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Abstract

Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in
physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated
reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms.
Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial
resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish
transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and
basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial
estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were
trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or
IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the
proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra.
Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are
shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an
exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells
was quantified.
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Introduction

Transepithelial resistence (RT, often also abbreviated as TER) is

a standard parameter determined in epithelial physiology to

characterize the properties of a given epithelium. RT is usually

determined under direct current (DC) or ‘‘near DC’’ (low

frequencies to avoid electrode polarization) conditions [1]. Many

components contribute to the RT value of an epithelium: the

resistance of subepithelial tissues, apical and basolateral mem-

branes of the epithelial cells, and the paracellular cleft together

with its sealing structure, the tight junction. In contrast to RT, the

epithelial impedance ZT is the opposition to alternating currents

(AC). Generally, impedances of electric circuits are frequency-

dependent, if they contain electrical components (e.g. capacitors,

inductors) that cause phase shifts between current and voltage, and

impedance spectroscopy analyzes this frequency dependence.

In physiology, impedance spectroscopy has been employed for

more than a century to investigate properties of plasma

membranes and of epithelia [2, 3; for review see e.g. 1], utilizing

the fact that biological membranes electrically act as resistor–

capacitor circuits (RC circuits). Frequency response analyzers are

employed to detect the phase angle h between transepithelial

current and voltage as well as the impedance magnitude |Z|. h
and |Z| may be plotted as polar coordinates, however, for

convenience, these coordinates are usually converted into carte-

sian coordinates by employing complex numbers (see Supporting

Information, Fig. S1; File S1, Eqs. S1– S5). Consequently,

impedance spectra (typically using AC frequencies, f, between

,1 Hz and ,100 kHz) are often presented as Nyquist diagrams

(Fig. 1A and 1B), in which the real (Zre) and the imaginary part

(Zim) of the complex impedance are plotted against each other.

Negative Zim values reflect the fact that capacitors cause a phase

shift of 290u, i.e. that the voltage lags the current (for a more

detailed derivation see e.g. [1]).

Epithelia have been described by various equivalent electric

circuits of different degrees of complexity. In one of the simplest

equivalent circuits (Fig. 1C), three components are used: the

epithelial resistance (Repi) and the epithelial capacitance (Cepi) in

parallel, and the subepithelial resistance (Rsub) in series to these

two elements. In a Nyquist diagram, this model yields semicircular

impedance spectra and all three parameters can be derived

directly from this diagram: Rsub as the intercept of the spectra with

the x-axis at highest frequencies, Repi as the diameter of the
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semicircle and Cepi from the angular frequency v0 ( = 2?p?f0) at

which Zim reaches its minimum (Cepi = 1/(v0?Repi); [4]; Fig. 1A).

A four-parameter model further divides Repi into two parallel

components, the paracellular (Rpara) and transcellular (Rtrans)

resistance (Fig. 1D). These resistances cannot be derived directly

from Nyquist diagrams. They can be determined, however, if one

of them is experimentally altered by a known amount [5]. In an

approach dubbed ‘‘two-path impedance spectroscopy’’ (2PI), Krug

et al. [5] modified Rpara by reducing the free extracellular Ca2+

concentration ([Ca2+]o) through chelation with ethylene glycol

tetraacetic acid (EGTA) and at the same time determined flux

changes of the paracellular marker substance fluorescein. The

technique has been successfully employed to quantify paracellular

effects of alterations in the molecular composition of tight

junctions [5–8] or of impairment of tight junction integrity [9].

The accuracy of this method, however, critically depends on the

accurate determination of Repi and thus of the two intercepts of

the impedance spectra with the x-axis. As shown in File S2 (Eqs.

S6–S13), deviations from the actual values of Rsub and Repi do not

simply add up, but induce a multiplicative error in the calculation

of Rtrans and Rpara.

Whereas for many cultured epithelial monolayers impedance

spectra are near-semicircular, impedance spectra from native

epithelia often greatly deviate from the semicircular shape [10–

12]. Similar deviations are observed, if transcellular transport is

activated in cultured epithelia and thus differences in the time

constants, t (t= R?C), of the apical and basolateral membranes

are induced [5,12]. An even more detailed six-parameter model

Figure 1. Nyquist diagrams and equivalent electrical circuits. A) Nyquist diagram of an impedance spectrum calculated for circuits depicted
in (C) and (D). Data points, N, were calculated using 42 different frequencies between 1.3 Hz to 16 kHz. x-intercepts at low frequencies (fR0)
correspond to the total epithelial resistance (RT, also called ‘‘TER’’). x-intercepts at high frequencies (fR‘) correspond to the subepithelial resistance,
Rsub, as under these conditions the reactance of the membrane capacitor (1/(v?Cepi)) approaches zero and thus short-circuits Repi. Note that circuits
(C) and (D) always yield semicircular spectra. B) Example for a Nyquist diagram of a non-semicircular impedance spectrum calculated for the circuit
depicted in (E). Data points, , were calculated using 42 different frequencies between 1.3 Hz to 16 kHz. Spectra calculated for this model are the
sum of two semicircles. Again, x-intercepts at low frequencies (fR0) correspond to the total epithelial resistance (RT), x-intercepts at high frequencies
(fR‘) correspond to the subepithelial resistance, Rsub. C-E) Equivalent electric circuits of epithelia. Components contributing to Repi are drawn in
red, Rsub is highlighted in blue. Components contributing to RT (sum of Repi and Rsub) are joint by grey lines. C) Simplest form of an equivalent electric
circuit describing epithelial and subepithelial resistance (Repi, Rsub) and epithelial capacitance (Cepi). D) Equivalent electric circuit as in (C), but Repi

consists of two resistors in parallel, the transcellular (Rtrans) and the paracellular resistance (Rpara). E) Equivalent electric circuit as in (D), but the
transcellular pathway is devided into an apical and a basolateral RC unit (Rap, Cap and Rbl, Cbl, respectively).
doi:10.1371/journal.pone.0062913.g001
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therefore distinguishes between electrical properties of the apical

and basolateral membrane. In this model, Rtrans is the sum of the

apical (Rap) and basolateral resistance (Rbl), Cepi consists of an

apical (Cap) and basolateral (Cbl) component with Cepi = Cap?Cbl/

(Cap+Cbl) (‘‘lumped model’’; [5,13]; see Fig. 1E). However, direct

determination of all six circuit parameters is technically complex

and involves e.g. intracellular recordings with glass microelec-

trodes [13–15]. In Nyquist diagrams, this model only yields

semicircular impedance spectra, if the time constants of the two

membranes, tap and tbl, are equal [16] (cf. Fig. 1A and 1B for tap

< tbl and tap ? tbl, respectively).

In principle, 2PI can still be employed under such conditions

[5,17]. However, as evaluated here, conventional fits are

inadequate to accurately determine x-intercepts of non-semicir-

cular Nyquist diagrams, thus limiting 2PI applicability. To

overcome this limitation, a computational approach employing

techniques from the field of machine learning was chosen in the

present study. The given task is a multi-dimensional non-linear

regression task with unknown regression function. Therefore, we

use artificial neural networks (ANNs), which are able to act as

universal approximators. ANNs are complex hierarchical networks

mimicking the information processing capabilities of nervous

systems and consisting of abstract computing units called neurons

[18]. Such units use mathematical functions and can be

implemented in software or hardware. As these networks can be

trained to recognize data patterns, a variety of ANN methodol-

ogies have proven to be useful in biotechnological, biochemical

and microbiological applications [19], e.g. in classification of

biological macromolecules [20] or in detection of viral and phage

proteins [21]. Here, multilayer perceptrons were trained by

standard backpropagation learning [18] to estimate Rsub and Repi

from model impedance spectra calculated using the six-component

circuit (Fig. 1E) and a mathematical model of the setup-specific

data scatter. Further, their ability to estimate these values from

actually measured impedance spectra was assessed.

Both conventional estimates of Rsub and Repi and ANN

estimates were used to calculate Rtrans and Rpara for HT-29/B6

and IPEC-J2 cells under conditions that lead to non-semicircular

impedance spectra. Benchmarking these approaches with model

impedance spectra demonstrates that the employed ANNs predict

Rsub and Repi more accurately than conventional methods and

thus allow more reliable Rtrans and Rpara estimates. Rpara estimates

were subsequently used to estimate apical and basolateral

membrane resistances and capacitances by a combination of

curve and parameter fittings. Experiments employing the secre-

tagogue forskolin demonstrate that the present method will be

advantageous in drug studies on epithelia during which consid-

erable alterations in membrane properties are elicited.

Materials and Methods

Cell Culture
Epithelial cell lines (human colonic carcinoma cells HT-29/B6,

derived from HTB-38, ATCC, [22]; porcine jejunal cells IPEC-J2,

ACC701, DSMZ, [23]) were cultured at 37uC and 5% CO2 in

humidified air, using RPMI 1640 (PAA Laboratories GmbH,

Pasching, Austria; HT-29/B6) and DMEM/Ham’s F12 (Sigma,

Taufkirchen, Germany, IPEC-J2) supplemented with 10% (v/v)

fetal bovine serum (Biochrom AG, Berlin, Germany), 100 U/ml

penicillin, 100 mg/ml streptomycin (Gibco BRL, Karlsruhe,

Germany). For experiments, cells were seeded onto filter supports

(HT-29/B6, Millicell PCF, 3 mm pore size; IPEC-J2 Millicell HA,

0.45 mm pore size, Millipore, Schwalbach, Germany) and grown

to confluence within 6 (HT-29/B6) and 10 days (IPEC-J2).

Two-path Impedance Spectroscopy
Confluent cell layers on filter supports were mounted in

conventional Ussing chambers (custom-made, medical-technical

laboratories, Charité Berlin, Germany). Both hemi-chambers were

filled with 10 ml standard bath solution (in mM: 140 Na+,

123.8 Cl2, 5.4 K+, 1.2 Ca2+, 1.2 Mg2+, 2.4 HPO4
22,

0.6 H2PO4
2, 21 HCO3

2, 10 D(+)-glucose, pH 7.4 when equili-

brated with 5% CO2/95% O2 at 37uC). Transepithelial potentials

were clamped to 0 mV. Impedance scans were obtained as

previously described [4,5,24], using 5 mA/cm2 (IPEC-J2) or

25 mA/cm2 (HT-29/B6) effective sine-wave alternating current

Table 1. Parameter ranges for HT-29/B6 and IPEC-J2 cell-appropriate training data.

Rsub [V?cm2] Repi [V?cm2] Rpara [V?cm2]
Rtrans = Rap+Rbl

[V?cm2]

Cepi = Cap :Cbl

CapzCbl

[V?cm2] Cap [mmF/cm2] Cbl [mmF/cm2]

HT-29/B6

ANNHT
sub

1–30 (D 0.5) 250–1,250 250–6,500 1–3,500 2.5–7.5 1–75 1–75

ANNHTzEGTA
sub

1–30 (D 0.5) 1–250 1–650 1–3,500 2.5–7.5 1–75 1–75

ANNHT
epi

0 250–1,250 (D 3) 250–6,500 1–3,500 2.5–7.5 1–75 1–75

ANNHTzEGTA
epi

0 1–250 (D 1.5) 1–650 1–3,500 2.5–7.5 1–75 1–75

IPEC-J2

ANNIPEC
sub

1–30 (D 0.5) 600–10,000 1–15,000 5,000–25,000 1–5 1–10 1–10

ANNIPECzEGTA
sub

1–30 (D 0.5) 1–600 1–650 5,000–25,000 1–5 1–10 1–10

ANNIPEC
epi

0 600–10,000 (D 25) 1–15,000 5,000–25,000 1–5 1–10 1–10

ANNIPECzEGTA
epi

0 1–600 (D 2.5) 1–650 5,000–25,000 1–5 1–10 1–10

D values denote fixed step sizes used for the generation of model impedance spectra; in all other cases, step sizes were chosen dynamically in order to yield 10 steps
per parameter. Values in italics denote absolute interval constraints rather than variables with varied values. Ranges for HT-29/B6 circuit parameters were based on
published estimates: Rtrans between 380 and 1500 V?cm2, Rpara between 1500 and 4 000 V?cm2 which was reduced to between 20 and 100 V?cm2 at low [Ca2+]o, Cepi

between 2.1 and 3.5 mF/cm2, Rsub (resistance of filter supports) between 2 and 10 V?cm2 [5,24,25]. IPEC-J2 cells possess very high Repi (several k V?cm2, [47]). Literature
values for any further parameter values were not available.
doi:10.1371/journal.pone.0062913.t001
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at 42 frequencies between 1.3 Hz and 16 kHz (see File S3). The

resulting voltage changes were detected by a frequency response

analyzer (PMS 1700, Newtons4th Ltd. together with a 1286

electrochemical interface, Solartron Schlumberger), yielding com-

plex impedance values that were recorded on a personal

computer. During experiments, Rtrans was either left unaltered,

modified by apical application of the adenylate cyclase activator

forskolin (stock solution 10 mM in DMSO, final concentration

10 mM) or modified by apical or basolateral application of the

ionophore nystatin (stock solution 3 mg/100 ml DMSO, final

concentration range 15–60 mg/ml). Subsequently, Rpara was

altered by reducing [Ca2+]o (addition of EGTA, final concentra-

tion 1.3 mM). Changes in Rpara were monitored throughout the

entire experiment by assessing the unidirectional fluorescein flux as

described by [5].

Conventional Approaches to Estimate Rsub and Repi

Method M1. Rsub was estimated as the minimum value of Zre

obtained at the highest available frequencies. Repi was calculated

as the difference between the maximum Zre obtained at the lowest

available frequencies and the estimated Rsub. The rationale behind

this approach is the fact that for a semicircular impedance

spectrum, the error will be ,1% if the time constant t of the

epithelium lies within a range of 10/vmin and 1/(10?vmax), i.e.

between about 0.1 and 10 ms for the frequency range used in the

present study. Errors would thus be dominated by data scatter due

to electric noise.

Method M2. Cole-Cole fits were carried out on data points in

Nyquist diagrams as originally described by [3]. Data points were

fitted with circular arcs by minimizing the sum of squared residuals

[see 4, 25]. Deviation of spectra from the semicircular shape was

compensated for by moving the midpoint of the arc above the x-

axis. The intercept of the arc with the x-axis at the high frequency

Figure 2. Similarity diagrams for the evaluation of M1, M2 and ANN precision. A) Differences between estimates (M1–M2, M1-ANN, M2-
ANN) were calculated for experimental data (light blue) as well as for the 261000 benchmark spectra (dark blue) and normalized with respect to the
estimated (measured spectra) or target (modeled spectra) Repi values. Plotting these differences on the three axes of a three-dimensional coordinate
system yielded a distribution with all data points falling onto a single plane within the three-dimensional space. Grey dots represent projections of
the data points onto the three planes. 3D scatterplots were created with Excel macros provided by Gabor Doka (http://www.doka.ch/
Excel3Dscatterplot.htm). B) Data points were transformed to present this plane in a two-dimensional similarity diagram with three axes. Data scatter
along the red axis indicates a greater dissimilarity of values obtained with the appropriate ANN when method M1 and M2 yield very similar results.
Data are derived from spectra generated for Rsub estimation of HT-29/B6 cells in the absence of EGTA. C) Shaded ‘‘reference’’ area, indicating the area
covered by data points (black m) shown in (A), was determined in a 10 by 10 grid. 276 of 281 (98.2%) of the data points from measured spectra (red
¤) are contained by the reference area, indicating that the model spectra were generated for appropriate parameter ranges (see also Fig. S7). D)
Distribution of data points from modeled spectra with t ratios ,5 (black ¤) is similar to the distribution of data points from measured spectra (blueN) obtained in the absence of forskolin or nystatin. Conversely, distribution of data points from model spectra with t ratios .5 (grey m) is similar to
the distribution of data points from measured spectra (red ¤) obtained in the presence of forskolin or nystatin. This indicates that t ratios of
measured spectra can be estimated from the distribution of data of model spectra with known t ratios. Axes as in B. For all other conditions see Fig.
S6. E) Estimating t ratios of measured HT-29/B6 spectra before and during forskolin or nystatin application. Data points from spectra obtained in the
absence of any drugs (no EGTA, nystatin or forskolin; blue ¤, Repi; blue e, Rsub) showed highest similarity with those of modeled spectra with t ratios
# 4.5. In contrast, t ratios of up to ,50 were needed to model data points from spectra obtained in the presence of forskolin or nystatin but absence
of EGTA (red &, Repi; red %, Rsub). If Rtrans was short-circuited by an EGTA-induced decrease in Rpara, all spectra assumed near semicircular shapes,
irrespective of the absence (blue m, Repi+EGTA; blue n, Rsub+EGTA) or presence (yellow N, Repi+EGTA; yellow #, Rsub+EGTA) of forskolin or nystatin.
doi:10.1371/journal.pone.0062913.g002
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end of the plot was taken as Rsub, the length of chord between the

two intercepts as Repi.

Error Model
Data scatter intrinsic to the electrophysiological set-up was

determined by mounting artificial membranes (polypropylene;

thickness, 0.2 mm; area, 0.6 cm2; capacitance in the order of

10 pF/cm2) in Ussing chambers. Membranes were pierced to

obtain DC resistances between 30 and 25,000 V cm2. 30–40

consecutive impedance spectra were recorded for each resistance

(see Fig. S2). Standard deviations (SDs) of the resulting Zre and Zim

were calculated for each frequency and expressed as % of the DC

resistance value.

To model impedance spectra, data scatter was generated

separately for real and imaginary parts as function of correspond-

ing frequency and transepithelial resistance RT and added to the

computationally generated spectra [26]. Frequency dependence

was approximated by non-linear regression of SDs at the 42

frequencies employed during physiological experiments and at a

fixed RT (<500 V?cm2). For Zre, a second-order Fourier series was

assumed as best fit, for Zim, a fourth-order polynomial function (for

details see File S4, Eqs. S14–S15). To account for the dependence

of data scatter on RT, dynamics of the SDs at 1.3 Hz were

approximated by exponential functions (separately for real and

imaginary parts, for details see File S4, Eqs. S16–S17). Data

scatter induced by the capacitance of the membrane was assumed

to be negligible.

Generation of Neural Network Training Data
A total of eight datasets was created. To estimate Rsub of HT-

29/B6 cell layers, two training datasets were created that were

optimized for high (.250 V?cm2) or low (,250 V?cm2) Repi

values, reflecting conditions before and after EGTA-induced Ca2+

switch. Using these datasets, two ANNs were trained to estimate

Rsub for HT-29/B6 cells before (ANNHT
sub) and after EGTA-

induced Ca2+ switch (ANNHTzEGTA
sub ). Similarly, for determina-

tion of Repi for HT-29/B6 cell layers before and after Ca2+ switch,

two further training datasets and ANNs were employed

(ANNHT
epi ,ANNHTzEGTA

epi ). Analogously, four datasets and ANNs

were generated for IPEC-J2 cell layers (ANNIPEC
sub and ANNIPEC

epi

for Repi .600 V?cm2; ANNIPECzEGTA
sub and ANNIPECzEGTA

epi

datasets for Repi ,600 V?cm2). For an overview of all datasets

created and used for ANN training see Supporting Information

(File S3; Tables S1, S2, S3, S4).

Calculations. Based on the six-component circuit (Fig. 1E)

and the AC frequencies applied during experiments, model

impedance spectra were calculated. For each impedance spec-

trum, n = 42 frequency-dependent impedances ZT were calculated

for frequencies v1 to vn (cf. File S3), establishing the following

relation:

Figure 3. Comparison of M1, M2 and ANN precision with model impedance spectra. A,B) Deviations of estimated Repi (A) and Rsub (B)
values (estimated minus true value), using method M1 (grey &), M2 (black m) and the appropriate ANN (red N) are plotted against the respective
known target value. Values refer to HT-29/B6 cells in the absence of EGTA. For all other conditions see Fig. S5. C) Box plot of absolute deviations
(|estimated minus true value|) for all eight conditions. Each data set was evaluated using M1 (left), M2 (middle) and the appropriate ANN (right,
shaded). Midline: median; box, 1st and 3rd quartile; tails, minimum and maximum. Except for the ANNIPECzEGTA

epi which performs significantly worse
than M1 (p,,0.01), all ANNs perform highly significantly better (p,,0.01) than M1 and M2 (Wilcoxon signed-rank test).
doi:10.1371/journal.pone.0062913.g003
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(ZT(v1),ZT(v2),:::,ZT(vn)) e (Rap,Cap,Rbl,Cbl,Rpara,Rsub) ð1Þ

where the complex number ZT can be expressed for the assumed

electric circuit as

ZT vð Þ~

Rpara:(RapzRbl )zi:v:½Rpara(Rap:tblzRbl :tap)�
RapzRblzRpara:(1{v2:tap:tbl )zi:v:½Rpara:(tapztbl )zRap:tblzRbl :tap�zRsub

ð2Þ

tap = Rap ? Cap and tbl = Rbl ? Cbl are introduced for simplicity;

i~
ffiffiffiffiffiffiffiffi
{1
p

. Real and imaginary parts Zre(v) and Zim(v) were

calculated according to Eqs. S4 and S5 (cf. File S1). To each

impedance value, i.e. to each real and imaginary part, a random

value was added which matched the error model for the

electrophysiological setup (cf. File S4, Eqs. S14–S17).

Sampling. To create training data for estimating Repi, values

of all six underlying circuit components were reversely derived

from a target value (chosen from a parameter range based on

published values, cf. Table 1) in a consecutive manner for each

model impedance spectrum. Starting with Repi, either Rpara or

Rtrans were chosen to be greater than Repi and within the absolute

ranges for the circuit parameters (Table 1). For the remaining

other parameter, the range was adjusted dynamically and a subset

of ten equally distributed values was chosen. A similar procedure

was applied to Rap and Rbl (where Rap+Rbl = Rtrans). For

capacitances Cap and Cbl, reasonable static ranges were estimated

from published Cepi values (Table 1). To create training data for

estimating Rsub, training data produced for estimating Repi were

shifted by a random value matching the given ranges for Rsub

(Table 1).

Cross-Validation. For each of the eight conditions, 50,000

of all spectra generated were selected randomly and split into a

training dataset of 25,000 samples (50%) and a test dataset of

25,000 samples (50%). To allow monitoring progress during the

training phase, the test dataset was used as validation dataset; these

samples were neither used for weight adjustment nor as a stopping

criterion during the training phase. For cross-validation, training

and test datasets were interchanged (with initial conditions of the

networks set to random).

Architecture and Training of the Employed Neural
Networks

To estimate Rsub or Repi respectively, standard feed-forward

neural networks were employed with standard backpropagation as

learning algorithm. The network architectures were based on a

total of three layers of neural units: input layer, hidden layer,

output layer (Fig. S3). The activation functions of the neural units

were uniform within each layer: linear for input and output layers,

sigmoidal for the hidden layer. Learning rates varied between

0.00001 and 0.000025. In all cases, training was performed for a

total of 10,000 epochs (Fig. S4).

A total of eight networks were employed. All networks were

designed as a 20-2-1 architecture, i.e. the input layer consisted of

20 units, each of which can be seen as features or channels

representing consecutively ordered real and imaginary parts of 10

impedances. The hidden layer consisted of 2 units possessing

weighted connections to all input units and to the output unit. The

output unit represented the estimated value of Rsub or Repi,

respectively. Input units corresponded to frequencies 2060.3 Hz –

Figure 4. Applicability of 2PI under conditions of altered Rap or Rbl. A) Nyquist plot of HT-29/B6 impedance spectrum after the application of
forskolin. Arrows indicate estimates of Rsub (see inset) and RT using the three methods, M1 (light grey), M2 (dark grey) and ANN (black). RT = Repi+Rsub.
B,C) 2PI: Plotting epithelial conductance Gepi = 1/Repi (¤, in the absence; ¤, in the presence of forskolin; e, after EGTA application) against
transepithelial fluorescein flux allows estimate of transcellular conductance, Gtrans [5]. (B) Experiment without forskolin application. Gtrans equals y-
intercept (arrow) of the linear regression (grey line, Gtrans = 0.64 mS/cm2). (C) Gtrans in the presence of forskolin is obtained from the y-intercept (black
arrow) of the linear regression (black line, Gtrans = 1.69 mS/cm2). Shifting the linear regression to pass through the values obtained before the
application of forskolin (grey line) allows estimate of Gtrans in the absence of forskolin (grey arrow, Gtrans = 0.65 mS/cm2). D) Comparison of Rtrans

values obtained from 30 experiments (15 without and 15 with forskolin or nystatin application, black and grey bars, respectively), using the three
methods to estimate Repi. Four experiments (three without and one with nystatin application) yielded negative or unreasonably high Rtrans values
when evaluated with methods M1 and M2. E) Same as (D) but after omission of these four experiments. Remaining estimates from experiments
without forskolin or nystatin application were very similar for all three methods, estimates from experiments with forskolin or nystatin application
showed lowest variance when evaluated by ANN.
doi:10.1371/journal.pone.0062913.g004
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Figure 5. Estimation of apical and basolateral parameters. A) HT-29/B6 cell layers were divided in two groups, with Repi values ,450 V?cm2

(354616 V?cm2, n = 12) and Repi values .450 V?cm2 (757665 V?cm2, n = 14), respectively. These two groups differed significantly in Rpara (p,0.01,
Student’s t-test) but not in Rtrans. B) Set of four impedance spectra obtained in the absence (two larger curves) or presence of forskolin (two smaller
curves). Experimental data (¤) were fitted using the six component circuit (#) as described in the methods section, to obtain Rap, Rbl, Cap and Cbl.
C,D) Repi, Rpara, Rtrans, Rap, Rbl (C) and Cap, Cbl (D) values from 11 experiments with apical or baslolateral nystatin application and 7 experiments with
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16.3 kHz for ANNs targeting Rsub and to frequencies 1.3 Hz –

10.3 Hz for ANNs targeting Repi.

Benchmarking against Conventional Approaches
ANN estimations for Rsub and Repi were compared with results

of the reference methods M1 and M2 to assess both precision of

the estimations (with modeled spectra) and plausibility of the

electric model and the setup-specfic error model (with measured

spectra).

Modeled spectra. For each target parameter (Rsub or Repi)

under each condition (before or after EGTA application) and for

each cell type, a subset of the corresponding test dataset was used

as benchmark data. These modeled impedance spectra were not

used as training data for the ANN. To separate semicircular curves

(observed before application of nystatin or forskolin) from non-

semicircular curves (observed afterwards), samples were divided

into groups with a t ratio (larger membrane time constant divided

by smaller membrane time constant) being less than five or greater

than five, respectively. The border value of five was chosen from

model calculations [16,26]. From both groups, 1000 spectra were

chosen randomly and evaluated by all three methods (1: reference

method M1; 2: reference method M2; 3: the corresponding ANN

matching cell line, target parameter and the EGTA condition of

the sample set from which the spectrum originates). Results were

compared to the corresponding target values from which the

modeled spectra had been calculated.

Measured spectra. To assess the accuracy of estimating Rsub

and Repi from experimental data, 393 impedance spectra from 38

experiments on HT-29/B6 cell layers and 192 impedance spectra

from 13 experiments on IPEC-J2 cell layers were evaluated with

methods M1, M2, and the ANN matching cell line, target

parameter and EGTA condition. During these experiments, Rtrans

and/or Rpara had been manipulated by the application of

forskolin, nystatin (Rtrans modulators) and/or EGTA (Rpara

modulator). Of 281 HT-29/B6 spectra recorded before EGTA

application, 223 and 58 spectra were obtained in the absence and

presence of Rtrans modulators, respectively. Similarly, 112 HT-29/

B6 spectra belonging to the EGTA-treated group were further

divided into 79 and 33 spectra (additional absence and presence of

Rtrans modulators, respectively). Corresponding numbers for

impedance spectra from IPEC-J2 cells were 166 before EGTA

application (59 without, 107 with Rtrans modulation) and 26 after

EGTA application (11 without, 15 with Rtrans modulation; see

Table S5 for an overview of all measured datasets).

Differences between estimates (DM1,M2, DM1,ANN, DM2,ANN)

were calculated for experimental data as well as for the benchmark

spectra and normalized with respect to the estimated (measured

spectra) or target (modeled spectra) Repi values. Plotting these

differences on the three axes of a three-dimensional coordinate

system yielded a distribution with all data points falling onto a

single plane within the three-dimensional space (Fig. 2A). Data

points were transformed to present this plane in a two-dimensional

diagram with three axes (Fig. 2B).

The resulting diagrams (dubbed ‘‘similarity diagrams’’) visualize

similarity/dissimilarity of estimates obtained by the three methods.

The diagrams have the following characteristics: (1) If estimates

from all three methods are similar, data points lie close to the

origin of the diagram. (2) If estimates from one method are more

dissimilar from the estimates of the other two methods, data points

will spread along one specific axis, as illustrated in Fig. 2B. It is

assumed that ANNs have been trained for an appropriate range, if

data points from measured spectra lie within the area covered by

the data obtained from model spectra (reference area, Fig. 2C).

Calculation of Apical and Basolateral Parameters
Two impedance spectra before and two after the application of

nystatin or forskolin were chosen per experiment. The following

assumptions were made: (1) Nystatin only affects the membrane

resistance at the side of application (i.e. either Rap or Rbl). (2)

Forskolin only affects Rap. (3) The membrane resistance on the

side not affected by nystatin or forskolin (Rap or Rbl, as

appropriate), Rsub, Cap, and Cbl are identical for all four spectra.

For Rpara, estimates from 2PI evaluations were used. Zre(v) and

Zim(v) were calculated for all 42 frequencies used during

measurements (File S3; File S1, Eqs. S4 and S5) and a least-

squares fitting approach was used to estimate Rsub, Rap, Rbl, Cap

and Cbl from measured impedance spectra. Model spectra were

used to test the accuracy of this approach. Under these test

forskolin application. For forskolin purely apical effects were assumed. None of the parameters differed significantly between the two groups. E,F)
Same data as in C and D, but regrouped for Repi ,450 V?cm2 (9 values) and Repi .450 V?cm2 (9 values). As in (A), Rpara (p,0.05, Student’s t-test) but
not Rtrans was significantly different between these two groups. However, both, Rap and Cap were significantly larger in cell layers with Repi .450
V?cm2 (p,0.01, Student’s t-test). G, H) Repi, Rpara, Rtrans, Rap and Rbl (G), and Cap and Cbl (H) values for three IPEC-J2 cell layers treated with nystatin.
doi:10.1371/journal.pone.0062913.g005

Table 2. Parameters estimated for HT-29/B6 and IPEC-J2 cells.

n Rsub [V?cm2] Rpara [V?cm2] Rap [V?cm2] Rbl [V?cm2] Cap [mF/cm2] Cbl [mF/cm2]

HT-29/B6

prior to nystatin 11 13.260.6 15526564 948688 542668 4.2360.12 33.162.7

nystatin apical 5 230615

nystatin basolateral 6 3266

prior to forskolin 7 10.561.1 10146297 1069647 579639 3.9860.12 31.761.9

forskolin present 7 89.463.3

Lumped, Repi .450 9 11.860.8 22016608 1106686 586675 4.460.1 34.762.9

Lumped, Repi ,450 9 12.561.0 485625 885659 527646 3.8760.08 30.561.9

IPEC-J2

3 9.762.0 25086424 438761291 9796360 1.5160.16 6.2461.28

doi:10.1371/journal.pone.0062913.t002
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conditions it was found that increasing deviations in Rpara caused

increases in the average deviation per impedance value, i.e., the

best fit could only be obtained with the most accurate Rpara. The

average deviation per impedance value between measured and

fitted impedance values was therefore used to evaluate which of

the three methods (M1, M2, ANN) yielded the most accurate

values for Rsub, Rap, Rbl, Cap and Cbl.

Data Evaluation/Statistics
Rsub and Repi of 2000 benchmarking spectra calculated for each

condition (HT, HT+EGTA, IPEC, IPEC+EGTA) were evaluated

by all three methods (M1, M2, ANN). Differences between

estimated Repi and Rsub values and the corresponding target values

from which the modeled spectra had been calculated were

determined. These differences were found to be normally

distributed when obtained with the appropriate ANN, however,

values obtained with M2 and part of the values obtained with M1

(HT-epi, IPEC-epi, IPEC+EGTA-epi) were not normally distrib-

uted (Kolmogorov–Smirnov test, p,0.01). Therefore, the Wil-

coxon signed-rank test was employed to determine, which method

yielded the most accurate estimate.

For measured spectra, target values obviously are not available.

Therefore, differences between values estimated by the three

methods were calculated for measured as well as for modeled

spectra and the distribution of these differences was compared in

similarity diagrams, as outlined above.

All partial resistances and capacitances estimated for HT-29/B6

and IPEC cells are expressed as means6SEM and compared by

using Student’s t-test (unpaired, two-tailed).

Results

Benchmarking against Conventional Methods
Modeled spectra. Fig. 3 A and B show the differences

between target values and estimated values for ANNHT
sub and

ANNHT
epi (see Fig. S5 for results under all other conditions). In all

cases except one (ANNIPECzEGTA
epi , best method: M1; Wilcoxon

signed-rank test, p,,0.01), estimates from ANN were highly

significantly better than for the two other methods (Wilcoxon

signed-rank test, p,,0.01; see Fig. 3C).

Measured spectra. For the four ANNs generated for HT-

29/B6 cells, 95% to 98% of all measured values were found to lie

within the corresponding reference areas. Separate evaluation of

the two subgroups of model impedance spectra with t ratios # 5

and .5, respectively, demonstrated that t ratios correlated with

the position of the data-points in the similarity diagrams, as values

for lower t ratios were found closer to the origin of the diagram

than values for higher t ratios (black vs. grey data points in

Fig. 2D). In accordance with this observation, 95% of Repi data

and 83% of Rsub data from experiments without Rtrans modulation

and without EGTA application were contained by reference areas

for t ratios # 5 (compare blue and black data points in Fig. 2D

and Fig. S6). In contrast, only 40% and 36% of the respective data

from experiments with Rtrans modulation were contained by

reference areas for t ratios # 5 (compare red and black data points

in Fig. 2D and Fig. S6). Further analysis of this correlation at

different t ratios was used to estimate the increase of t ratios under

the experimental conditions used in the present study. As shown in

Fig. 2E, t ratios of cell layers increased by about a factor of 10

upon modulation of Rtrans.

No such correlation was observed for values from spectra

obtained after EGTA treatment. These values reflect conditions,

where the low Rpara short-circuited Rtrans and where, consequent-

ly, curves in Nyquist diagrams were semicircular despite

alterations in Rap or Rbl [16]. Consequently, 92% to 99% of all

data points were contained by the reference areas for t ratios # 5

(see also Fig. 2E).

For data from IPEC-J2 cell layers, similar results were obtained,

although agreement between modeled and measured data was

generally weaker. For the four ANNs generated for IPEC-J2 cells,

80% to 100% of all estimates were found to lie within the

reference area (all t ratios). For data obtained before EGTA

application, 75% (Repi) and 70% (Rsub) of the estimates for spectra

obtained without Rtrans modulation were contained by the

reference areas for t ratios ,5. Under Rtrans modulation 70%

(Repi) and 37% (Rsub) lay within the reference areas.

Similar to results for HT-29/B6 cells, estimates for data

obtained after the application of EGTA were contained by the

reference areas for t ratios ,5, even if their Rtrans had been altered

during experiments (93% for both, Repi and Rsub). This was also

true for Rsub values without Rtrans manipulation (100%) but not for

Repi values (64%), possibly reflecting the lower precision of

theANNIPECzEGTA
epi .

Calculation of Rpara and Rtrans

2PI evaluation to estimate Rpara and Rtrans requires accurate

determination of Repi. However, accuracy may be limited by data

scatter, very high or very low t values that cannot be fully covered

by the applied frequency range, or by the non-semicircular shape

of the impedance spectra (Fig. 4A). In these cases, Repi values

estimated by the three methods applied in the present study may

vary considerably. The resulting errors are especially critical in

experiments during which drugs such as forskolin or nystatin had

been applied prior to the application of EGTA, as here Rtrans in

the absence of the drugs has to be estimated sequentially from the

data obtained in the presence of the drugs (compare Fig. 4B and

C).

Whereas Rtrans values estimated from experiments without drug

application were similar for all three methods, data from

experiments with drug application were most consistent for

ANN evaluation. Most importantly, Rtrans values from four

experiments had to be omitted from evaluation, as they yielded

either negative or unreasonably high Rtrans values (.105 V?cm2)

when evaluated with methods M1 and M2, whereas ANN

evaluation was fully within the range of all other experiments

(Fig. 4D, evaluation including all experiments; Fig. 4E evaluation

omitting four experiments).

With increasing number of passages of HT-29/B6 cells, Repi

values tend to decrease. To determine whether this decrease is due

to changes in Rtrans or Repi, experiments were divided into two

groups according to the Repi values of the employed cell layers

(Repi ,450 V?cm2, n = 12; Repi .450 V?cm2, n = 14, boundary

arbitrary). As shown in Fig. 5A, differences in Repi are solely due to

changes in Rpara (p,0.01, Student’s t-test), whereas Rtrans remains

unaltered.

Calculation of Rap, Rbl, Cap and Cbl

Rpara values estimated by ANN-enhanced 2PI were used to

obtain Rap, Rbl, Cap and Cbl by a least-squares approach. A direct

comparison of measured and fitted impedance values is shown in

Fig. 5B. 11 experiments employing nystatin application (5 apical, 6

basolateral) and seven experiments employing forskolin were

evaluated assuming that forskolin only affected Rap. The values

obtained from these latter experiments (Table 2) were not

significantly different from the values obtained with nystatin so

Discerning Apical and Basolateral Properties

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e62913



that it is concluded that the predominant effect of forskolin is a

dramatic reduction of Rap (Fig. 5C,D).

Lumping this total of 18 experiments and splitting them into

two halfs according to the Repi value (Repi .450 V?cm2, n = 9,

mean Repi, 787655 V?cm2 vs. Repi ,450 V?cm2, n = 9, mean

Repi, 359616 V?cm2) again indicated that the predominant reason

for the reduced Repi values at higher passages was a strong

reduction in Rpara (p,0.05, Fig. 5E), essentially turning the tight

epithelium (Rpara.Rtrans) into a leaky one (Rpara,Rtrans). How-

ever, small but significant changes could also be detected for Rap

(p,0.05) and Cap (p,0.01, Table 2, Fig. 5E,F) which are

consistent with a loss of differentiation with increasing numbers

of passages.

Repeating the evaluation with Rpara values obtained through

methods M1 and M2 essentially yielded similar results. However,

using Rpara values obtained through ANN produced lowest mean

deviation per impedance value in 9 out of the 18 experiments (M1,

5; and M2, 4 of the 18 experiments). It is therefore concluded that

values obtained through ANN are more accurate than those

obtained through M1 and M2.

For IPEC-J2 cells, main difficulty was that due to their very high

Repi values (range 1000 to 10 000 V?cm2), reliable fluorescein flux

measurements were only possible for cell layers with lowest Repi

values. Thus, results for three cell layers with a mean Repi of

16926368 V?cm2 are shown (Table 2; Fig. 5G,H).

Discussion

Neural Network Training and Error Model
Unlike ANN applications based on real-world training data, the

present approach of employing modeled impedance spectra

provides direct control over sampling and balance of the training

data. While it is desirable to avoid imbalanced training data [27],

at the same time the so-called ‘‘curse of dimensionality’’ [28]

implies a very practical limitation for generating equally-distrib-

uted data from more than one input variable [29]; i.e. a set of

impedance spectra comprehensively covering all six, or five

respectively, circuit parameters would exhibit a size exceeding

common training data sizes by orders of ten. Consequently, a bias

in either the input or target domain is unavoidable in practice. By

backward-calculating the six circuit parameters from the given

target value, our approach aims at a balanced target domain with

potentially imbalanced training input rather than a relatively

balanced training input with an imbalanced target domain.

No negative impact on the ANN training was observed from

adding data scatter modeled from the electrophysiological setup; in

fact, it is even likely that introducing error to training data is

advantageous for the generalization ability of a network [30–32].

Modeling such data scatter as standard deviations depending on

frequency and RT is a concept that has been successfully applied

before [26]. Naturally, the proposed regressions are setup-specific

and the implementation is limited to the given settings. This is not

considered a limitation of the proposed method, as data scatter

intrinsic to any other set-up can be modeled analogously.

For all ANNs, a network structure with a single hidden layer

consisting of two units was chosen. While this has previously been

shown to be sufficient to approximate any mathematical function

[33] and smaller ANNs tend to generalize better [34,35], this

architecture also showed the best learning progress of several

architectures initially investigated here by trial-and-error. An

‘‘early stopping’’ strategy (cf. e.g. [36]) at a fixed number of epochs

was chosen for the training, as no specific final training error was

intended. Overfitting was not observed from average training and

validation error (cross validation; cf. e.g. [37]). As previously

reported by others [38,39], trained ANNs were not able to

extrapolate target parameters notably beyond the ranges given by

the training data.

Comparison of Modeled and Measured Impedance
Spectra

Accuracy of Repi estimates from measured spectra is difficult to

assess, as results cannot be tested against ‘‘true’’ values. While it

might be argued that true RT can be obtained from DC

measurements, most equipment carries out ‘‘near DC’’ measure-

ments at frequencies of about 25 instead of 0 Hz or uses brief

current pulses to avoid electrode polarization. In the spectrum

depicted in Fig. 4A, the estimated RT is about 600 V?cm2,

however, at 25 Hz (14th data point from the right), a value of

about 125 V?cm2 would have been obtained. Furthermore, to

obtain Repi, Rsub has to be determined first. While this may be

comparatively simple for cultured cells grown on filter supports, it

is impossible for native tissues without employing impedance

spectroscopy [40]. In the present study, the finding that reference

areas defined by the data points from model spectra cover most of

the data points from measured spectra (Fig. 2C, Fig. S7) is taken as

a strong indication that the ANN were trained for appropriate

ranges and that predictions for both modeled and measured

spectra are more accurate than those from conventional methods.

This conclusion is supported by two further findings: (1) In

contrast to Rtrans calculations based on the ANN approach,

calculations based on method M1 or M2 led to obviously

erroneous Rtrans values for four out of 30 experiments (cf

Fig. 4D). (2) For experiments with and without application of

forskolin or nystatin, use of Repi values estimated by ANN resulted

in consistent Rtrans values, whereas especially those determined by

method M2 (Cole-Cole-fit) did not. This is due to the fact that

Cole-Cole-fits are based on semicircular impedance spectra, a

requirement that is not fulfilled after the application of forskolin or

nystatin.

Estimation of Apical and Basolateral Membrane
Properties

Testing the reliability of the least-squares approach with model

spectra yielded average deviations of less than 0.1% (Rap,

0.02460.019%; Rbl, 20.01760.057%; Cap, 20.04760.051; Cbl,

0.03960.093%; n = 6) if the correct Rpara was known. 10%

variations in Rpara induced errors ,10% in all other parameters if

apical nystatin applications were simulated (,15% for basolateral

applications). Under experimental conditions target values are

unknown and therefore accuracy can only be evaluated indirectly.

This was achieved by using the average deviation per data point

between measured and modeled impedances. In 9 out of 18

experiments, deviations were lowest when ANNs were employed

(5 out of 11 experiments employing nystatin and 4 out of 7

employing forskolin), but only in 5 experiments when using

method M1 (4 for nystatin, 1 for forskolin) and 4 when using

method M2 (2 for nystatin, 2 for forskolin). This indicates that

under both conditions estimates based on ANN evaluation are the

most reliable.

Rap values found for HT-29/B6 cells are in a similar range as

those published for various preparations, whereas Rbl values are

considerably higher (Necturus gallbladder, Rap 1220 V?cm2, Rbl 201

V?cm2, [41]; Rap 3500 V?cm2, Rbl 225 V?cm2, [15]; 2F3 cells, Rap,

1270 V?cm2, Rbl 330 V?cm2 and A6 cells, Rap 2700 V?cm2, Rbl

330 V?cm2, [42]). However, a high Rbl value in HT-29/B6 cells is

in keeping with experimental observations upon nystatin applica-

tion. Basolateral application of nystatin caused a Repi decrease
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from 524675 V?cm2 to 397652 V?cm2 (n = 6), whereas apical

nystatin application caused a decrease from 5866112 V?cm2 to

335661 V?cm2 (n = 6). Thus, in both cases the residual Repi was

similar.

Rtrans (Rap+Rbl = 5366 V?cm2) and Rpara (2508 V?cm2) values

for IPEC cells are remarkable, as, despite their large Repi, these

cell layers are ‘‘leaky’’ according to the definition by Schultz et al.,

[43] (Rpara,Rtrans). It has to be kept in mind, however, that only

IPEC-J2 layers with lowest Repi could be analyzed.

Capacitance of unit plasma membranes is about 1 mF/cm2 [44],

and values for Cap and Cbl are often used as direct measures of

apical and basolateral membrane areas [13,16]. Values derived in

the present study are in the same range as those previously

reported [12,15,41,45]. As Schifferdecker & Frömter [16] point

out, a Cap/Cbl ratio of 1 : 5 would be expected if epithelial cells

were perfect cubes joined along their apical-most edge. In the

present study, ratios of 1 : 7.9 (60.4, n = 18) and 1 : 4.4 (61.4,

n = 3) were found for HT-29/B6 and IPEC-J2 cells, respectively.

These values indicate that HT-29/B6 cells are columnar whereas

IPEC-J2 cells are squamous. This is in keeping with published

observations (HT-29/B6, diameter ,6 mm, height 20–30 mm,

[7,46]; IPEC-J2, diameter ,13 mm, height ,7 mm, [47]).

Deviations from theoretical Cap/Cbl values calculated from their

dimensions (HT-29/B6, ,1 : 15 to 20; IPEC-J2, ,1 : 2) may be

explained by abundant microvilli in HT-29/B6 cells [46] and

possibly by basolateral membrane foldings in IPEC-J2 cells. It can

further be speculated that the increased Cap found in HT-29/B6

cell layers with high Repi indicate a higher degree of differentiation

with an even greater abundance of microvilli. The parallel

increase in Rap could then simply reflect a high access resistances

of these microvilli.

Effects of Forskolin
Forskolin is known to increase intracellular cAMP levels

through activation of the adenylate cyclase [48]. This causes

vesicles containing CFTR to merge with the apical membrane

which induces Cl2 secretion. Forskolin application thus mimics

secretory diarrhea, a common intestinal disorder driven by

increased chloride secretion. Capacitance changes of the apical

membrane during CFTR insertion have been studied in detail by

Bertrand et al. [45] and were demonstrated to last for about 10

minutes. Therefore, in the present study, only spectra determined

at least 10 minutes after forskolin application were considered.

Under these conditions, results were consistent with the assump-

tion that the Repi decrease observed upon forskolin application is

primarily due to a decrease in Rap.

Conclusions
The aim of the present study was to develop a technique to

quantify partial resistances and capacitances of the overall

epithelial barrier of HT-29/B6 and IPEC-J2 cell lines. The

employed ANNs permitted reliable extraction of Rsub and Repi

with higher precision than conventional methods. The use of

ANNs thus resulted in a powerful refinement of two-path

impedance spectroscopy for cell layers with modified Rap or Rbl.

With this refinement, all six parameters of the equivalent circuit

for epithelial cell layers can be estimated for HT-29/B6 and

IPEC-J2 cells without using invasive techniques such as intracel-

lular microelectrode recordings. Successful quantification of the

effect of forskolin suggests that this technique qualifies as a

valuable tool for pharmacological studies during which apical or

basolateral membrane properties are altered.
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