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ABSTRACT
Cotesia chilonis (Munakata) is the dominant parasitic wasp of the rice pest, Chilo
suppressalis (Walker), and is a valuable parasitic wasp for the prevention and control
of C. suppressalis. In this study, developmental indicators and expression of
Cchsp11.0 (heat shock protein 11.0) and Cchsf (heat shock factor) were compared for
C. chilonis at 27 �C and 36 �C. Developmental duration, morphology, emergence
rate, and number of C. chilonis offspring were shortened at 36 �C while the ratio of
females to males increased. Cchsp11.0 and Cchsf were highly expressed in the 1st

instar stage at 36 �C, and Cchsp11.0 expression gradually decreased as C. chilonis
matured; Cchsf expression was not correlated with Cchsp11.0 expression. Compared
with 27 �C, the expression pattern of Cchsp11.0 and Cchsf was also not consistent,
and Cchsp11.0 expression increased significantly at the adult stage. In conclusion,
mildly high temperatures impact growth, development and reproduction of
C. chilonis and stimulate the expression of Cchsp11.0 and Cchsf, and Cchsp11.0 and
Cchsf play different roles in different developmental stages of C. chilonis at normal
and high temperature.
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INTRODUCTION
Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) is a detrimental rice pest in southern
Europe, northern Africa and widely distributed in China and other Asian countries
(Lu et al., 2013; Luo et al., 2014). Issues of pesticide residues, environmental pollution
and pesticide poisoning have attracted the attention and stimulated the explore on new
biological control methodologies such as the use of natural enemies (He et al., 2013; Hong,
2015; Gao et al., 2019). Cotesia chilonis (Munakata) is the dominant parasitoid of
C. suppressalis and occurs in southeastern and eastern Asia, regions where it has value as a
biological control agent for C. suppressalis (Huang, Wu & Ye, 2011; Wu et al., 2013;
Pan et al., 2018). It is notable that the parasitism rate for C. chilonis on overwintering
C. suppressalis larvae can be as high as 90% (Hang, Chen & Wu, 1989; Pan, 2018).
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With the onset of global warming, climatic extremes have garnered widespread
attention (Christidis & Stott, 2015; Palmer, 2014). Extreme shifts in temperature can induce
molecular, biochemical, and physiological changes that alter organismal fitness, insect
phenology and temperature-dependent population dynamics (Ma &Ma, 2020). However,
most studies of insect responses to climate extremes have focused on herbivorous pests,
less attention has been paid to the response of natural enemies such as parasitoids and
predators. Previous research has indicated that many parasitoids may be more sensitive to
heat than herbivorous pests and plant hosts due to direct and indirect effects of high
temperatures (Agosta, Joshi & Kester, 2018; Van Baaren, Le Lann & Van Alphen, 2010).
In addition, previous studies have also shown that temperature extremes may impact
parasitoid survival, development, and reproduction (Chen et al., 2019; Flores-Mejia et al.,
2016). For example, exposure to extreme temperatures commonly results in higher egg-to-
larval mortality and reduced larval growth (Rocha et al., 2017; Zhou et al., 2018; Potter,
Davidowitz & Arthur Woods, 2011).

Insects generally exhibit behavioral and physiological responses to high temperatures
to mitigate adverse effects (González-Tokman et al., 2020). For example, insects produce
heat shock proteins (HSPs) to prevent protein denaturation and to protect themselves
when exposed to high temperature (Kim, Kim & Kim, 1998; Aeverman & Waters, 2008;
Mayra & Silvina, 2018). The regulation of HSPs in response to temperature stress is
regulated by heat shock transcription factors (HSFs) (Akerfelt, Morimoto & Sistonen,
2010).

Therefore, in this study, we asked: ‘What impacts do high summer temperatures have
on C. chilonis in the field?’ To investigate, we chose a moderately high temperature (36 �C)
based on previous research (Pan et al., 2018). This temperature was used to simulate
field temperatures that C. chilonismay encounter in nature and to explore the effect of high
temperature stress on growth, development, and reproduction. Moreover, the expression
of Cchsp11.0 and Cchsf in C. chilonis was studied in order to indicate the regulation of
HSP and HSF of C. chilonis responded to global warming.

MATERIALS AND METHODS
Insects
C. suppressalis and C. chilonis were collected from a suburb of Yangzhou (32.39�N,
119.42�E) and reared in the laboratory at 27 ± 1 �C, 60–70% RH and a 16:8 h (light/dark)
photoperiod (Pan et al., 2018). C. suppressalis larvae were supplied with an artificial diet
(Gao et al., 2019). C. chilonis adults were fed with a 10% honey/water solution and
propagated using 5th instar larvae of C. suppressalis as hosts.

Sample treatments
A single 5th instar of C. suppressalis was placed in a test tube and two female and one
male C. chilonis adults were added for breeding by syngamy while only two unfertilized
female C. chilonis adults were added for breeding by parthenogenesis. Insects were
incubated for 6 h at 27 �C in darkness to facilitate parasitism of C. suppressalis with 10%
honey for breeding, and a single 5th instar of C. suppressalis is parasitized only once; once
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parasitism occurred, C. suppressalis larvae were allowed to feed on an artificial diet.
A subset of the parasitized C. suppressalis was incubated at 36 �C from 10:00 am to 2:00 pm
daily to simulate the high temperatures encountered in the field; insects were maintained at
27 �C the remaining hours of the day.

Insects were maintained using the two different temperature regimes described above
until C. chilonis emerged from C. suppressalis. C. chilonis adults are reared with 10% honey.
Three parasitized C. suppressalis were dissected from the two treatments on a daily
basis, and the development of five randomly-selected C. chilonis individuals was inspected;
this included photographing and recording body length, head width and instar stage.
Photos were taken with a KEYENCE VHX-5000 system and optimized by Adobe
Photoshop CS6. In addition, different developmental stages of C. chilonis (egg, 1st instar,
2nd instar, 3rd instar, pupa, adult) were collected and stored at −80 �C until needed.
Treatments either contained 30 (egg and instars) or five individuals (adult and pupa).
All treatments were replicated three times.

RNA extraction
Total RNA was extracted from C. chilonis using the RNA-easyTM Isolation Reagent
(Vazyme, Nanjing China). The integrity of RNA was verified by comparing ribosomal
RNA bands in ethidium bromide-stained gels, and RNA purity was examined using
spectrophotometric measurements at A260 and A280 nm (NanoDrop One, Thermo Fisher
Scientific, Waltham, MA, USA).

Real-time qPCR
Total RNA was isolated from the different treatments as described above, and the Bio-Rad
iScriptTM cDNA Synthesis Kit (Bio-Rad, Irvine, CA, USA) was used to reverse transcribe
0.5 µg total RNA into first strand cDNA. The primers used for real-time quantitative
PCR (Table 1) were designed based on the full-length cDNA sequence of genes. Real-time
PCR reactions were conducted using SYBR Green I in a 20 ml volume that included 10 ml
iTaqTM SYBR� Green Supermix, 6 ml ddH20, 2 ml cDNA template and 1 ml each of the
corresponding forward and reverse primers. Reaction conditions for PCR were as
follows: 3 min initial denaturation step at 95 �C, followed by 40 cycles of 15 s denaturation
at 95 �C, and 30 s annealing at the Tm for each gene (Table 1). Melting curve analysis
was carried out to evaluate the homogeneity of the amplified PCR products. Each
PCR reaction was replicated in triplicate. H3 was regarded as the reference gene (Li et al.,
2019).

Statistical analysis
Relative quantitative analysis was performed by the 2−ΔΔCt method to obtain expression
levels. Differences in mean values were analyzed using one-way ANOVA and the
independent-sample t-test. Homogeneity of variances among treatments was measured by
Levene’s test, and significance was assessed by Tukey’s test. All statistics were performed
using SPSS 16.0 software and shown as means ± SE (standard error).

He et al. (2021), PeerJ, DOI 10.7717/peerj.11353 3/16

http://dx.doi.org/10.7717/peerj.11353
https://peerj.com/


RESULTS
Different developmental stages of C. chilonis
C. chilonis matured through four developmental phases including egg, larval, pupal and
adult stages, and according to their body length and head width, the larvae are divided
into three larval instars, L1, L2 and L3 (O’Donnell, 1987; Shaw & Huddleston, 1991;
Carignan, Boivin & Stewart, 1995; Li, 2011). At 27 �C, the duration of each phase was
approximately 3 days for eggs, 2–3 days for L1, 1-2 days for both L2 and L3, 4-5 days for
pupae and 3–4 days for adults.

For egg stage, developmental time from initial parasitism to completion of the egg
stage was 72 h; at this time point, eggs were located in the hemolymph of C. suppressalis
larvae (Fig. 1A). The length of eggs was 0.37 ± 0.01 mm; the shape was hymenopteriform
with elongate-oval, transparent heads that were larger and broader than thoraces and
abdomens. Giant cells began to appear on the 2nd day after parasitism by syngamy or on
the 3rd day after parasitism by parthenogenesis.

For larval stage, the larval stage of C. chilonis can be divided into 1st, 2nd, and 3rd

larval instar stage (Figs. 1B–1D). All three instars can co-exist in fifth instar larvae of
C. suppressalis; however, only the 3rd instar emerges from the host for pupation
(Li, 2011). The duration of the 1st, 2nd and 3rd larval instar stages were 3.16 ± 0.21 days,
2.70 ± 0.20 days and 1.55 ± 0.12 days at 27 �C, respectively. Body lengths of 1st, 2nd

and 3rd instar C. chilonis larvae were 1.30 ± 0.08 mm, 2.63 ± 0.04 mm and 3.23 ± 0.08 mm,
and head widths were 0.31 ± 0.02 mm, 0.56 ± 0.01 mm and 0.57 ± 0.02 mm, respectively
(Table 2).

For pupal stage, third instar larvae of C. chilonis gnawed their way out of C. suppressalis
(Fig. 1E). The surface of C. chilonis was glossy and milky upon emergence (Fig. 1F) and
then developed into a beige-colored pupa within 24 h that was ultimately encased in a
cocoon (Figs. 1G, 1H). Cocoons were white and approximately 2–3 mm long and 1 mm
in diameter; they were often clustered in groups of 20–50 (Fig. 1I). The number of
cocoons produced by a single parasitic C. suppressalis was 42.00 ± 6.87 at 27 �C. Clusters of
cocoons were irregular in shape and had thin filaments entwined on the outside.
The duration of the pupal stage was approximately 1.87 ± 0.35 days in the 27 �C treatment.

For adult stage, C. chilonis adults emerged from cocoons by drilling out of one end
(Fig. 1J), and eclosion generally happened during the daylight hours. The pupal stage of
males was slightly shorter than females, and male adults generally emerged first. C. chilonis

Table 1 Primers used for qRT-PCR analysis.

Gene Primer sequences (5′→3′) Tm (�C) Length (bp)

hsp11.0 F: ACAAAGTTCTCCTCCCCG 59.4 90

R: GCAACAATGTCTGATTCACG

hsf F: TTAGGTGCTGAAAGTGCCGA 60.0 191

R: AGTACGCAAGTCGAGCTGAA

H3 F: CGTCGCTCTTCGTGAAATCA 58.1 122

R: TCTGGAAACGCAAGTCGGTC
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males and females can mate within 24 h after eclosion (Fig. 1L); and both sexes can
mate multiple times. Repeated experiments showed that parthenogenesis is possible,
and unfertilized eggs develop solely into males. The duration of the adult stage was

Figure 1 Different developmental stages of Cotesia chilonis at 27 �C. (A) Egg. (B) First instar larvae.
(C) Second instar larvae. (D) Third instar larvae. (E) and (F) show emergence of 3rd instar C. chilonis
larvae from the host, C. suppressalis. (G) Inner pupa. (H) and (I) Cocoons. (J) Emergence of C. chilonis
adults from cocoons. (K) Adult female. (L) Copulation of female (right) and male (left) adults.

Full-size DOI: 10.7717/peerj.11353/fig-1
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5.28 ± 0.07 days at 27 �C. The number of female C. chilonis produced by a single
parasitized C. suppressalis was 24.57 ± 4.64 at 27 �C, whereas the number of males was
9.00 ± 1.59 at 27 �C (Table 3). The ratio of female to male adults was 2.85 ± 0.29 and the
emergence rate was 0.82 ± 0.06% at 27 �C (Table 3).

The effect on the developmental index of C. chilonis under high
temperature
Different developmental stages of C. chilonis were all observed and recorded by
microscopy after parasitism at 27 and 36 �C. The developmental duration of eggs showed
little difference between 27 and 36 �C (t = −5.511, P < 0.001). However, the duration of the
1st and 2nd larval instars were longer in the 36 �C treatment as compared to 27 �C
(1st instar larvae: t = −3.177, P < 0.05; 2nd instar larvae: t = −1.949, P < 0.05), whereas the
3rd larval instar, pupal and adult stages were shorter at 36 �C (3rd instar larvae: t = 4,627,
P < 0.001; pupal stage: t = 3.984, p = 0.003; adult stage: t = 7.162, P < 0.001) (Table 2).
Moreover, the treatment of 36 �C resulted in the death of samples, in the remaining two
survival treatments, the number of cocoons, female and male C. chilonis produced by a
single parasitic C. suppressalis was obviously less at 36 �C, and the number of adults
produced at 27 �C was about twice the number at 36 �C, indicating that high temperature
stress leads to a decrease in cocoon numbers and offspring (Table 3). Furthermore, the
results showed that exposure to 36 �C caused a decrease in the emergence rate and an
increase in the ratio of female to male adults.

Table 2 Developmental indicators of different developmental stages of Cotesia chilonis.

Developmental duration (days) Body length (mm) Head width (mm)

27 �C 36 �C 27 �C 36 �C 27 �C 36 �C

Eggs 2.00 ± 0.00 2.00 ± 0.00 0.37 ± 0.01 0.45 ± 0.01 / /

1st larvae 3.16 ± 0.20 4.07 ± 0.21 1.30 ± 0.08 1.29 ± 0.06 0.31 ± 0.02 0.30 ± 0.02

2nd larvae 2.70 ± 0.20 2.35 ± 0.21 2.63 ± 0.04 2.62 ± 0.01 0.56 ± 0.01 0.54 ± 0.01

3rd larvae 1.55 ± 0.12 0.12 ± 0.14 3.23 ± 0.08 3.09 ± 0.04 0.57 ± 0.02 0.54 ± 0.02

Pupae 1.87 ± 0.35 1.93 ± 0.09 / / / /

Adults 5.28 ± 0.07 4.46 ± 0.09 / / / /

Table 3 Developmental indicators of Cotesia chilonis adults.

27 �C 36 �C

Number of cocoons 42.00 ± 6.87 23.14 ± 1.92

Number of females 24.57 ± 4.64 12.50 ± 4.50

Number of males 9.00 ± 1.59 3.50 ± 0.50

Number of adults 33.57 ± 6.04 16.00 ± 4.00

Ratio of female to male 2.85 ± 0.29 3.83 ± 1.83

Emergence rate (%) 0.82 ± 0.06 0.57 ± 0.12
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Body length of 1st, 2nd and 3rd larvae instars were almost identical at 36 and 27 �C
(1st instar larvae: t = 0.064, P = 0.949; 2nd instar larvae: t = 0.137, P = 0.892; 3rd instar larvae:
t = 1.405, P = 0.173) and so was head width (1st instar larvae: t = 0.510, P = 0.611; 2nd

instar larvae: t = 0.728, P = 0.470; 3rd instar larvae: t = 1.140, P = 0.265) (Table 2), while the
length of egg (Fig. 2) was significantly longer in the 36 �C treatment as compared to 27 �C
(t = −5.926, P < 0.001). Interestingly, we observed different developmental stages of
C. chilonis larvae within the same C. suppressalis on the same day of dissection except that
C. chilonis was in the 1st larval instar stage on the 3rd, 4th, 5th and 6th days after parasitism
regardless of temperature (Fig. 3A). The body length of C. chilonis larvae in the 36 �C
treatment was significantly shorter than the 27 �C treatment on the 9th and 10th days after
parasitism (9th day: t = 4.376, P < 0.001; 10th day: t = 4.117, P = 0.002). Similarly, the
head width of C. chilonis larvae was significantly shorter in the 36 �C treatment as
compared to that in the 27 �C treatment on the 7th, 9th and 10th days after parasitism
(7th day: t = 2.806, P = 0.009; 9th day: t = 2.649, P = 0.011; 10th day: t = 4.347, P = 0.022).
Therefore, the body length and head width of measured different instar C. chilonis larvae
were generally shorter in insects receiving the 36 �C treatment as compared to that in
the 27 �C treatment (Figs. 3B, 3C).

Rate of larval instar development under normal and high temperature
First instar larvae of C. chilonis appeared on the third day after parasitism in both the 27
and 36 �C treatments (Figs. 4A–4B). The number of 1st instar larvae was lower in the 27 �C
treatment as compared to 36 �C beginning at day seven after parasitism (27 �C: F7,16 =
134.667, P < 0.001; 36 �C: F7,16 = 7.245, P = 0.001).

Second instar larvae of C. chilonis began to appear on the seventh day after parasitism
(Figs. 4C–4D). Regardless of temperature, numbers of 2nd instar larvae were high on

Figure 2 C. chilonis body length (mm) in the 27 and 36 �C treatments. Statistics represent means ± SE
at two days of parasitism. Data were analyzed using independent samples t-test built in SPSS software.
P < 0.05 was considered statistically significant. Asterisks represent significant differences between 27 and
36 �C. Full-size DOI: 10.7717/peerj.11353/fig-2
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Figure 3 Larval instar stages and growth measurements of C. chilonis during parasitism. (A) Instar
stage, (B) larval body length (mm) and (C) larval head width (mm) in insects maintained at 27 �C or
36 �C. Measurements were taken at 24-h intervals from 3–10 days after parasitism. All statistics are
presented as means ± SE, and data were analyzed by the independent samples t-test, P < 0.05. Asterisks
represent significant differences between 27 and 36 �C; ns indicates no significant differences.

Full-size DOI: 10.7717/peerj.11353/fig-3
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the 7th day after parasitism and began to decline on the 8th day after parasitism
(Figs. 4C–4D). Third instar larvae of C. chilonis appeared on the eighth and ninth days of
parasitism for treatments at 36 and 27 �C, respectively, and remained elevated through
day 10 (Figs. 4E–4F).

Figure 4 Numbers of larvae according to instar stage. Numbers of 1st instar larvae at 27 �C
(A); Numbers of 1st instar larvae at 36 �C (B); Numbers of 2nd instar larvae at 27 �C (C); Numbers of 2nd

instar larvae at 36 �C (D); Numbers of 3rd instar larvae at 27 �C (E); Numbers of 3rd instar larvae at 36 �C
(F). Measurements were taken at 24-h intervals at days 3–10 after parasitism. Statistics represent
means ± SE, and columns labeled with different letters indicate significant differences at 27 �C or 36 �C
using one-way ANOVA followed by Tukey’s multiple comparison analysis (P < 0.05).

Full-size DOI: 10.7717/peerj.11353/fig-4
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Expression of Cchsp11.0 and Cchsf at different developmental stages
after high temperature treatment
The expression of Cchsp11.0 and Cchsf showed divergent expression patterns in different
developmental stages at 27 and 36 �C (27 �C: Cchsp11.0: F11,16 = 8.495, P = 0.002;
Cchsf: F11,16 = 14.111, P = 0.001; 36 �C: Cchsp11.0: F13,17 = 48.627, P < 0.001; Cchsf:
F11,15 = 3.419, P = 0.048). At 27 �C, Cchsp11.0 expression was highest in the 1st larvae instar
stage and lowest in the adult stage (Fig. 5A), while Cchsf was highest in the 3rd larvae instar
stage and lowest in the 2nd larvae instar stage (Fig. 5B). At 36 �C, the expression of
Cchsp11.0 and Cchsf was highest in the 1st larvae instar stage and lowest in the adult and
pupal stages, respectively (Figs. 5C–5D). Regardless of temperature, Cchsp11.0 expression
showed a decreasing trend after the 1st instar stage.

The influence of high temperature on the expression of Cchsp11.0 and Cchsf is
not consistent (Figs. 6A–6B). The relative expression of Cchsp11.0 was significantly
up-regulated at the adult stage at 36 �C and was 3.71-fold higher than expression at 27 �C
(t = −3.745, P = 0.013), whereas Cchsf was not remarkably sensitive to 36 �C.

Figure 5 Relative mRNA expression levels at different developmental stages. (A) Cchsp11.0 at 27 �C;
(B) Cchsf at 27 �C; (C) Cchsp11.0 at 36 �C; (D) Cchsf at 36 �C. Statistics represent means±SE, and columns
labeled with different letters indicate significance between developmental stages using one-way ANOVA
followed by Tukey’s multiple comparison analysis (P < 0.05).

Full-size DOI: 10.7717/peerj.11353/fig-5
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DISCUSSION
C. chilonis is the primary endoparasitic wasp of larval stages of C. suppressalis and a
potential biocontrol species (Huang, Wu & Ye, 2011; Wu et al., 2013). Due to the low
immunity, high mortality and the low cocooning percentage, 3rd instar larvae of C. chilonis
were chosen and used in this study (Hang & Lin, 1989; Li, 2011). Giant cells started to
appear on the second of parasitism by syngamy and on the third day by parthenogenesis,

Figure 6 Relative mRNA expression levels of Ccshsp11.0 (A) and Cchsf (B) at different
developmental stages at 27 and 36 �C. Statistics represent means ± SE, and data were analyzed by
the independent samples t-test, P < 0.05. Asterisks represent significant differences between 27 and 36 �C;
ns indicates no significant differences. Full-size DOI: 10.7717/peerj.11353/fig-6
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which is consistent with previous research (Hang, 1991). We observed different larval
instars of C. chilonis were present in a single C. suppressalis; this likely due competition
between wasps, resulting in a 1–2 day gap in development (Hang, Shen & Lu, 1993).

Temperature has a huge influence on the regulation of physiological functions in
insects, including growth and reproduction (Adamo et al., 2012; Huey et al., 2012).
Our results showed that the developmental duration of C. chilonis was generally shortened
in response to high temperatures, which is consistent with results for parasitic wasps in the
Braconidae (Liang et al., 2007; Gao, Huang & Chen, 2003; Du, Shen & Wang, 2009).
For example, generational development in Diachasmimorpha longicaudata was shortened
with increasing temperature from 45.7 d at 15 �C to 15.2 d at 30 �C (Liu, Chen &
Zeng, 2012). In our study, the developmental duration of the egg stage showed little
difference between 27 and 36 �C, and that of the 1st and 2nd instar larvae was slightly
prolonged under high temperature treatment (see Table 2), which may be the reason
that exposure of eggs to extreme temperatures can negatively affect larval growth and
phenotypic plasticity (Potter, Davidowitz & Arthur Woods, 2011). The body length and
head width of C. chilonis larvae were reduced at 36 �C but the difference was not significant
(see Table 2), which was also true for Psyttalia incise (Liang et al., 2007). Body length
and head width of different larval instars were significantly different at 27 and 36 �C on the
9th and 10th days of parasitism, and numbers of 3rd instar larvae appeared earlier at 36 �C
vs. 27 �C. In general, our results indicate that high temperature inhibited growth and
development. With respect to reproduction, cocoon numbers were slightly reduced at
36 �C, while the emergence rate of C. chilonis was significantly lower (see Table 3).
Although the number of males, females and adults declined in the 36 �C treatment relative
to 27 �C, the ratio of females to males increased at 36 �C, which agrees with results
obtained for Spathius agrili (Tian, Wang & Yang, 2009).

The influence of temperature on insect growth and reproduction also impacts behavior,
longevity, and survival (Kingsolver, Higgins & Augustine, 2015; Roitberg & Mangel, 2016)
and includes the higher mortality and shorter adult lifespan under high temperature
treatment (Chen et al., 2018; Zheng et al., 2017). In response to high temperature, insects
react with changes in behavior, metabolism, and development. For example, high
temperatures increase metabolism and oxygen demands, resulting in the production of
more free radicals and the formation of toxic products which trigger a defensive response
(Colinet et al., 2015). Moreover, when external temperatures increase, insects produce
HSPs to prevent denaturation of proteins that do not function well at high temperatures
(González-Tokman et al., 2020), and ; this may explain why Cchsp11.0 expression was
significantly up-regulated at the adult stage at 36 �C. Furthermore, Cchsp11.0 and Cchsf
expression was highest in the 1st larvae instar stage at 36 �C, indicating that the reaction to
high temperatures was strongest in the L1 stage. Cchsp11.0 expression was gradually
down-regulated at 27 and 36 �C as C. chilonismatured, possibly because of the adaptation
to temperature. However, expression patterns for Cchsf did not correlate with Cchsp11.0,
which warrants further study.
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CONCLUSIONS
The duration of development, morphology, emergence rate, numbers of offspring and
ratio of females to males are significant indicators for quality control during artificial
breeding of C. chilonis. High temperatures increased the ratio of females to males and
generally inhibited the growth and reproduction of C. chilonis. Insect developmental stages
differ in vulnerability to high temperature (Bowler & Terblanche, 2008). Cchsp11.0 and
Cchsf play different roles in different developmental stages of C. chilonis at normal and
high temperature. With the encroachment of global warming, we call on everyone to pay
more attention to the impact of extreme weather on the growth and reproduction of insect
natural enemies and to find pragmatic solutions to protect them.
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