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Introduction

DNA methylation (herein, methylation) is an important, 
heritable, epigenetic modification that is known to influence gene 
expression, X-inactivation, and cellular differentiation in higher 
eukaryotes.1-3 Next-generation sequencing (NGS) technologies, 
such as MethylC-seq,4 make it feasible to investigate methylomes 
at the cytosine level and provide unparalleled insight into the role 
and function of methylation in a variety of organisms. Two recent 
studies5,6 investigated the cost, genome coverage, maximum 
resolution, and quality measures for a variety of NGS approaches 
as applied to DNA methylation. Although the conclusions from 
these studies provided us guidance in choosing a technology for 
this application (i.e., MethylC-seq is typically considered the 
gold-standard for methylation analysis), there are a variety of 
NGS technologies for which the proposed approach is applicable.

It is well accepted that there can be vast differences in 
methylation patterns with respect to genomic regions (e.g., 
genes, promoters, intergenic regions).7 Changes in methylation 
between conditions give rise to epigenomic discoveries that 
are uniquely related to the organization and control of the 
genome. Interestingly, current epigenomic investigations do not 
incorporate genome organization into the actual quantitative 
analysis for testing differences between methylation profiles. 
In fact, annotation is typically consulted after the quantitative 
results are obtained, and only for the purpose of gaining genomic 
context.

One of the most common approaches for testing differential 
methylation is a sliding window approach8 that compares, at 
the cytosine level, the observed methylation levels to known/
annotated regions of methylation.9 This type of approach 
unfortunately leads to greater intraclass variability with less 
informative conclusions, simply because the windows are artifacts 

of the analysis and may in fact overlap multiple annotation 
regions simultaneously. As an improvement, we utilize existing 
annotation information to enhance the performance of testing 
for differences in methylation. The proposed approach is 
particularly useful for unreplicated data, and while we focus 
on the benefit of incorporating annotation using Fisher’s Exact 
Test10 (FET) for unreplicated data, the extension to replicated 
data are straightforward (see Methods).

Results and Discussion

We present methylation analysis for MethylC-seq data 
using two approaches, collectively referred to as Methylation 
Analysis using Genome Information (MAGI), both of which 
rely on an annotated genome. MethylC-seq involves a bisulfite 
treatment step, which converts unmethylated cytosines to uracils 
(and ultimately guanines), on each fragmented read prior to 
sequencing. As a result, a measurement of methylation level at 
each cytosine on the genome can be estimated by comparing 
the number of methylated and unmethylated cytosines on the 
sequenced reads. The first approach employs FET at the cytosine 
level using the number of (NGS) methylated reads, among a total 
number of reads, mapped to each cytosine in a known annotated 
region (Fig. 1). The false discovery rate11 (FDR) is controlled 
by applying multiple testing corrections to the cytosine level 
tests within each region.12 Results are summarized across 
each annotated region, and if the proportion of differentially 
methylated cytosines exceeds some ad hoc and arbitrary threshold 
(e.g., 10%), the region is declared differentially methylated. 
We refer to this standard approach as the MAGI

C
 approach. 

MAGI
C
 can be thought of as a special case of the sliding window 

approaches,8,9 where the non-overlapping genomic “windows” 
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represent regions of homogeneous methylation profiles; in this 
sense, MAGI

C
 represents the most powerful, best-case sliding 

window scenario. Since each cytosine is tested individually, the 
region-level summary is a comparison of methylation patterns 
between treatment groups. While this exploration is centered on 
regions that define a gene, it is natural to extend the approach 
to other annotations (e.g., promoters, exons, intergenic regions, 
etc.). Since MAGI

C
 compares the patterns of methylation between 

treatments, it is suitable for regions where a classification of 
“methylated” or “unmethylated” is not of interest (e.g., intergenic 
regions). In these cases, an appropriate partitioning of the region 
could be developed to further investigate long genomic regions if 
intraclass variability is of concern; if not, MAGI

C
 could be easily 

adapted to incorporate the sliding window approach over these 
regions.

The second approach summarizes the methylation status for 
each cytosine based on the observed proportions of methylation 
(see Methods), which allows for a marginalization over each 
annotated region that is then tested with a single FET (Fig. 1). 
FDR is controlled across the genome with multiple testing 
corrections applied to annotated regions. We call this data-
adaptive approach MAGI

G
. By contrast to MAGI

C
, the MAGI

G
 

approach minimizes the number of statistical tests that are 
conducted and benefits from a significance-based interpretation 
of differential methylation. In addition, the region-level summary 
from MAGI

G
 represents a comparison of overall methylation 

levels between treatment groups.
Data were simulated for both unreplicated and replicated 

scenarios. For each simulation the FDR is controlled at 5%. The 
statistical power is estimated by assessing the average true positive 
rate for 1000 simulated data sets for each scenario (see Methods).

For unreplicated experiments, power gains for MAGI
G
 are 

most evident when either correlation in consecutive cytosine-
to-cytosine methylation status decreases (Fig. 2; “Medium” or 
“Low”), or the differences in methylation level at each cytosine 

decrease (Fig. 2; “Small” or “Medium”). In these cases, the 
power of the MAGI

G
 method can be upward of 40% greater than 

that of the MAGI
C
 approach. These simulations also illustrate 

modest power increases when the average sequencing depth 
increases from 7 to 15 (representing the range of depths typically 
employed6,8); when differences in cytosine methylation levels 
are large (Fig. 2; “Large”) there is little gain in statistical power 
relative to additional sequencing depth.

In a real data application we reanalyzed the unreplicated 
Arabidopsis methylcytosine data from Lister et al. (2008)6 that 
compared wild-type (Col-0) lines to methylation-deficient 
mutants (met1–3). We considered all cytosines (with at least one 
read) in both samples, including those that demonstrated no 
evidence of methylation in either sample. Gene start and stop 
locations define the annotated genomic regions and were based 
on the Columbia reference genome.13 We applied MAGI

C
 and 

MAGI
G
 to the MethylC-seq data for each gene, and assessed the 

differential methylation detection rate after FDR corrections 
for each method, as defined above. As MAGI

C
 represents the 

optimal sliding window scenario due to methylation profiles 
varying substantially between genomic regions, and since only 
gene regions were investigated to facilitate interpretation of 
results, comparisons with the sliding window approach from 
Lister et al. (2008)8 have been omitted. Due to fewer tests and 
more information per test, the MAGI

G
 approach provides many 

more statistically significant results than the MAGI
C
 approach 

(Methods, Table 4). These results reinforce that met1–3 mutants 
have defective methylation maintenance when compared with the 
wild-type (Col-0) controls,14 and are consistent with the average 
rate of genic methylation in the wild-type and mutant lines15 and 
simulation power estimates (Fig. 2).

Single-cytosine analyses of methylation using NGS technologies 
encounter two primary challenges when summarizing to region-
level results, namely dependence in methylation status between 
cytosines and the discrete nature of test statistics (and associated 

Figure 1. representation of the data structure and testing framework for NGS differential methylation studies (forward strand shown). for each cyto-
sine, the number of methylated reads (filled circles) and unmethylated reads (unfilled circles) are recorded. these values are also recorded in binary 
representation for each cytosine, where a filled triangle indicates that the proportion of methylated reads for the given cytosine has exceeded a prede-
termined threshold (e.g., 40%), and an unfilled triangle indicates that this proportion was not exceeded. tests for differential methylation are performed 
for each individual cytosine using the read information with subsequent summarization over the region (MAGiC), or with a single region-level test 
(MAGiG) using the summarized read information.
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P values). Several methods have been introduced to combine P 
values over regions under dependence,16-18 including weighted 
approaches that could account for differences in sequencing 
depths,19,20 but each method assumes that the P values were 
generated from multivariate t (or Z) distributions. On the other 

hand, FETs produce discrete, non-uniform P values under the 
null distribution, and as such, the distributional assumptions 
for combining P values are violated. The approaches recently 
proposed by Hebestreit et al. (BiSeq)18 and Pedersen et al. 
(comb-p)20 both employ variations on Stouffer’s method17 to 

Figure 2. Simulation results in unreplicated settings. panel columns represent the separation of binomial probabilities for read methylation (Methods). 
panel rows represent the transition matrices used in the Hidden Markov Model (HMM) process used to generate cytosine methylation status (Methods). 
increases in the statistical power of the MAGiG over MAGiC are evident across the simulation settings. observed false discovery rates (fDrs) are lower in 
MAGiG (2–19%) when compared with MAGiC (4–43%). However, both fDrs increase with greater separation of binomial probabilities and decrease with 
greater correlation between cytosines. Modest statistical power increases are observed when the average sequencing depth is increased from 7 to 15 
with similar observed fDrs.

Figure 3. Simulation results in replicated settings. panel columns represent the separation of binomial probabilities for read methylation (Methods). 
panel rows represent the transition matrices used in the Hidden Markov Model (HMM) process used to generate cytosine methylation status (Methods). 
increases in power of MAGiG were evident as the binomial probabilities of methylation increase in separation (i.e., from “Small” to “Large”). Very small 
power increases can be observed when increasing the average sequencing depth from 7 to 15. in general, replication may be sufficient to overcome the 
differences in sequencing depth, as well as the differences between MAGiC and MAGiG.
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combine P values from bisulfite methylation data, but it is 
unclear whether the distributional assumptions are reasonable 
in either case. Although BiSeq improves upon the assumptions 
from Stouffer’s method by first smoothing the methylation data 
over a genomic range, the models employed require larger data 
sets than are required by either MAGI approach. Further, both 
MAGI approaches can be applied to studies without replication. 
In order to more closely satisfy distributional assumptions, 
researchers often rely on increased average sequencing depth. 
Increasing average sequencing depth in unreplicated studies 
has distinct advantages when testing individual cytosines, but 
the benefits all but disappear when differential methylation 
is considered over specific annotated regions (Fig. 2). This 
is due in part to the use of nominal significance thresholds 
(e.g., α = 0.05). When dealing with low coverage at individual 
cytosines, the discreteness of the P value space covered by 
FET typically leads to a reduction in statistical power when 
compared with other unconditional exact tests (e.g., Barnard’s 
Test21). Unfortunately, this discreteness translates to a loss in 
power when the significance threshold is fixed. Fortunately, 
these issues dissipate when the column marginals are large (as 
is the case for MAGI

G
 testing); this is due to the discreteness of 

FET being less pronounced. Combining dependent, discrete P 
values over genomic regions is an approach that we are currently 
investigating since it has the potential to further improve 

statistical inference in differential methylation studies beyond 
the gains observed in MAGI

G
 testing.

To explore the effects of low coverage of individual bases 
on detection of methylation difference, we filtered cytosines 
that had observed read depths of less than a specific low-count 
threshold (i.e., 5, 7, or 10) for either sample (Col-0 and met1–3). 
Overall, appreciable changes in methylation detection for each 
method were found, indicating that moderate low-count filtering 
(filtering level 5) is a reasonable approach to increase detection 
rate for the MAGI

C
 approach and to distill the results from the 

MAGI
G
 approach (Methods, Table 4). Excessive filtering (i.e., 

filtering levels 8 and 10) yields little benefit to MAGI
C
, however, 

and may be too extreme for MAGI
G
. The dramatic differences 

between the MAGI
C
 and MAGI

G
 results highlights the inferential 

distinctions between the two methods. Specifically, MAGI
C
 may 

be better suited to exploring differences in methylation patterns, 
while MAGI

G
 is more appropriate when testing for differences in 

methylation prevalence. In both cases, genomic context provides 
useful boundaries for region-level summaries.

Methods

MethylC-seq data can be represented at the cytosine level as the 
cumulative number of methylated and unmethylated sequencing 

Table 1. representation of the data structure and testing framework MAGi differential methylation studies

Cytosine index

rep. 1 c Cg Summary information

1 (m111 g,D111 g) (m11cg,D11cg) (m11Cg, D11Cg) →

Trt 1

j (m1j1g, D1j1g) (m1jcg, D1jcg) (m1jCg, D1jCg) →

J (m1J1g, D121 g) (m1Jcg, D1Jcg) (m1JCg, D1JCg) →

1 (m211 g, D211 g) (m21cg, D21cg) (m21Cg, D21Cg) →

Trt 2

j (m2j1g, D2j1g) (m2jcg, D2jcg) (m2jCg, D2jCg) →

J (m2J1g, D2J1g) (m2Jcg, D2Jcg) (m2JCg, D2JCg) →

for each treatment i, replicate j, cytosine c, and gene g, the number of methylated reads (mijcg) and the sequencing depth (total number of reads mapped 
to the cytosine, Dijcg) are recorded. MAGiC tests for differential methylation at each cytosine using a fisher’s Exact test (no replicates) or a logistic regression 
(replicates); if the proportion of positive base-pair decisions exceeds a predefined threshold, the subset is declared differentially methylated. MAGiG first 
summarizes the read information for each cytosine within each treatment and replicate, and then performs tests on this summarized information. for 
treatment i and replicate j for gene g, Mijg represents summary information on the number of cytosines for which mijcg/Dijcg exceeds a predetermined 
threshold tS. Given Mijg and the subset length Cg, tests similar to those used for the base-pair level framework (MAGiC) can be employed.
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bases covering a specific cytosine. For both unreplicated data and 
replicated data the analysis can be performed in two ways: focus 
on cytosine level tests and summarize to the genomic region, or 
summarize the cytosine level information and test once over the 
whole region (Table 1).

Cytosine level analysis (MAGI
C
)

We employ Fisher’s Exact Test (FET) when testing 
unreplicated data due to its lack of asymptotic assumptions and 
generally similar performance when compared with either Wald’s 
Test or the methods proposed by Audic and Claverie.22-24 Under 
the assumptions of fixed marginals, the FET for cytosine level 
differential methylation (MAGI

C
) tests the hypotheses

H
0,cg

: θ
cg

 = 1 vs. H
1,cg

: θ
cg

 ≠ 1,

where θ
cg

 = [π
1cg

(1-π
2cg

)]/ [π
2cg

(1-π
1cg

)] and π
icg

 is the true 
methylation level for the cth cytosine in the gth gene for treatment 
i (Trt

i
). If the estimated odds ratio, where m

ijcg
 and D

ijcg
 are 

defined as in Table 1, differs significantly from 1, then cytosine 
c in gene g is differentially methylated. When the results from all 
cytosines in a given region are taken together, if the proportion 
of differentially methylated cytosines is above a pre-specified 
threshold (say, 0.10), the region is said to be differentially 
methylated. When biological replication is available, logistic 
regression can be applied, the hypotheses are similar to the 
unreplicated case, and the logistic model is

log(π
cg

/[1-π
icg

]) = α + β
cg

*Trt
i
.

The test for cytosine level differential methylation relies on 
the hypotheses

H
0,cg

: β
cg

 = 0 vs. H
1,cg

: β
cg

 ≠ 0.
Genome region level analysis (MAGI

G
)

The MAGI
G
 approach summarizes methylation status for 

a genomic region by first inferring a binary representation of 
methylation status for each cytosine in a given gene, within 
(treatment) groups. If the proportion of methylated reads is 
above a given threshold τ (e.g, 0.40), the cytosine is considered 
methylated. The threshold τ can be set a priori, or determined 
empirically. Here, τ is defined as the mean of the two cluster 
centroids as determined through k-means (k = 2) clustering on 
the observed methylation proportions for each chromosome 
and strand. The gene level information for both groups is 
then summarized into a 2 × 2 table, where the rows represent 
methylated and unmethylated cytosine status and the columns 
represent treatment groups. The FET for this scenario tests

H
0,g

: θ
g
 = 1 vs. H

1,g
: θ

g
 ≠ 1,

where θ
g
 = [π

1g
(1-π

2g
)]/[π

2g
(1-π

1g
)] and π

ig
 is the true 

methylation level for the gth gene for treatment i. If the estimated 
odds ratio, where M

ijg
 and C

g
 are defined as in Table 1, differs 

significantly from 1, gene g is differentially methylation. When 
biological replication is available, logistic regression can be 
applied, hypotheses are similar to the unreplicated case, and the 
logistic model is

log(π
ig
/[1-π

ig
]) = α + β

g
*Trt

i
.

The test for base-pair level differential methylation relies on 
the hypotheses

H
0,g

: β
g
 = 0 vs. H

1,g
: β

g
 ≠ 0.

Simulations
Both the cytosine (MAGI

C
) and region level (MAGI

G
) 

approaches are assessed using a series of simulations. In each 
simulation, 1000 genomic subsets, with “region lengths” as 
measured by the number of cytosines, are generated using a 
random Poisson (λ) where λ = 20, 35, or 50. These lengths 
were chosen to represent a variety of region lengths, with an 
emphasis on shorter regions. The region lengths are identical for 
two treatments with three subjects simulated in each treatment 
(only one subject was used in the unreplicated settings). The 
number of treatments and subjects in each treatment was chosen 
because they represent the common choices in exploratory 
experiments, though the logistic regression approach can 
accommodate more treatments and unequal samples. For each 
cytosine in each subject and independent of treatment group, 

Table 2. Cytosine-specific methylation status transition matrices for 
methylated genes

(A) High (B) Medium (C) Low

UM M UM M UM M

UM 0.35 0.65 UM 0.50 0.50 UM 0.35 0.65

M 0.15 0.85 M 0.15 0.85 M 0.35 0.65

“M” and “UM” represent methylated and unmethylated status, respectively. 
Unmethylated gene transition matrices are formed similarly, with elements 
on each diagonal interchanged. transition matrix (A) forms chains with 
longer homogeneous strings of methylated cytosines, while matrices (B) 
and (C) allow more unmethylated cytosines to be generated when the gene 
is methylated.

Table 3. Binomial probabilities for assigning methylated status (Mr) 
to a read for unmethylated and methylated cytosines (UC and MC, 
respectively)

Setting Separation P(MR|UC) P(MR|MC)

1 Large 0.10 0.80

2 Medium 0.15 0.70

3 Small 0.15 0.60

Setting 1 indicates a large separation of read probabilities, and settings 2 
and 3 decrease this level of separation.

Table 4. Exploration and impact of low-coverage filtering on significance 
results from MAGiC and MAGiG for 33,759 analyzed gene regions

Filtering Level % Filtered MAGIC MAGIG Intersection

No filtering 0 216 3146 181

5 40 612 2926 310

7 51 669 2132 275

10 67 651 1528 246

Arabidopsis data (Col-0 vs. met1–3) from Lister et al. (2008) were analyzed 
using both MAGiC and MAGiG with varying degrees of low-coverage 
filtering. Significance thresholds of 0.10 and 0.05 were employed as 
example thresholds for each method, respectively. the “filtering Level” 
represents the threshold for which individual cytosines are removed from 
downstream analyses, while % filtered indicates the percentage removed 
as a result of the filtering. Specifically, if the coverage of a given cytosine is 
below this threshold in either sample, the cytosine information is not used. 
As the filtering becomes more strict (i.e., higher filtering level), the number 
of significant subsets decreases using MAGiG, and increases using MAGiC. A 
balance between increased detection for MAGiC and decreased detection 
for MAGiG occurs when the filtering level is set to 5.
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sequencing depth is simulated via a random Poisson (λ) where 
λ = 7 or 15, representing the range of current sequencing depths 
attained in the literature. The Poisson distribution was chosen 
in order to facilitate potential estimation of the rate parameter 
in unreplicated studies, and could be easily adapted in MAGI 
to incorporate or simulate additional variability in sequencing 
depth (via a Negative Binomial or similar distribution).

Methylation status for each read was generated by first 
assigning, within each treatment group, a methylation status to 
each subset via a random Binomial (2, 0.5) process (akin to a coin-
tossing process for each treatment group). Then, given a subset’s 
methylation status, subject-level base-pair-specific cytosine 
methylation status was simulated under a Hidden Markov Model 
(HMM) framework.25 The HMM approach was used to account 
for the correlated nature of methylation of cytosines within a 
subset. The transition probabilities are defined in Table 2. The 
transition matrices were chosen to span a variety of methylation 
patterns, ranging from relaxed to strict methylation status based 
on the subset’s status. Finally, given a cytosine’s methylation 
status, individual read status is simulated via a random Binomial 
(n, p) distribution, where n is the sequencing depth at the given 
cytosine, and p is the probability of a methylated read given 

the cytosine methylation status (see Table 3). This process was 
repeated 1000 times.

Results under biological replication
Replicated data (i.e., three samples) were simulated using 

settings similar to the unreplicated scenario and analyzed using 
a logistic regression. Statistical power was comparable across 
varying sequencing depths, indicating that increased depth in the 
presence of replication may give rise to diminishing returns on 
investment. MAGI

G
 gained power when differences in cytosine 

methylation levels are large; interestingly, this effect was not seen 
in MAGI

C
. In the cases with higher correlation in consecutive 

cytosine-to-cytosine methylation status, the MAGI
C
 and MAGI

G
 

approaches are comparable (Fig. 3).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Author Contributions

D.D.B. and R.W.D. conceived the concept for this work. 
D.D.B. performed the simulations, analyses, and drafted the 
paper. R.W.D. oversaw the work, and finalized the paper.

 References
1. Riggs AD. X inactivation, differentiation, 

and DNA methylation. Cytogenet Cell Genet 
1975; 14:9-25; PMID:1093816; http://dx.doi.
org/10.1159/000130315

2. Holliday R, Pugh JE. DNA modification mechanisms 
and gene activity during development. Science 
1975; 187:226-32; PMID:1111098; http://dx.doi.
org/10.1126/science.1111098

3. Finnegan E. Plant Developmental Biology – 
Biotechnological Perspectives. DNA methylation: 
a dynamic regulator or genome organization and 
gene expression in plants. 2010; Springer Berlin 
Heidelberg.

4. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, 
Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao 
Y, et al. Comparison of sequencing-based methods 
to profile DNA methylation and identification of 
monoallelic epigenetic modifications. Nat Biotechnol 
2010; 28:1097-105; PMID:20852635; http://dx.doi.
org/10.1038/nbt.1682

5. Bock C, Tomazou EM, Brinkman AB, Müller F, 
Simmer F, Gu H, Jäger N, Gnirke A, Stunnenberg 
HG, Meissner A. Quantitative comparison of genome-
wide DNA methylation mapping technologies. Nat 
Biotechnol 2010; 28:1106-14; PMID:20852634; 
http://dx.doi.org/10.1038/nbt.1681

6. Lister R, O’Malley RC, Tonti-Filippini J, Gregory 
BD, Berry CC, Millar AH, Ecker JR. Highly 
integrated single-base resolution maps of the 
epigenome in Arabidopsis. Cell 2008; 133:523-
36; PMID:18423832; http://dx.doi.org/10.1016/j.
cell.2008.03.029

7. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan 
SW, Chen H, Henderson IR, Shinn P, Pellegrini 
M, Jacobsen SE, et al. Genome-wide high-
resolution mapping and functional analysis of DNA 
methylation in arabidopsis. Cell 2006; 126:1189-
201; PMID:16949657; http://dx.doi.org/10.1016/j.
cell.2006.08.003

8. Choufani S, Shapiro JS, Susiarjo M, Butcher DT, 
Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, 
Scherer SW, Shaffer LG, et al. A novel approach 
identifies new differentially methylated regions 
(DMRs) associated with imprinted genes. Genome 
Res 2011; 21:465-76; PMID:21324877; http://
dx.doi.org/10.1101/gr.111922.110

9. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon 
G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M, 
et al. Human DNA methylomes at base resolution 
show widespread epigenomic differences. Nature 
2009; 462:315-22; PMID:19829295; http://dx.doi.
org/10.1038/nature08514

10. Fisher R. The logic of inductive inference. JR Stat Soc 
1935; 98:39-82; http://dx.doi.org/10.2307/2342435

11. Benjamini Y, Hochberg Y. Controlling the false 
discovery rate: a practical and powerful approach to 
multiple testing. J R Stat Soc, B 1995; 57:289-300

12. Efron B. Simultaneous inference: when should 
hypothesis testing problems be combined? Annals 
of Applied Statistics 2008; 2:197-223; http://dx.doi.
org/10.1214/07-AOAS141

13. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, 
Garcia-Hernandez M, Foerster H, Li D, Meyer T, 
Muller R, Ploetz L, et al. The Arabidopsis Information 
Resource (TAIR): gene structure and function 
annotation. Nucleic Acids Res 2008; 36:D1009-14; 
PMID:17986450; http://dx.doi.org/10.1093/nar/
gkm965

14. Ogrocká A, Polanská P, Majerová E, Janeba Z, Fajkus 
J, Fojtová M. Compromised telomere maintenance in 
hypomethylated Arabidopsis thaliana plants. Nucleic 
Acids Res 2013; 2013:gkt1285; PMID:24334955

15. Zilberman D, Gehring M, Tran RK, Ballinger 
T, Henikoff S. Genome-wide analysis of 
Arabidopsis thaliana DNA methylation uncovers 
an interdependence between methylation 
and transcription. Nat Genet 2007; 39:61-9; 
PMID:17128275; http://dx.doi.org/10.1038/ng1929

16. Bock C. Analysing and interpreting DNA 
methylation data. Nat Rev Genet 2012; 13:705-
19; PMID:22986265; http://dx.doi.org/10.1038/
nrg3273

17. Brown M. A method for combining non-independent, 
one-sided tests of significance. Biometrics 1975; 
31:987-92; http://dx.doi.org/10.2307/2529826

18. Hebestreit K, Dugas M, Klein HU. Detection of 
significantly differentially methylated regions in 
targeted bisulfite sequencing data. Bioinformatics 
2013; 29:1647-53; PMID:23658421; http://dx.doi.
org/10.1093/bioinformatics/btt263

19. Stouffer S, Suchman E, DeVinney L, Star S, Williams 
R Jr. Adjustment during Army Life. The American 
Soldier 1949; (1) Princeton University Press, 
Princeton.

20. Pedersen BS, Schwartz DA, Yang IV, Kechris 
KJ. Comb-p: software for combining, analyzing, 
grouping and correcting spatially correlated P-values. 
Bioinformatics 2012; 28:2986-8; PMID:22954632; 
http://dx.doi.org/10.1093/bioinformatics/bts545

21. Barnard G. A new test for 2x2 tables. Nature 1945; 
156:783-4; http://dx.doi.org/10.1038/156783b0

22. Man MZ, Wang X, Wang Y. POWER_SAGE: 
comparing statistical tests for SAGE experiments. 
Bioinformatics 2000; 16:953-9; PMID:11159306; 
http://dx.doi.org/10.1093/bioinformatics/16.11.953

23. Ruijter JM, Van Kampen AH, Baas F. Statistical 
evaluation of SAGE libraries: consequences for 
experimental design. Physiol Genomics 2002; 11:37-
44; PMID:12407185

24. Romualdi C, Bortoluzzi S, Danieli GA. Detecting 
differentially expressed genes in multiple tag 
sampling experiments: comparative evaluation of 
statistical tests. Hum Mol Genet 2001; 10:2133-
41; PMID:11590130; http://dx.doi.org/10.1093/
hmg/10.19.2133

25. Rabiner L. A tutorial on hidden markov models and 
selected applications in speech recognition. Proc IEEE 
1989; 77:257-86; http://dx.doi.org/10.1109/5.18626


