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Liver transplantation (LTx) is currently the most powerful treatment for end-stage liver

disease. Although liver allograft is more tolerogenic compared to other solid organs,

the majority of LTx recipients still require long-term immune suppression (IS) to control

the undesired alloimmune responses, which can lead to severe side effects. Thus,

understanding the mechanism of liver transplant tolerance and crosstalk between

immune cells, especially alloreactive T cells and liver cells, can shed light on more specific

tolerance induction strategies for future clinical translation. In this review, we focus on

alloreactive T cell mediated immune responses and their crosstalk with liver sinusoidal

endothelial cells (LSECs), hepatocytes, hepatic stellate cells (HSCs), and cholangiocytes

in transplant setting. Liver cells mainly serve as antigen presenting cells (APCs) to T cells,

but with low expression of co-stimulatory molecules. Crosstalk between them largely

depends on the different expression of adhesion molecules and chemokine receptors.

Inflammatory cytokines secreted by immune cells further elaborate this crosstalk and

regulate the fate of naïve T cells differentiation within the liver graft. On the other hand,

regulatory T cells (Tregs) play an essential role in inducing and keeping immune tolerance

in LTx. Tregs based adoptive cell therapy provides an excellent therapeutic option for

clinical transplant tolerance induction. However, many questions regarding cell therapy

still need to be solved. Here we also address the current clinical trials of adoptive Tregs

therapy and other tolerance induction strategies in LTx, together with future challenges

for clinical translation from bench to bedside.
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INTRODUCTION

Liver transplantation (LTx) is currently the most powerful treatment for end-stage liver disease.
Benefitting from advances in surgical techniques, remarkable improvements in transplant recipient
survival have been achieved in the last decades since Dr. Starzl conducted the first human LTx
in 1963 (1). As an immunoregulatory organ, liver allograft in the transplant setting is more
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tolerogenic compared to other organs such as the kidney, heart,
and intestine. It is reported that almost 20% of stable and
carefully selected liver transplant recipients can be weaned safely
off all immunosuppression (IS) (2). However, the majority of
liver transplant recipients still require open-ended, or even
lifelong IS to control the unwanted alloimmune responses,
which is dominantly mediated by long-term, high magnitude
CD8T cells with the help of secondary lymph nodes and CD
4T cells. Long-term or overdose IS treatment can lead to
serious side effects such as severe infections and malignancy
recurrence post transplantation (3–5). Therefore, understanding
the mechanism of liver transplant tolerance and crosstalk
between immune cells, especially alloreactive T cells and liver
cells, can shed light on more specific tolerance induction
strategies for clinical translation.

The liver receives 75% of the blood from the portal vein, which
is rich in antigens and microbial products originated from the
stomach, gut and spleen, and 25% of the blood is oxygenated
from the hepatic artery (6). Thus, the hepatic immune system is
tightly controlled and regulated under physiological conditions.
In addition to the leukocytes from the blood flow through
the liver, the liver itself consists of hepatocytes, hepatic
stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs),
cholangiocytes, and a diverse array of immune cells residing
within or trafficking to the liver (7). Crosstalk between liver cells
and immune cells plays a central role in keeping the balance of
immunity and tolerance. In general, innate immune cells such
as dendritic cells (DC) and liver-resident DCs (Kupffer cells)
serve as professional APCs to T cells, thereby mediating hepatic
immunity. Interaction of innate immune cells and liver cells has
been reviewed intensively by others (8–10). As alloreactive T cells
or memory T cells mediated rejection represents a major hurdle
to successful transplant tolerance induction, in this review,
we mainly focus on the crosstalk between alloreactive T cells
and liver cells in the transplant setting together with potential
therapeutic prospects for tolerance induction.

T CELL MEDIATED REJECTION WITH
ALLOANTIGEN RECOGNITION PATHWAYS

When a liver is transplanted from the donor to the recipient,
the alloantigen—mainly the allogenic major histocompatibility
complex (MHC), or human leukocytes antigens (HLA) in
humans—is ubiquitous, persists probably for life, and can
be presented by both professional and unprofessional antigen
presenting cells (APCs) at numerous sites. Thus, transplant
rejection is mainly caused by the mismatch of MHCs or HLAs
even in LTx. Alloantigen activated helper T cells (Th) secrete
cytokines including TNFα, IFNγ, and IL-2 to further enhance
the innate immune responses upon alloantigen challenge; on
the other hand, they also stimulate effector CD4T cells and
cytotoxic CD8T cells to express granzyme and perforin, thereby
attacking the liver graft. In addition to the cell-mediated
acute rejection, donor (graft) specific antibody (DSA) mediated
humoral immune response is another important reason for
hyper-acute rejection and chronic rejections. DSA mediated

rejection is initiated by and in conjunction with T cell mediated
alloimmunity (11–13). Several groups have shown that increased
memory T cells or stem-like memory T cells correlate to
allograft rejection or graft vs. host disease (GvHD) in human
and animals. Stem-like memory T cells have the capacity to not
only reconstitute the full diversity of memory and effector T cell
population, but also maintain their own pool size through self-
renewal (14–16). Therefore, memory T cells, especially donor-
antigen specific memory T cells, are a major obstacle for
successful tolerance induction. Moreover, as the counterpart of
conventional T cells, regulatory T cells (Tregs), which are a
specialized CD4T cell subpopulation with the key transcription
factor FoxP3 expression, are found to play an essential role
in operational tolerance post solid organ transplantation. We
showed previously that memory Tregs had superior capacity
compared with naïve Tregs through higher expression of CD25
(IL-2 receptor α chain), CD39, CTLA-4 and other important
molecules (17, 18). Nevertheless, the formation of immune
memory initiate through alloantigen recognition and alloreactive
T cells response is the backbone of adaptive immunity to allograft
in the transplant setting (19). Notably, the alloimmune response
is distinct from the immune response to classically pathogenic
antigens because the alloreactive repertoire is highly diverse,
especially in the naïve T cells subpopulation, as we showed before
with next-generation sequencing (NGS) technology (18). The
T cell receptor (TCR) provides a unique identity for each cell
clone with around 2.5∗107 TCRs for human naive T cells in each
individual; the TCR repertoire against a given allogenic MHC
haplotype is believed to be <10% of the entire TCR repertoire
(19, 20). Therefore, recognition of the alloantigen is the first
critical step for the following immune response or tolerance
induction in the transplant setting.

To recognize the alloantigen by host TCRs, there are mainly
3 pathways: (i) direct way, (ii) indirect way, and (iii) semi-
direct way through cross-dressing of graft MHC by host
dendritic cells (DC) (19). Firstly, as shown in Figure 1A,
through the direct recognition way, allograft APCs present
the alloantigen with their own MHC-I molecules to the host
CD8T cells and allograft MHC-II to the host CD4T cells.
The intact antigen (protein) is recognized directly without the
processing procedure. Direct recognition of the alloantigen is
believed to be the dominant pathway of transplant rejection,
which also includes the passenger leukocytes theory. “Passenger
leukocytes” refer broadly to all the graft-derived immune cells
that are transferred to the host secondary lymphoid tissue
and trigger allograft rejection by direct recognition of the
alloantigen (21–23). However, the contribution of passenger
leukocytes to allograft rejection or tolerance induction is still not
clearly understood. Irradiation of the allograft before surgery in
rodent models results in killing of the graft lymphocytes and
transplant rejection in otherwise tolerant recipients, suggesting
the tolerance induction role of donor-derived graft-resident
lymphocytes (24–26). On the other hand, the majority of
donor lymphocytes are replaced by recipient bone marrow
derived hematolymphoid cells within months post LTx (27–29).
Nevertheless, direct recognition of the alloantigen by CD4T cells
was considered to persist at early time points after transplantation
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FIGURE 1 | Schematic illustration of three alloantigen recognition pathways. (A) Direct recognition of alloantigen: allograft antigen-presenting cells (APCs) present

intact alloantigen directly to host T cells. (B) Indirect recognition of alloantigen: host APCs process and present the allograft-derived peptides to host T cells, mainly

CD4T cells. (C) Semi-direct recognition way: host APCs, mainly dendritic cells (DCs), acquire graft MHC molecules, which is called cross-dressing, and present the

peptide directly to host T cells.

and was highly correlated with the lifespan of graft DCs (30).
Whereas, indirect recognition of alloantigen is considered to
be related with both acute and chronic transplant rejection.
By this way, alloantigen is internalized and processed by host
APCs into peptide antigens, which are further presented with
host MHC molecules and thereby recognized by the TCR
repertoire of host T cells (Figure 1B). CD4T cells response from
the indirect recognition way is believed to be more relevant
with the allograft rejection than CD8T cells in solid organ
transplantation due to the relatively low expression of host
MHC-I antigen epitopes in the vascularized allografts (31, 32).
Last but not least, through the semi-direct recognition way,
the host DCs acquire expression of the graft MHC molecule,
which is also called cross-dressing of the host DCs, then re-
present the graft MHC-antigen complex as intact alloantigen to
the host T cells without further processing (Figure 1C). This
phenomenon was also observed by Ono et al. (33) that in a mice
LTx model, graft interstitial DCs decreased rapidly post LTx,
then they were replaced by host DCs, which peaked at day 7
and persisted indefinitely. Around 60% of the host DCs in the
liver graft expressed graft MHC-I, suggesting cross-dressing, and

controlled the proliferation of anti-graft host T cells. On the other
hand, non-cross-dressed DCs failed to suppress the anti-graft
T cell response (34–38). The mechanism behind cross-dressing
is believed to be related with cell-cell contact or extracellular
exosomes (39–44).

Through collaboration of different alloantigen recognition
pathways, host CD4T cells are activated by continued TCR
stimulation with graft MHC-II alloantigen, which are expressed
either on the surface of graft APCs or re-presented by host
DCs through semi-direct recognition within secondary lymphoid
tissue. The principle role of the indirect pathway in CD4T
cell response, which mainly focuses on self-restricted, processed
alloantigen, is likely at the late phase of transplant rejection
through providing help for cytotoxic T cells and humoral
immunity (45–48). The semi-direct pathway allows linked help
to be delivered by indirect pathway recognition of CD4T cells
to alloreactive CD8T cells, which target the MHC-I alloantigen
expressing cells within the graft after activation and thereby
exhibit cytotoxic activity through expression and secretion of
granzyme and perforin (36, 42, 49). Alloantigen recognition by
Tregs with different pathways, however, regulates the hepatic
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immune “balance” substantially more favorable for “tolerance”
(50). Therefore, interaction of alloreactive T cells and APCs will
be the first and key step in regulating transplant outcome in LTx.

CROSSTALK BETWEEN LSECS AND
ALLOREACTIVE T CELLS

Within the liver allograft, there are many professional APCs
such as DCs expressing low amounts of MHC antigens with
co-stimulatory molecules and Kupffer cells (KCs) phagocytosing
pathogens and secreting cytokines together with antigen
processing and presenting (9, 51). Additionally, a large amount
of non-professional APCs such as liver cells also interact
with alloreactive T cells and contribute a lot to the liver
transplant outcome. Composed of 50% of liver non-parenchymal
cells, LSECs constitute a unique vascular bed with fenestrae
organized in sieve plates without basal membrane in the liver.
They interact directly with the immune cells and antigens
in the blood flow, benefiting from the rich blood supply to
the liver and the special liver sinusoid structure. Therefore,
LSECs are also called “gatekeepers” of the hepatic immunity
(52). Together with Kupffer cells, LSECs constitute the most
powerful scavenger system in the body by the expression
of pattern recognition receptors (PRRs) such as Toll-like
receptors (TLR), scavenger receptors, and the potent endocytic
capacity with their special fenestrae and loosely organized cell
junctions (53, 54).

In addition to the potent endocytosis capacity, LSECs are also
the unique liver-resident APCs by expressing both MHC-I and
MHC-II molecules, which take up, process and present many
antigens, including alloantigens to both CD8 and CD4T cells
within the liver graft. As shown in Figure 2, LSECs can take
up alloantigens through PPRs, notably the mannose receptor
(MR), process and transfer them to MHC-I for the priming of
naïve CD8T cells, which is called cross-presentation as MHC-
I normally exhibit endogenous antigens rather than exogenous
peptides (alloantigen as foreign antigen in transplant setting)
(55, 56). However, the priming of naïve CD8T cells by LSECs
upregulates the expression of the co-inhibitory molecule B7-
H1(PDL1) on LSECs whereas the expression of co-stimulatory
molecule CD80/CD86 is not changed, thus the binding of B7-
H1 on LSECs and PD-1 on naïve CD8T cells leads to the
apoptosis of the alloreactive CD8T cells, creating therefore the
tolerogenic environment within the liver graft. Interestingly, the
LSECs-induced tolerance is highly correlated with antigen load
and the strength of TCR stimulation in mice. Tolerance only
occurs in low-dose antigen stimulation while high-dose antigen
load results in the differentiation of effector memory T cell
phenotype; this process is determined partly by IL-2 secretion
of naïve CD8T cells upon early antigen priming. Furthermore,
exogenous IL-2 overrides B7-H1 mediated tolerance by LSECs
and induces cytotoxic T lymphocytes (CTL) differentiation
(57–59). Nevertheless, LSEC lectin (LSECtin), a member of
the dendritic cell-specific ICAM-3 grabbing non-integrin (DC-
SIGN) family, specifically recognizes activated T cells and
negatively regulates the intrahepatic immune responses (60, 61).

Similar with CD8T cells priming, LSECs can prime naïve
CD4T cells with expression of MHC-II, especially under
inflammatory conditions, but fail to stimulate the proliferation
of these cells due to the low expression of co-stimulatory
molecules. Importantly, LSECs also regulate the fate of naïve
CD4T cell differentiation within the liver graft. Neumann
et al. found that LSECs could suppress the differentiation
of pro-inflammatory Th1 cells and promote the secretion of
immune suppressive cytokines such as IL10 via the Notch
pathway (62). As we addressed before, Tregs are another
fundamental mediator for keeping allograft tolerance. There
are several different Tregs including natural Tregs (nTregs),
induced Tregs (iTregs), IL10 producing Type 1 regulatory T
cells (Tr1 cells), and TGF-β producing Th3 cells. nTregs are
mainly developed from the thymus while iTregs are induced
from naïve T cells with the presence of a low amount of
antigen and TGF-β. iTregs play an essential role in keeping
immune homeostasis at mucosal interfaces with expression of
probably a distinct TCR repertoire as nTregs (63). Under the
condition of vast antigens in the liver and TGF-β secreted by
DCs, hepatic iTregs are the major source of peripheral iTregs
and lead to transplant tolerance together with nTregs in both
humans and mice (17, 64–68). LSECs also promote cytokine
secretion of the immune suppressive Th2 cells in addition to
iTregs induction in animal models (69). Furthermore, in vitro
stimulation of Th1 and Th17 by LSECs actively inhibits their
capacity to secrete IFNγ and IL17, which is tightly correlated
with the dominate inhibitory (B7-H1) over co-stimulatory
(CD80/CD86) signals on LSECs and IL10 production by other
tolerogenic cells such as DCs (70). As Th1 and Th17 cells are
important mediators of transplant rejection post LTx (71, 72),
the enrichment of Tregs contributes a lot to the tolerance
induction as transient accumulation of total Tregs in peripheral
blood of transplant recipients, especially non-rejection recipients
at 1 or 2 weeks post LTx, was observed. Similar enrichment
of Tregs was also proved in tolerogenic kidney transplant
recipients, suggesting the priming of T cell response by the graft
antigens (17, 67, 73).

Notably, the crosstalk between LSECs and T cells largely
depends on cell-cell contact by different expression of
adhesion molecules and chemokine receptors. Recruitment and
accumulation of CD8T cells within the liver depend primarily
on TCR activated intercellular adhesion molecule 1 (ICAM1)
expressed by LSECs and slightly on vascular cell adhesion
molecule 1 (VCAM1), which does not need the recognition of
intrahepatic antigens, thereby passively sequestering activated
CD8T cells (74). On the other hand, liver-resident T cells
express lymphocyte function-associated antigen-1 (LFA-1)
(CD11a or αLβ2 integrin) rather than CD103, an integrin that
is required to retrain tissue-resident T cells in many epithelial
tissues, to interact with ICAM1 on LSECs (75, 76). Chemokine
receptor CXCL16 with its ligand CXCR6 is also involved in
intrahepatic T cell and NKT cell recruitment, whereas Tregs
bind to different chemokines due to their expression of CCR5
or CCR4; they are also reported to use distinct combination
of adhesion receptors such as stabilin 1 to migrate cross
LSECs (77).
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FIGURE 2 | Crosstalk between alloreactive T cells and LSECs. LSECs constitute a unique vascular bed with fenestrae organized in sieve plates without basal

membrane in the liver. They are the most powerful scavenger system by expression of pattern recognition receptors (PRRs), notably the mannose receptor (MR). On

one hand, LSECs process and transfer the MHC-I to the naïve CD8T cells, which is called “cross-dressing.” This priming process upregulates expression of the

co-inhibitory molecule B7-H1(PDL1) on LSECs, whereas the expression of co-stimulatory molecule CD80/CD86 is not changed, thus the binding leads to the

apoptosis of the alloreactive CD8T cells. The LSECs induced tolerance is also highly correlated with antigen load and the strength of TCR stimulation. On the other

hand, LSECs also prime naïve CD4T cells with expression of MHC-II, especially under the inflammatory conditions, but fail to stimulate the proliferation of these cells

due to the low expression of co-stimulatory molecules. LSECs also regulate the fate of naïve CD4T cell differentiation within the liver graft. They suppress the

differentiation of Th1 and Th17 cells but favor the enrichment of immune suppressive Th2 and Tregs, which promote the allograft tolerance.
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INTERACTIONS OF HEPATOCYTES AND
ALLOREACTIVE T CELLS

Through interaction of immune cells with LSECs and adhesion
cascade in the hepatic sinusoids, the survived lymphocytes
from the LSECs immune surveillance can transmigrate across
the LSECs line with help from the orchestra of chemokines
and adhesion molecules through several different routes
paracellularly, transcellularly, or intracellularly, to finally get
a chance to crosstalk with hepatocytes (52). The paracrine
factors that were secreted by hepatocytes also accelerate the
recruitment of lymphocytes. The interaction of hepatocytes
and immune cells plays an important role in inducing liver
transplant tolerance. In general, hepatocytes mainly serve as
non-professional APCs with expression of MHC-I to interact
with CD8T cells under physiological conditions while expression
of MHC-II is also inducible under inflammatory conditions,
especially in the presence of IFNγ. However, low expression of
co-stimulatory molecules on hepatocytes leads to apoptosis of
the alloreactive T cells (10). Paul-Heng et al. have found that
direct recognition of hepatocyte expressed MHC-I alloantigen
(cross presentation) is required for tolerance induction, whereas
the indirect recognition of the processed and presented
allogeneic peptide on MHC-II by CD4T cells is not sufficient
for tolerance induction although it can prolong the graft
survival and generate Tregs to promote transplant tolerance
(78, 79). Additionally, processing of the soluble antigens into
peptide presented by MHC-I is impaired in hepatocytes lacking
collectrin, which is an intracellular chaperone protein within
the endoplasmic reticulum-Golgi intermediate compartment
and positively regulated (80). Different from other liver cells,
hepatocytes can produce exosomes to control the active T
cells response and clear the activated T cells through the
non-apoptotic way of suicidal emperipolesis (SE), which is
a process leading to cell-in-cell structures and promotes
cell death through degradation within endosomal/lysosomal
compartments (Figure 3) (81, 82). Recently, Beringer et al.
have found that the interaction of hepatoma HepaRG and
human peripheral blood mononuclear cells (PBMCs) in the
inflammatory response can be divided into two phases. At the
early phase, PBMC-HepaRG interaction can modulate the T
cell polarization into Th1 cells and suppress the differentiation
into Th17 cells through direct cell-cell contact with increased
secretion of IL6, IL8, CCL20, and MCP-1 (Figure 3), whereas the
PBMC-hepatocyte crosstalk at the late phase may down-regulate
the immune response with decreased expression of HLA-DR
on hepatocytes to induce the immune tolerance in the liver
(83). Moreover, it is not clear yet whether the similar kinetic
interaction of alloreactive T cells and hepatocytes also exist in the
LTx setting.

INTERACTIONS OF HSCS,
CHOLANGIOCYTES, AND IMMUNE CELLS

Hepatic stellate cells (HSCs), also known as perisinusoidal cells or
fat-storing cells, are crucial in liver inflammation and fibrosis by

producing inflammatory and fibrotic mediators. In the context
of LTx, migrating host immune cells also interact with graft
liver resident cells. Both cell-cell contact and soluble cytokines
or factors contribute to the graft function and transplant
outcome. Inflammatory cell derived IL17A induced HSC to
express collagen I directly and TGF-β from activated KCs
induced expression of collagen I on HSCs indirectly, promoting
the graft fibrosis progression (84). Activated HSCs produce
inflammatory cytokines and chemotactic factors to accelerate
the migration and deposition of immune cells, which could be
further enhanced by paracrine signals from damaged hepatocytes
(85–87). However, due to the low amount of MHC-I expression
and co-inhibitory molecule B7-H1 on HSCs, interaction of HSCs
with activated alloreactive T cells mainly leads to apoptosis of
these T cell. In addition, mature HSCs can stimulate allogeneic
Treg proliferation with the manner of cell-cell contact and
enhance the suppressive capacity of Tregs regarding inhibiting of
Teff proliferation in vitro. Adoptive transfer of HSC-stimulated
Tregs significantly reduced liver injury in mice with autoimmune
hepatitis by modulating the balance between Tregs and Th17 cell
responses (88).

Cholangiocytes express MHC-I under physiological
conditions and a low amount of MHC-II only in the context
of inflammation (89). It was reported that through expression
of MHC-I like molecule CD1d, murine cholangiocytes could
present both exogenous (cross-presentation) and endogenous
lipid antigens to NKT cells and activate them to mediate
inflammation in the bile ducts. The human cholangiocytes
also present exogenous antigens in a CD1d-restricted way to
invariant NKT cells. However, CD1d expression was down-
regulated in the biliary epithelium of patients with late primary
sclerosing cholangitis and primary biliary cirrhosis compared to
healthy controls, suggesting their potential role in the pathology
of these diseases (90, 91). On biliary epithelial cells (BECs) in
biliary atresia patients, increased ICAM-1 expression was also
observed in association withMHC-I, but not MHC-II. The major
lymphocytes within the portal tracts are CD4T cells expressing
LFA-1, indicating the potential crosstalk between them (92).
MHC-I expression level on cholangiocytes might correlate with
cholangitis post LTx. Interestingly, BECs express a relatively
higher amount of MHC-I compared with other liver cells (12).

THERAPEUTIC TARGETS FOR LIVER
TRANSPLANT TOLERANCE INDUCTION

Operational tolerance, characterized with stable graft function
in the absence of IS for at least 1 year, is the final goal of all
allogenic solid organ transplantation (SOT). To achieve this,
several approaches for immune modulation, including adoptive
cell therapy, have been conducted in the clinical trials. We and
others have showed that both recipient and donor Tregs play
an essential role in maintaining the graft tolerance in SOT (17,
18, 93–95). Adoptive Treg-based therapy is a very promising
approach to support allograft acceptance with minimizing or
potentially eliminating IS treatment. A phase II international
multicenter proof-of-concept clinical trial of Treg therapy for
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FIGURE 3 | Crosstalk between alloreactive T cells and hepatocyte, HSCs, cholangiocytes. The survived lymphocytes from LSECs immune surveillance can

transmigrate across the LSECs line to crosstalk with hepatocytes. The paracrine factors secreted by hepatocytes also accelerate the recruitment of lymphocytes.

Hepatocytes mainly serve as non-professional APCs with expression of MHC-I to interact with CD8T cells under physiological conditions while expression of MHC-II

is also inducible under inflammatory condition especially in the presence of IFNγ. Interaction of HSCs with activated alloreactive T cells mainly lead to apoptosis of

these T cells due to the low MHC-I expression. Expression of MHC-I like molecule CD1d on cholangiocytes can activate NKT cells and mediate inflammation in the

bile ducts.

SOT patients has been conducted in the European Union (The
ONE Study). Our group have shown that nTregs from even
end-stage renal disease patients could be expanded ex-vivo
for adoptive cell therapy, whereas alloantigen specific Tregs
exhibit superior immune suppressive capacity for tolerance
induction (96, 97). Moreover, adoptive Treg transfer in the
inflammatory phase of viral-induced myocarditis protects the
heart against inflammatory damage and fibrosis via modulation
of monocyte differentiation in favor of the anti-inflammatory
Ly6ClowCCR2lowCx3Cr1high subset (98). In the liver transplant
setting, Todo et al. have published a very exciting pilot study
that 7 of the 10 liver transplant recipients receiving a single
dose of donor antigen specific Tregs and splenectomy become
operationally tolerant (99). Several clinical trials for adoptive
cell therapy employing either ex vivo expanded polyclonal
Tregs or alloantigen specific Tregs are also being conducted
worldwide. The ThRIL trial at King’s College Hospital, UK
[clinical trials.gov NCT02166177] utilizes polyclonal Tregs in
their therapeutic setting. The DeLTA and ARTEMIS trials at
University of California, San Francisco, USA, use donor antigen
reactive Tregs for tolerance induction in both deceased donor
LTx [NCT02188719] and living donor LTx [NCT02474199].
These clinical trials will not only show the efficiency and safety of
Treg therapy but also indicate the survival and homing of these
adoptively transferred cells as they are labeled with deuterium
(100). Another clinical trial at Nanjing Medical University,
China, utilizes donor antigen specific Tregs for chronic rejections
in LTx patients at early and late time points, with multiple Treg
injections and IS withdrawal [NCT01624077] (101).

In addition to ex vivo expansion of Tregs for adoptive
cell therapy, other strategies regarding in vivo expansion of
Tregs are also very appealing. For instance, low-dose IL-2
administration could expand Tregs in vivo up to 8 times without
a significant increase in Teff cells because Tregs express a higher
amount of IL-2 receptor α-chain (CD25) and thus respond
to a very low amount of IL-2 while Teff could not. This

brings the possibility to expand Tregs pool in vivo without
requirement of very expensive and large-scale GMP facilities
for clinical grade Treg products (102). Low dose IL-2 also
restores Treg homeostasis or dysfunction in chronic GvHD
patients (103, 104). A corresponding phase IV clinical trial, LITE
Trial (NCT02949492), is in progress at King’s College London.
Scientists there are using low dose IL-2 to promote the selective
expansion of endogenous Tregs in liver transplant recipients at
the time of immunosuppression (101). Recently, Ratnasothy et al.
even showed that IL-2 treatment in mice preferentially enhances
the proliferation of the adoptively transferred allospecific Tregs
in an antigen-dependent manner and increases the expression
of regulatory-related markers, such as CTLA4 and inducible co-
stimulator (ICOS). Based on this, combination therapy of both
low-dose IL-2 and adoptively transferred alloantigen specific
Tregs could provide an appropriate condition to enhance
the immunoregulation toward alloimmune response in clinical
transplantation (105). Low-dose IL-2 enriched Treg therapy is
also investigated intensively in autoimmune diseases and GvHD
after hematopoietic stem cell transplantation (106–109).

Notably, as antigen specific Tregs are superior to polyclonal
Tregs in controlling Teff responses, improving approximately
100-fold of the efficacy, and theoretically safer due to avoiding
bystander compromised immunity (110, 111), it is more
appealing to use this Treg population for adoptive Tregs therapy.
However, expansion of these Tregs in vitro is a big obstacle
for clinical translation. Therefore, engineering human T cells to
express a chimeric antigen receptor (CAR) is a new approach to
create antigen specific T cells. For instance, autoantigen-based
chimeric immunoreceptors can direct T cells to kill autoreactive
B lymphocytes through the specificity of the B cell receptor (BCR)
(112). Meanwhile, CAR Tregs can also be generated with CAR
technology to develop alloantigen specific Tregs, which have
showed potent and markedly enhanced therapeutic potential
for the protection of allografts (113–115). Co-administration of
antigen with tolerogenic nanoparticles (tNPs), which comprised
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of biodegradable polymers with encapsulated rapamycin, could
inhibit ag-specific transgenic Teff proliferation and induce
ag-specific Tregs. This suggests another potential strategy to
expand ag-specific Tregs in vivo and suppress T cell-mediated
autoimmunity or graft rejection (116–118). On the contrary,
Treg plasticity refers to their capacity to produce inflammatory
cytokines and lose FoxP3 expression (119, 120). In this
case, they could transform into pathogenic Teff cells, thus
contributing to disease pathogenesis, which might represent
a risk for adoptive Tregs therapy. Based on these concerns,
genetic “editing” through CRISPR-associated protein 9 (Cas9)
system could generate optimal Tregs while ensuring stability
(121, 122). However, our group have recently published that
gene-editing with CRISPR-Cas9 system might cause significant
safety issues because of the pre-existing ubiquitous effector
T cell response directed toward the Streptococcus pyogenes
(SpCas9) within healthy humans. Therefore, modification of
Tregs with the CRISPR-Cas9 system still needs further careful
evaluation (123).

Similar to Tregs, regulatory B cells (Bregs) function as a
form of active immune regulation, which was first reported
experimentally through anti-CD45RB treatment of mice
receiving a cardiac allograft (124). Moreover, the field of Breg-
mediated tolerance is relatively immature and their function
is somehow also related with Tregs (125, 126). Regulatory
DCs (DCregs) with capacity to suppress allograft rejection
and promote transplant tolerance in pre-clinical models can
readily be generated from bone marrow precursors or circulating
blood monocytes. Donor-derived DCregs are short-lived but
can induce robust donor-specific T cell hyporesponsiveness.
Infusion of donor-derived DCregs could achieve IS withdrawal
in patients 18 months post LTx (38, 127). Furthermore, down-
regulation of HLA-1 expression level on hepatocytes can reduce
the strength of allogeneic immune responses and improve
the graft survival. Alternatively, gene transfer of alloantigen
to hepatocytes induces the expansion of CD8 Tregs, which
further prevent the allograft rejection in mice pancreatic islets

transplantation. These gene-modified hepatocytes may also
provide some possible tolerance induction strategy in the future
(128, 129).

SUMMARY AND OUTLOOK

Based on the alloimmune responses mediated transplant
rejection, interactions of alloreactive T cells with both innate
immune cells and liver cells including hepatocytes, LSECs,
HSCs, and cholangiocytes contribute dramatically to the
transplant outcome. The capacity of alloantigen presenting and
inflammatory mediator secretion by liver cells dominates the fate
of alloreactive T cell differentiation and transplant outcome. As
Tregs play an essential role in inducing and maintaining the
allograft tolerance, Treg based therapy either with adoptively
transferred ex vivo expanded Tregs or low-dose IL-2 in vivo
enriched Tregs pool is very promising and appealing for clinical
translation. However, more efficient Treg expansion protocols
have to be developed and evaluated to improve the efficiency of
the therapy and reduce the cost for the clinical cell products. In
addition, combination of several tolerance induction strategies
might provide synergistic results, but more clinical studies
from multiple centers still need to be conducted for successful
translation from bench to bedside.
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