Esteva et al., 2017; LeCun 
et al., 2015). DNNs are descendants of artificial neural networks, 
extending the approach inter alia by allowing a substantially larger 
number of layers (hence the term ‘deep’). Utilizing deeper and there-
fore more powerful networks became feasible only in recent years, 
through methodological and technical advances such as improved 
training algorithms and higher computing power (Goodfellow et al., 
2016). DNNs consist of many artificial ‘neurons’ that are organized 
in layers. Typically, each neuron in a layer is connected to all neurons 
of the previous layer. A neuron calculates a single output value from 
its inputs, which subsequently serves as an input for the neurons 
of the following layer. The input data, provided by the initial layer 
of the network, is increasingly transformed as it percolates through 
the network towards the output layer. Note that a single DNN can 
be designed to handle multiple types of input simultaneously, and 
can be trained to provide simultaneous information on multiple out-
put variables. The network architecture specifies the detailed layout 
of a DNN, including the size (number of neurons in each layer and 
the number of layers) of a DNN, the choice of layer types, the use 

https://github.com/SVDmodel/SVD
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of regularization techniques, and the activation function for each 
neuron. Once the network architecture is determined, the param-
eters in a DNN (i.e. the connection weights between neurons) are 
estimated iteratively by a learning algorithm during the training 
of the network. For more detail on DNNs in general, we refer to 
Goodfellow et al. (2016), Angermueller, and Pärnamaa, Parts, Stegle, 
and Oliver (2016).

Here, we trained a DNN to estimate vegetation transitions con-
tingent on the current state (S), the residence time (R, i.e. the time a 
cell has already remained in its current state), the spatial neighbour-
hood, and the prevailing site and climate conditions (Figure 1). The 
output of the DNN is twofold: First, it predicts a probability distribu-
tion describing if and when a transition is likely to happen for a given 
focal cell within a prediction horizon of 10 years. In other words, 
the DNN estimates the remaining residence time of a cell within its 

current state (ΔR). Second, the target state of the transition S* is 
estimated as a probability distribution over possible future states.

As predictors of transitions we used the current state of the 
vegetation (S) and the residence time (R) that a cell has been in its 
current state. In addition, soil depth and soil fertility (time-invariant) 
were considered as important local context variables of vegetation 
development and transition. Climate variables were considered as 
time-variant predictors of vegetation transitions. Specifically, we 
used mean monthly temperature and precipitation for the next 
10 years (i.e. the prediction horizon of the DNN) as predictors. 
The influence of spatial context on transitions was accounted for 
in two tiers: The local neighbourhood is represented by the eight 
immediate neighbours of a 100 × 100 m2 focal cell. In addition, the 
intermediate neighbourhood considers a wider spatial influence, 
and contains cells within a radius of 300 m around a focal cell 

F IGURE  1 Conceptual view on the scaling vegetation dynamics (SVD) framework. Vegetation transitions on a single cell are estimated 
by a Deep Neural Network (b) contingent on environmental factors (a), the current vegetation state (S), the residence time (R) and the spatial 
context. The model determines transitions by sampling from the DNN-derived probability distributions for the future state (S*) and the 
time until state change (ΔR). Human and natural disturbances (c) add an abrupt pathway for vegetation transitions and will be described in 
future work. Density distributions of ecosystem attributes of interest are linked to combinations of S × R (d). These state- and residence 
time-specific attribute distributions can subsequently be used to predict changes in the spatial distribution of these attributes based on the 
simulated vegetation transitions SVD (e)
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(Figure S1). In these neighbourhood tiers, species shares are cal-
culated as a proxy for the seed input into the focal cell. In order to 
consider edge effects, we also included the distance to the edge of 
the simulated area in the predictors describing the spatial context 
of a cell. In addition to environmental variables and spatial context, 
a third group of factors influencing vegetation transitions are dis-
turbances. Both human and natural disturbances hold the potential 
for rapid transitions between strongly differing vegetation states, 
signifying the release (Ω), and reorganization (α) phases of vegeta-
tion dynamics (Holling, 1986). While we here focus on transitions 
through the growth (r) and conservation (K) phases disturbances 
will be integrated into future versions of SVD (see also Figure 1).

In this contribution, we used high-resolution process-based 
model (PBM) output for training the network, specifically extract-
ing simulated vegetation transitions and their context variables 
from PBM simulations. By training the DNN on a large number of 
simulated transitions across a wide variety of ecosystem states and 
a broad range of environmental conditions, the network learns a 
‘meta-model’ of the underlying PBM. However, SVD is flexible with 
regard to the network architecture and data used in training, and 
other variables and datasets as the ones used here could be har-
nessed in future applications. Further details on modelling tran-
sition probabilities using deep neural networks are given in the 
Supplementary Material S2.

2.3 | Estimating the effects of transitions on 
vegetation attributes

Vegetation transitions are modelled as changes between discrete 
states in SVD, with states defined by indicators of vegetation com-
position, structure, and functioning. To estimate the effect of these 
transitions, we track state-specific attributes of the simulated eco-
system. The underlying notion is that many ecosystem attributes are 
strongly correlated with the state of the vegetation. We start by as-
suming that all cells within a certain vegetation state S (e.g. ‘Norway 
spruce (Picea abies (L.) Karst.) dominated, moderately dense forests 
(2 ˂ LAI ≤ 4) with a canopy height of 20–24 m’) share the same attrib-
ute value (e.g. with regard to live tree carbon storage). Knowing the 
state S of every cell within the simulated area is thus sufficient for 
estimating the ecosystem attribute of interest for the entire simula-
tion area. We subsequently refine this assumption in two important 
ways. First, in many cases, the residence time R in a particular state S 
also influences ecosystem attributes. A forest that recently transited 
into a certain state S (e.g. with a canopy height of just above 20 m) is 
likely to store less live tree carbon than a forest at the upper bound 
of the same state (with a canopy height of almost 24 m). We thus 
differentiate vegetation attributes within states by residence time 
(S × R), refining the grain of our state-based attribute quantification. 
Second, even after such a refinement, attributes are bound to vary 
within a given state and residence time category. In order not to 
overestimate the significance of vegetation transitions for individual 
attributes it is thus important to consider the full distribution of an 
attribute within an S × R category (and not only its central tendency). 

This allows us to assess whether changes in ecological attributes 
are in fact significantly different. Consequently, the robustness of 
attribute changes associated with vegetation transitions can be as-
sessed independently for each attribute in a nonparametric manner.

Conceptually, SVD maintains a database of vegetation attributes 
that—for each combination of S × R—provides a density distribution 
for every ecosystem attribute under investigation. In the current ap-
plication, this database is populated with values determined from 
PBM simulations. However, since vegetation transitions and attri-
butes are treated independently in SVD, the attributes database 
could subsequently be refined by including data from additional 
sources (e.g. remote sensing, terrestrial forest inventory).

2.4 | Model implementation

For implementing and applying the SVD framework, a training and 
an application phase are distinguished. The training phase encom-
passes the design and training of the DNN and its prerequisite steps 
(e.g. acquisition and/or generation of training data, populating of the 
vegetation attribute database). We here utilized the open source ma-
chine learning framework TensorFlow (Abadi et al., 2016), which is 
widely used in deep learning applications. The training phase is an 
iterative process of refining, training, and testing the DNN, employ-
ing the diagnostic tools provided by TensorFlow (see Supplementary 
Material S2 for details). It concludes with a fully trained DNN for 
predicting vegetation transitions, which is subsequently used in the 
application phase. Note that the details of the DNN architecture and 
training process (e.g. the used data) are encapsulated in the trained 
model via the network structure and weights, which allows tailoring 
DNNs for specific applications and/or regions.

In applications, the SVD model serves as the interface for using 
the trained DNN in dynamic predictions of transitions given new envi-
ronmental vectors, and scales vegetation dynamics to large spatial ex-
tents (Figure 1, see Supplementary Material S1 for technical details). 
The time step of the model simulations is annual. In each time step, 
SVD considers the subset of cells for which a transition was estimated 
based on the 10-year prediction horizon of the DNN (ΔR). It calculates 
a probability distribution for the new state S* based on DNN predic-
tors, and determines the new state probabilistically by drawing from 
the distribution. For all cells not subject to vegetation transition during 
the time step the residence time is advanced by 1 year. At the end of 
each time step, the ecosystem attributes are updated by querying the 
attribute database using the newly calculated S and R for each cell. 
Attribute values are sampled from the respective density distributions 
stored in the vegetation attribute database. The current spatial grain 
of SVD simulations are regular 100 m grid cells, that is, transitions, 
states, and attributes are calculated at the level of 1 ha.

2.5 | Model testing and application

To demonstrate the utility of the SVD framework, we conducted a 
number of simulation experiments, specifically aiming at (a) testing 
the ability of the SVD to reproduce detailed PBM trajectories during 
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the r and K phases of vegetation dynamics (i.e. a DNN-driven meta-
model of a PBM), and (b) demonstrating the applicability of the model 
to large spatial scales. For testing and comparison to PBM simulations 
we focused on Kalkalpen National Park (KANP) in the northern Alps in 
Austria. KANP is a forest landscape of 20,850 ha, containing a range 
of forest types extending over an elevational gradient from 385 m 
to 1,963 m (Figure S6 in the Supplementary Material). As reference 
PBM, we used iLand, the individual-based landscape and disturbance 
model (Seidl, Rammer, Scheller, & Spies, 2012). iLand was extensively 
tested and applied in the region previously (Thom et al., 2017; Thom, 
Rammer, & Seidl, 2017) and is thus a suitable PBM for meta-modelling. 
Starting from today's vegetation at KANP, we simulated natural forest 
dynamics with iLand over 500 years under four different climate sce-
narios without consideration of management and disturbances. The 
simulated vegetation dynamics at a spatial grain of 100 × 100 m2 were 
used to train a DNN. The dataset contained a total of 16.8 Mio train-
ing examples distributed over 1,418 distinct vegetation states. We 
split the data into a training set (three of the four climate scenarios, 
75.4% of the examples), and set aside data of one scenario (C3, 24.6% 
of the examples) as an independent validation set (see Supplementary 
Material S2 for additional details on KANP, the scenarios considered, 
as well as the data and training procedure). In order to assess whether 
the DNN was able to infer additional information from spatial context 
variables (i.e., the vegetation state of neighbouring cells) we trained 
DNNs with and without spatial context, and compared their accuracy 
in predicting vegetation transitions.

Subsequently, we tested the ability of SVD to reproduce the pat-
terns of vegetation development obtained from the PBM in a number 
of experiments. First, we used SVD to simulate vegetation dynamics 
at KANP starting from the same initial conditions as the PBM, and 
assessed whether SVD was able to reproduce the PBM-derived veg-
etation development under different climate forcings. In particular, 
we compared the predicted state of the landscape from SVD to PBM 
results in terms of composition, structure, and functioning after 100, 
300, and 500 simulation years. This test thus examines whether SVD 
is a good meta-model of iLand under a variety of climate scenarios. 
To facilitate the visual interpretation of simulated species composi-
tion, we mapped the most frequently occurring compositional types, 
and binned all remaining types into an ‘other’ category.

The second test evaluated the simulated trajectories of ecosystem 
attributes, exemplarily focusing on live tree carbon (tC ha−1, C) and 
tree species diversity (exponent of the Shannon α diversity, equaling 
the first order Hill number, D, which can be interpreted as the approx-
imate number of species with equal abundances). We used data from 
iLand simulations to compile a database of vegetation attributes in 
SVD, and consequently compared the state-based attribute predic-
tions of SVD with detailed information on live tree C and tree species 
diversity as simulated by iLand. As these attributes are an emerging 
property of detailed physiological and demographic processes in 
iLand, this second test examined the proposition that they can be rea-
sonably approximated by the S × R attribute classes of SVD.

Finally, to demonstrate the potential of SVD to scale up vegeta-
tion dynamics to large spatial scales we applied the model to a generic 

landscape of 250 × 1,000 km (2.5 × 107 ha, i.e. approximately the 
forest area of France) at a spatial grain of 100 × 100 m2. For this test, 
we assumed the gradient in mean annual temperature contained in 
KANP (i.e., a range of 5.5°C) to vary linearly over the 1,000 km length 
of the simulated landscape, ordered from the coldest (top) to warm-
est (bottom) conditions. Starting the simulations from a random ini-
tial state (sampled from the 1,418 vegetation states realized in PBM 
simulations), we simulated vegetation development over 500 years 
(using a stationary climate representing the conditions of the recent 
past). We assessed the emerging spatial pattern of species composi-
tion for ecological plausibility, i.e. whether a regular pattern over the 
imposed climate gradient emerged from the randomly initiated veg-
etation state. This third experiment was thus aimed at evaluating the 
ability of the model to simulate transient patterns of spatially explicit 
species change (as relevant e.g. in the context of species migration). 
In addition, it also aimed at testing the computational performance of 
SVD when scaling vegetation dynamics across three orders of magni-
tude (from 2.0 × 104 ha to 2.5 × 107 ha).

3  | RESULTS

3.1 | A deep neural network for modelling 
vegetation transitions

The DNN for estimating vegetation transitions at KANP had nine 
hidden layers and 1.33 Mio learned connection weights (see 
Supplementary Material S2 for details). It was well able to learn vege-
tation transitions and their dependency on current vegetation states 
and environmental drivers. In an assessment of DNN performance 
against the independent validation data (i.e. data not used for train-
ing the network) it reached a prediction accuracy (i.e. the percentage 
of correctly predicted classes) of 86.3% for estimating the time until 
transition (ΔR), and 85.7% for the state resulting from a transition S*. 
Furthermore, the correct new state after a transition (S* as predicted 
with iLand) was contained in the top three most probable classes 
predicted by SVD in 97.1% of the cases. The network generalized 
well, with only slightly decreased classification performance for vali-
dation data compared to training data (see Table S3). The prediction 
accuracy decreased slightly when disregarding the spatial context of 
a cell (Supplementary Material Figure S4).

3.2 | Simulating vegetation transitions with SVD

The simulated vegetation dynamics with SVD showed good agree-
ment with the trajectories derived from the PBM iLand (Figure 2, 
Table 1). Under the climate forcing C3 (validation set, not used for 
training the DNN), the species composition shifted from an initial 
Norway spruce dominance to European beech (Fagus sylvatica L.) 
for most parts of the landscape. In the low elevation areas of the 
landscape (northeastern corner) warm-adapted species such as 
oak (Quercus ssp.) appeared. These simulated patterns of climate-
induced species change over time were in congruence with PBM sim-
ulations. Compared to the PBM, SVD moderately underestimated 
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the share of beech on the landscape after 500 years. However, veg-
etation structure and functioning developed similarly in SVD and 
the PBM, displaying a rapid transition to closed forests of tall tree 
canopies. Results for simulations under the three other climate sce-
narios showed that SVD responded realistically to different climate 
signals, reproducing the patterns found in the PBM simulations 
(Table 1, Supplementary Material Figure S7). In a cell-wise compari-
son between SVD and PBM simulations, average accuracies were 
0.565, 0.602, and 0.946 for ecosystem composition, structure, and 
functioning (average values over three points in time (after 100, 
300, 500 simulation years) and all climate scenarios, Table 1). When 
SVD was driven by an alternative DNN neglecting spatial context 
information in making predictions on vegetation transitions, the 
resulting spatial pattern was markedly noisier (see Supplementary 
Material S5).

3.3 | Predicting the response of ecosystem 
attributes to vegetation transitions

The database of vegetation attributes for KANP contained density 
distributions for 21,494 combinations of S × R, and was compiled 
from 7.7 × 107 data points generated by the process based model 
iLand. Over all combinations of S × R, the mean values of live tree 
carbon ranged from 1.3 to 474.8 tC ha−1 (average across all S × R 
classes: 150.7 tC ha−1), and tree species diversity ranged from 0 
(no vegetation) to 8.8 for highly diverse states (average: 2.67). The 
Supplementary Material provides additional analyses on the dis-
tribution of attributes over vegetation composition, structure, and 
functioning (Figures S9 and S10).

Ecosystem attributes predicted by SVD for the climate sce-
nario not used for training (C3) showed a good agreement to 

F IGURE  2 Simulated vegetation transitions in scaling vegetation dynamics (SVD) for Kalkalpen National Park under climate scenario 
C3 (validation set, data not used for training of the DNN). (a) Distribution of the vegetation state regarding composition, structure and 
functioning at the landscape scale over 500 years. (b) Spatial distribution of vegetation composition, comparing SVD to the process based 
model (PBM) iLand after 100 and 500 simulation years. Shown are the 18 most frequently occuring compositional types. The used species 
codes are ‘piab’ for Picea abies, ‘pisy’ for Pinus sylvestris, ‘lade’ for Larix decidua, ‘fasy’ for Fagus sylvatica, and ‘abal’ for Abies alba. Dominant 
species (i.e. >66% of the biomass) are indicated by uppercase species codes
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500 0.953 0.957 0.950 0.952

TABLE  1 Total accuracy (i.e., fraction 
of 100 m cells correctly classified by SVD) 
for vegetation composition, structure, and 
functioning at three points in time. The 
accuracy for composition was calculated 
for the 18 most frequently occurring 
compositional states (see also Figure 2). 
BL = baseline climate, C1–C3 = scenarios 
of future climate change. Note that 
reference data for scenario C3 were not 
included in training the DNN at the core 
of SVD
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PBM values for live tree carbon, and a slightly lower correspon-
dence to reference values for tree diversity (Figure 3). However, 
SVD correctly predicted the long-term temporal trend in both 
attributes, simulating an increase in live tree carbon stocks 

particularly in the first century of the simulation, and a slow but 
steady decrease in tree species diversity over time (see Figure S8 
for the initial values, and Tables S4 and S5 for results under all 
climate scenarios).

F IGURE  3 Comparison of the 
simulated attributes live tree carbon 
(a) and tree species diversity (b). The 
boxplots indicate the spatial distribution 
of the respective attribute over time at 
the landscape scale. The maps show the 
spatial distribution of attributes after 500 
simulation years. Data is taken from the 
climate scenario C3 (validation dataset)
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3.4 | Upscaling of vegetation dynamics

In order to demonstrate the scalability of SVD, we ran a simula-
tion for a generic landscape of 2.5 × 107 ha at a spatial grain of 1 ha 
over 500 years (Fig. 4). The initially randomly distributed vegetation 
states clearly separated spatially after 500 simulation years, closely 
tracking the imposed temperature gradient. The emerging pattern 
showed a separation in a zone dominated by Norway spruce at the 
cool end (north), an intermediate zone with mixed spruce—beech 
forests, and a beech-dominated zone at the warm end (south). The 
model was thus well able to realistically separate the major forest 
types expected for Central Europe (see EEA, 2006) based on climate. 
This large-scale application of SVD also proved to be highly compu-
tationally efficient: The simulation took less than an hour on a single 
workstation (i.e. a throughput of more than 4 Mio ha year s−1) while 
consuming only moderate amounts of memory (<3 GB). This under-
lines that simulating areas at country to continental scale is compu-
tationally feasible with SVD.

4  | DISCUSSION

Scaling has long been a central issue in ecology and remains a chal-
lenge for ecological modelling. We here present a novel frame-
work to scale vegetation transitions, combining the discretization 
of vegetation states with the predictive power of a deep neural 
network for estimating transition probabilities and pathways. Our 
approach builds on established concepts used to model vegeta-
tion dynamics, particularly the state-and-transition modelling ap-
proach (Bestelmeyer et al., 2009; Westoby, Walker, & Noy-Meir, 
1989; Yospin et al., 2015). A common element in previous state-
and-transition models and the SVD approach presented here 
is the classification of vegetation into discrete states. However, 
the number of states explicitly considered in traditional state-
and-transition models is limited (usually in the order of 10s to 
lower 100s) (Halofsky et al., 2013; Hemstrom, Merzenich, Reger, 
& Wales, 2007), inter alia due to the exponential increase in po-
tential transitions that need to be parameterized. Using a DNN to 
estimate transition probabilities between a large number of pos-
sible states (>514,000 in the example presented here) allowed us 
to substantially refine the characterization of vegetation, while 
still exploiting the computational advantages of a finite set of 
states. A second advancement of SVD over traditional state-and-
transition models is the explicit consideration of residence time 
within a vegetation state as a variable influencing the propensity 
of a transition. This addition considerably improves the realism of 
simulated vegetation trajectories at the level of an individual grid 
cell over the use of time-invariant probabilistic transitions (often 
troubled by ‘flickering’ between states, or an unrealistically fast/
slow progression through a sequence of states).

We found deep neural networks to work well as the engine of 
our meta-modelling approach. Specifically, the DNN accurately re-
produced the complex responses of an underlying process-based 

model, yielding high prediction accuracies for both time until transi-
tion (ΔR) and the state resulting from a transition (S*). Designing the 
DNN to consider a prediction horizon (here set to 10 years) rather 
than estimating transition probabilities from year to year proved an 
important element of our network architecture, as environmental 
effects on vegetation can be cumulative over several years (e.g. the 
impact of drought, Allen, Breshears, & McDowell, 2015). The final 
DNN was well able to predict situations that were not included in 
the underlying training data, and thus showed high potential for 
generalization, which is an important ability in the context of up-
scaling (Goodfellow et al., 2016; LeCun et al., 2015). The separation 
of network training and its application in SVD has several advan-
tages. The DNN training procedure is flexible and can therefore be 
easily tailored to specific applications. Furthermore, the DNN can 
be continuously improved (e.g. by including new training data) with-
out requiring changes to the SVD model concept. The separation 
of time-consuming training and application is also computationally 
efficient: Compared to the PBM used as a reference (which is already 
highly optimized for simulation time, see Seidl et al., 2012) the DNN-
driven SVD approach was three to four orders of magnitude faster in 
simulating vegetation dynamics.

A key limitation of DNNs—and machine learning algorithms in 
general—is that they require large datasets in order to being able 
to abstract the underlying relationships. We here used a meta-
modelling approach (Urban, 2005), i.e., training our DNN on ex-
tensive simulation results from a detailed PBM. An advantage of 
meta-modelling over using empirical information is that also tran-
sitions to possible novel future vegetation states (i.e. no-analog 
conditions, Williams & Jackson, 2007) are considered. However, the 
downside of this approach is that our DNN in its current form only 
encapsulates the processes represented by the underlying PBM, 
and is trained only for the environmental conditions used in PBM 
simulations. To increase the robustness of SVD-predicted vegeta-
tion transitions in the future it is thus desirable to increase the da-
tabase on vegetation transitions available for training the underlying 
DNN. Such future improvements of the foundation of SVD could, 
for instance, include simulation results of the same PBM for other 
ecosystems and environmental conditions (e.g. Seidl, Albrich, Thom, 
& Rammer, 2018; Silva Pedro, Rammer, & Seidl, 2016). The database 
could, however, also be extended to include information from differ-
ent PBMs or increasingly available model comparison experiments 
(Bugmann et al., 2018; van Oijen et al., 2013), in order to reduce the 
uncertainty related to the formulation of a single underlying PBM.

An important role of simulation modelling is to make projections 
on the development of ecosystem attributes that are relevant to 
managers and policy-makers. Improving the capacity to model eco-
system attributes in space and time can contribute to the evidence-
based decision making needed for tackling key planetary challenges 
such as climate change and biodiversity loss (Steffen et al., 2015). 
We here showed that a combination of ecosystem composition, 
structure, and functioning can provide a meaningful proxy for quan-
tifying the effect of vegetation transitions on ecosystem attributes 
of interest. While we here demonstrate our approach for live tree 
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C storage and local tree species diversity, it can easily be extended 
to a number of other attributes in the future. A particular strength 
of our approach is that the relationship between a specific vegeta-
tion state and an attribute of interest is purely data-driven, and can 
consequently be improved by amending the underlying vegetation 
attribute database, e.g. by assimilating empirical information from 
forest inventory and analysis data. However, an important limitation 
of the approach described here is that vegetation states are defined 
a priori, rather than aiming to maximize their explanatory power 
regarding certain ecosystem attributes (e.g. Peura et al., 2016; 
Winter & Brambach, 2011). This approach was selected because it 
grants compatibility with widely available information from remote 
sensing, which aids the broader applicability of the model. However, 
when extending SVD to simulate other ecosystem attributes in the 
future, the ability of the combination of S × R used in SVD to suffi-
ciently capture differences in these attributes needs to be evaluated. 
An important tool of inference in this regard is the probabilistic spec-
ification of attributes for each S × R, which allows case-specific tests 
on whether a transition between two states results in a significant 
change in ecosystem attributes.

Our approach to scaling vegetation dynamics complements 
existing approaches of DGVMs. In comparison to many existing 
DGVMs, vegetation demography is tracked more explicitly in SVD, 
which increases the robustness of simulated C stocks (Körner, 2017). 
Furthermore, the effects of spatial neighbourhood on vegetation 
transitions are considered explicitly in SVD, which results in more 
realistic spatio-temporal trajectories of vegetation change (Snell 
et al., 2014). We explicitly tested the effect of including spatial con-
text as predictor in our DNN and found that it was important for cor-
rectly upscaling patterns of vegetation change (see Supplementary 
Figure S5), emphasizing that spatial interactions require more atten-
tion also at macroecological scales (Rose et al., 2017). However, our 
approach is not intended to replace existing vegetation modelling 
approaches but rather to extend the toolbox available for predict-
ing vegetation dynamics. One possible role of our approach could 
be to synthesize the high level of process detail available in local 
models, scale up the emerging dynamics, and consistently compare 
vegetation trajectories to simulations of DGVMs. To date, such com-
parisons remain strongly limited by the inherent scale mismatch be-
tween DGVMs and stand level models (Bugmann et al., 2018). SVD 
could thus bridge the gap between local (stand to landscape level) 
models and DGVMs, and foster mutual learning and the advance-
ment of vegetation simulation (Bonan & Doney, 2018).

5  | CONCLUSIONS

SVD is the—to our knowledge—first vegetation model harnessing 
deep neural networks. Here, our objective was to demonstrate how 
to model undisturbed vegetation development (r and K phases sensu 
Holling (1986)) based on DNNs. However, the model presented here 
is only a first step, as important drivers of vegetation transitions 
such as natural disturbances and ecosystem management were 

not considered here. Given the promising results of this proof-of-
concept contribution, our future work will focus on including these 
elements into SVD, and on broadening the extent of its underlying 
database. We conclude that emerging new technologies such as ma-
chine learning and iterative model improvement (Dietze et al., 2018) 
have the potential to instigate a new wave of model development, 
and usher in a new era of prediction in ecology.
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