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Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes
and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in
cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells,
and numerous interactions with the extracellular matrix.The different steps of immune cell, tissue cell, or cancer cell migration are
tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesionmolecules, and receptors for these ligands.
This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic
cleavage of such molecules or by functions independent of proteolytic activity.

1. Principles of Cell Migration

Cell migration is a critical step in the homeostatic and
inflammatory trafficking of immune cells, the migration of
cells during embryogenesis, in regenerative processes such
as wound healing, in tissue homeostasis, and also in the
development of diseases such as cancer [1]. Dysregulation
in migration can result in severe peri- or postnatal defects
such as the neural tube defect [2], heart abnormalities, and
defective lymphopoieses [3, 4]. Further, in the adult organ-
ism, several pathologies are linked to alterations in migra-
tion, including inflammatory disorders such as rheumatoid
arthritis andmultiple sclerosis, vascular diseases [5], in which
immune cells promote the inflammatory process [6], delay
of wound closure, and tumor metastasis formation [7]. The
list of migrating cell types is long differing in their form
and speed of migration including immune cells, epithelial
cells, endothelial cells, smooth muscle cells, pericytes, and
neural cells. The exact mechanisms of cell migration can
differ especially between rapidly migrating leukocytes and
tissue cells. However, the involved surface molecules, the
signal transduction pathways, and the underlying molecular

machinery show a considerable degree of overlap in all motile
cells.

On the migrating cell itself, a well-orchestrated sequence
of single steps can be observed such as polarity changes,
protrusion and retraction, and loose and firm adhesion to
other cells or the extracellular matrix (ECM). Leukocytes
and also cancer cells are capable of transmigrating through
the tissue layers including endothelium or epithelium [7].
This also involves interaction with these tissue layers, which
often regulate adhesion and junction molecules, thereby
increasing permeability of the cell layer [8] as well as
transmigration of the migrating cells. The polarizing and
initiating stimulus can be of various nature: chemotactic
(i.e., chemoattractants andmorphogens) [1]; haptotactic (i.e.,
varying substrate concentrations in wound healing, angio-
genesis, and metastasis) [9]; mechanotactic (i.e., loss of cell-
cell contacts in wound healing or metastasis) [10]; durotactic
(i.e., varying rigidity) [11]. Polarization is accompanied by
the extension of generally formed pseudopods towards the
direction of migration, driven by the rearrangement of the
actin cytoskeleton [12]. The different protrusions mediate
the interaction with surrounding tissue cells and the ECM
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and the formation of adhesive complexes. The presence of
nascent adhesions and focal complexes are markers of fast
migrating cells, whereas focal adhesions as more mature
structures are inversely correlated with cell motility [13]. The
most important common components of adhesive complexes
are integrins as adhesion receptors. Integrins are cell specif-
ically expressed and activated upon specific stimulation,
thereby mediating leukocyte adhesion and transmigration
[14]. Podosomes are found in fast moving cells such as
macrophages, sharing similar structures with invadopodia of
metastatic tumor cells [15]. Both include the redirection of
integrin receptors and adhesionmolecules to the leading edge
of the migrating cells, while invadopodia further concentrate
proteolytic components that degrade the surrounding matrix
to facilitate transmigration [16]. Often, tissue or cancer cell
migration requires the acquisition of a migratory pheno-
type. These phenotypic changes can be brought about by
cytokines, growth, or differentiation factors. For example,
repair processes involving tissue cell migration and also
cancer cell migration can be initiated within the tissue layers
by transforming growth factor (TGF) 𝛼 and heparin-binding
epidermal growth factor (HB-EGF) [17–19].

One of the most studied migratory events is the recruit-
ment of immune cells from the blood to a site of inflamma-
tion, for example, caused by wounding or infection. Proin-
flammatory signals are released and relayed to the vascular
endothelium, which exposes new adhesion molecules and
receptors (e.g., E-selectin and P-selectin, vascular adhesion
molecule 1 (VCAM-1), intercellular adhesion molecule 1
(ICAM-1), CXCL16, and CX3CL1 [20–23]). Immune cells
are slowed down in migration and loosely adhering to the
endothelium, rolling along the endothelium via the inter-
action of selectins with glycoprotein ligands, adhere more
tightly via activated integrins, crawl on the endothelium
probing for an extravasation point, and at last transmigrate
through the endothelium.

Thus, for effective migration of immune cells, tissue cells
or cancer cells several migratory steps need to be tightly
coordinated.This involves the regulation of cytokines, growth
factors, chemokines, adhesion molecules, and receptors for
these ligands. Notably, many of thesemolecules are expressed
as membrane-bound form and are functionally modulated
by limited proteolysis close to the plasma membrane, a
process called shedding. In many cases, members of the
family of a disintegrin and metalloproteinases (ADAMs)
mediate these shedding events. By this activity, ADAMs can
interfere with several steps of cell migration. In addition,
some ADAM family members can also regulate adhesion
processes independently of any proteolytic activity.

2. ADAM Proteases

ADAM proteases belong to the class of metalloproteinases,
which also comprises the matrix metalloproteinases (MMP)
and a disintegrin and metalloproteinase with thrombo-
spondin motif (ADAMTS). The ADAM family consists of 34
members, with 22 members described in humans [24, 25].
Most ADAMs are expressed as type I transmembrane surface

proteins with a typical multidomain structure consisting
of an N-terminal metalloproteinase domain, a disintegrin
domain, a cysteine-rich domain, an EGF-like domain fol-
lowed by a transmembrane domain, and a cytoplasmic
tail (Figure 1). Most ADAMs are synthesized as proen-
zymes, in which the N-terminal and inhibiting prodomain
is released by furin-mediated cleavage during the matura-
tion process. The zinc-dependent metalloproteinase domain
mediates the proteolytic activity, which is only present in
ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17,
ADAM19, ADAM20, ADAM21, ADAM28, ADAM30, and
ADAM33 [26]. ADAM2, ADAM7, ADAM11, ADAM18,
ADAM22, ADAM23, ADAM29, and ADAM32 lack the
consensus sequenceHExGHxxGxxHD formetalloproteinase
activity. Their function remains largely unknown but may
include functions as adhesion molecules rather than as
proteases. The cysteine-rich domain and disintegrin domain
of most ADAM proteases are involved in substrate recog-
nition and interaction with integrins and the extracellular
matrix. ADAM10 and ADAM17 do not carry the typical
EGF-like domain. Their cysteine-rich domain is followed by
a so-called membrane-proximal domain as well as a small
stalk region [27–29]. The cytoplasmic tail is very diverse
in length and may be involved in signaling between the
intracellular and extracellular portion aswell as in assembling
of cytoplasmic adaptor molecules. Some ADAM proteases
exist not only as transmembrane proteins but also as soluble
forms resulting from splice variants. These soluble forms of
ADAM9, ADAM12, and ADAM28 lack the transmembrane
domain and the C-terminal cytoplasmic tail [26].

Proteolytic activity has been reported for ADAM8,
ADAM9, ADAM10, ADAM12, ADAM15, ADAM17,
ADAM28, and ADAM33 [30]. The interaction partners
and substrates of ADAMs are generally transmembrane
surface proteins. It is important to note that, with only one
reported exception [29], shedding occurs in cis and not
in trans, meaning that substrate and protease have to be
expressed on the same cell. The regulated proteolysis occurs
close to the cell surface, resulting in the release of a soluble
ectodomain and the production of a cell-associated fragment
consisting of the transmembrane and the cytoplasmic
domain. After this shedding process, the remaining fragment
can undergo further regulated intramembrane proteolysis
(“RIPping”), which has been reported for Notch [31]. ADAM
activity can convert surface molecules into soluble agonists.
By this, ADAMs critically drive the activity of cytokines
(e.g., TNF), chemoattractants (e.g., CX3CL1), or growth
factors (e.g., EGF). Further, released ectodomains can act
as antagonists and sequester soluble ligands (e.g., TNFR).
Shedding of a receptor or adhesionmolecule (e.g., L-selectin)
can lead to reduced responsiveness (e.g., VEGFR2) or cell
adhesion (e.g., RAGE, L-selectin). Moreover, proteolytic
release of an adhesion molecule bound to its receptor can
result in detachment of adherent cells. Finally, cytoplasmic
fragments released by RIPping may function as transcription
factors (e.g., Notch). Notably, ADAMs can directly interact
with adhesion molecules and extracellular matrix proteins
(e.g., collagen). This interaction involves the disintegrin
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Figure 1: Catalytic and noncatalytic functions of ADAM proteases facilitating cell migration. ADAM proteases interfere with distinct steps
of cell migration via a number different effector molecules. This involves proteolytic cleavage or nonproteolytic interactions of the proteases.
ADAMs consist of a C-terminal cytoplasmic tail (CC) followed by a transmembrane domain (TM), an EGF-like domain (EL), a cysteine-
rich domain (CR), and a disintegrin domain (D) and an extracellular metalloproteinase domain (MP) (ADAM). ADAM proteases cleave
transmembrane surface molecules close to the plasma membrane, a process called shedding, requiring a zinc atom in the active site of the
metalloproteinase domain (I). This results in the release of a soluble ectodomain and the production of a cell-associated fragment consisting
of the transmembrane and cytoplasmic domain. The remaining fragment can undergo further regulated intramembrane proteolysis by 𝛾-
secretase (II) at last functioning as transcription factor (e.g., Notch). ADAM activity can be regulated by activation of a precursor protein
(e.g., pro-MMP9). The released ectodomain may function either as agonist like the chemokine CXCL16 and the ErbB ligands HB-EGF and
neuregulin or as antagonist like soluble JAM-A or RAGE (III). The release of ErbB ligands leads to transactivation of ErbB receptors in cis
and trans (IV). The inactivation of ligands (i.e., adhesion molecules (AM)) can lead to the detachment of bound receptor complexes and
attached cells (i.e., L-selectin, MAC-1) (V). The cleavage of junction molecules (JM, i.e., cadherins) results in changes of permeability (VI),
facilitating the transmigration of inflammatory cells, the invasion of cancer cells, and the dissemination resulting inmetastasis and angiogenic
processes (VII). The permeability is further regulated by ECM degradation, by either direct action of ADAM proteases (i.e., ADAM9) or the
regulation of MMPs (VIII). With their disintegrin-like domain, ADAMs can directly interact with adhesion molecules and ECM proteins
(IX). The integrin (indicated by 𝛼/𝛽) interaction/activation results in cytoskeletal rearrangement, focal adhesion formation, and podosome
extension (X). Integrin, ADAM activation, and ErbB receptor transactivation result in different signaling pathways including the activation
of Rho, Rac, FAK, PI3K, AKT, p38, and ERK, all further regulating ADAM and integrin activity as well as gene expression (XI). The exact
mechanism of cell migration can differ between rapidly migrating leukocytes and tissue cells. However, the involved surface molecules,
the signal transduction pathways, and the molecular machinery show a considerable degree of overlap for the action of ADAM proteases
in inflammatory cell recruitment, angiogenesis, reepithelialization, cancer cell detachment and adhesion, and the intra- and extravasation
during metastasis.

domain and can promote cell-to-cell adhesion or strengthen
barrier function of cell layers [32].

This broad activity requires a regulatory network to limit
the proteases activity in space and time. It is not yet fully
understood how the substrate selectivity of the single ADAM
proteases is mediated, as the substrates do not seem to
carry a distinct cleavage site [33, 34]. Specificity is possibly
mediated by the substrate binding pocket [35], by exosites
such as the cysteine-rich domain [29], the juxtamembrane

region, and the transmembrane domain [27, 36–38]. Further,
involved signaling pathways [39] as well as changes in the
membrane structure [40, 41] may influence ADAM substrate
specificity. Regulation of ADAM protease activity can occur
on various levels. Acute and chronic stimulation and the
tumor environment have been shown to enhance ADAM
protease gene expression [32, 42, 43]. The increase of gene
expression and enzyme synthesis are rather slow regulators
of shedding activity. Rapid regulation of proteolytic activity
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occurs on the posttranscriptional level including the removal
of the inhibitory prodomain [44], changes in membrane dis-
tribution [41, 45], release and transport to the cell surface [46,
47], multimerization on the cell surface [48], autocatalytic
activation [49], interaction with adaptor molecules, and con-
formational changes [40, 50, 51]. Recently, pseudoproteases
of the rhomboid family, the inactive rhomboid (iRHOM) 1
and 2, have been discovered as adaptermolecules of ADAM17
in the endoplasmic reticulum mediating the transport of the
protease to the Golgi apparatus and the cell surface [52, 53].
ADAM10 does not seem to interact with iRHOMs, but its
surface expression strongly depends on tetraspanins of the
TSPANC8 family [54, 55]. Interestingly, also ADAM17 is reg-
ulated by the tetraspaninCD9/TSPAN29 [56]. Since iRHOMs
and tetraspanins are critical for ADAM activity on the cell
surface, they very likely also interferewithADAM-dependent
mechanisms of cell migration. Furthermore, tissue inhibitors
of metalloproteinases are well known to block ADAM pro-
teases. TIMP-1 turned out to be a relevant inhibitor of
ADAM10 [57], while TIMP-3 is more effective on ADAM17
[58]. Thus, regulation of TIMP1 or 3 also represents a means
of controlling ADAM10- or ADAM17-mediated migratory
processes. As discussed below, rapid posttranslational reg-
ulation of shedding events and long-term transcriptional
induction of protease activity contribute to very basic migra-
tory events involved in many different pathologies including
inflammation, healing responses, and tumor metastasis.

3. ADAM Functions in Leukocyte Migration

As mentioned above, ADAM proteases may regulate cell
migration either by their shedding activity or by the non-
catalytic functions such as matrix and integrin interactions
(Figure 1).

3.1. ADAM-Mediated Shedding in Leukocyte Migration.
Leukocytemigration through tissue cells can depend not only
on the proteolytic activity of ADAMson the leukocytes them-
selves (see Table 1) but also on the ADAM protease activity
on the tissue cells serving as substrate of cell migration (see
Table 2).

In tissue cells transmigrated by leukocytes, ADAM10
and ADAM17 are the predominant proteases mediating
shedding events that regulate leukocyte migration. Both
endothelial and epithelial cells form a dense barrier to insure
tissue integrity, which has to be opened transiently for
transmigration. Upon stimulation with VEGF or thrombin,
VE-cadherin is shed from the endothelial cell surface by
ADAM10 and ADAM17 [59, 60]. The epithelial counterpart
E-cadherin is solely shed by ADAM10 under physiological
as well as pathological conditions [61]. Whereas shedding
of VE-cadherin and E-cadherin has been shown to facilitate
transmigration, the function of JAM-A is divergent. In its
transmembrane form, JAM-A controls endothelial tight junc-
tion formation and contributes to leukocyte transendothelial
migration [62, 63]. In contrast, soluble JAM-A, predomi-
nantly released by ADAM17, was shown to reduce inflam-
matory cell recruitment both in vitro and in vivo, avoid-
ing excessive infiltration [62]. Endothelial cells express the

transmembrane chemokines CXCL16 and CX3CL1, which
are upregulated under inflammatory conditions and consti-
tutively and inducibly shed by ADAM10 and ADAM17 [22,
64, 65].The transmembrane forms act as adhesionmolecules,
regulating the interaction of T lymphocytes and monocytes
with tissue cells [66, 67], whereas the soluble variants act
as chemokines, mediating the recruitment of CXCR6 or
CX3CR1 expressing cells to the site of inflammation [68–73].
In inflammatory diseases, CX3CL1 is released not only by the
endothelium but also by monocytes, T lymphocytes, and NK
cells as shown for rheumatoid arthritis and cardiovascular
diseases [74] and further enhances the recruitment of inflam-
matory cells from the circulation.

Meprins A and B, receptor for advanced glycation end
products (RAGE), and activated leukocyte cell adhesion
molecule (ALCAM(CD166)) are additional substrates shared
by leukocytes and tissue cells in leukocyte migration. The
meprins are shed by ADAM10 [75, 76] releasing a soluble
form and facilitating migration through the cleavage of ECM
molecules [77]. Additionally, meprin B cleaves E-cadherin,
enhancing the induction of epithelial permeability [78],
which could be negatively regulated by ADAM10. Trauma
or inflammatory stimulation leads to the upregulation of
RAGE on epithelial and endothelial cells, facilitating the
adhesion and subsequent diapedesis of leukocytes [79, 80].
The function of RAGE on leukocytes appears to be cell-
type dependent. For macrophages, dendritic cells and T
cells’ influences only on activation, differentiation, and pro-
liferation were reported. However, on neutrophils, RAGE
was described as a chemotactic receptor interacting with
high mobility box 1 protein (HMGB1) [81]. It is impor-
tant to note that, in contrast to transmembrane RAGE,
soluble RAGE released by ADAM10 functions as negative
regulator of adhesion, blocking the activation of MAPK3
and PI3K. This inhibition of spreading and migration [82]
could represent a mechanism for fine tuning of inflammatory
cell recruitment. A similar function has been reported for
soluble ALCAM, which may prevent the accumulation of
premature tissue macrophages [83]. ALCAM is expressed on
endothelial cells and upregulated upon inflammatory stimu-
lation. Under homeostasis, peripheral blood monocytes and
lymphocytes show only weak expression of ALCAM,whereas
inflammation leads to upregulation of surface ALCAM,
enabling homophilic (ALCAM-ALCAM) or heterophilic
(ALCAM-CD6) interactions and supporting transmigration
[83–85]. Especially on T lymphocytes, ADAM17-mediated
ALCAM shedding appears to be essential for activated
lymphocyte recruitment [84]. Clustering of ALCAM via
upregulation of the tetraspanin CD9 was found to limit
ADAM17-mediated shedding and lymphocyte recruitment
[84].

Also on leukocytes themselves, ADAM10 and ADAM17
are the predominant shedding enzymes, influencing cell-
cell and cell-matrix interactions. Mac-1, which is expressed
on monocytes, is one of the major interaction partners for
endothelial expressed RAGE. Although Mac-1 cleavage by
ADAM10 andADAM17was shown, only spatial and temporal
ADAM17-dependent cleavage is essential for transendothelial
migration of monocytic cells [86]. The function of L-selectin
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as adhesion molecule and interaction partner of E-selectin
[87] has been extensively studied in neutrophil migration.
L-selectin shedding by ADAM17 limits recruitment of neu-
trophils at early time points during inflammation. This is
mediated by weakening of adhesion during leukocyte rolling
along the endothelium leading to higher velocity of rolling
leukocytes. In contrast to neutrophils, monocyte recruitment
is not affected by L-selectin shedding [88]. ADAM17 medi-
ated proteolytic shedding has been reported for CXCR2, the
receptor for CXCL1 and CXCL8. Stimulation by lipopolysac-
charide (LPS) or formyl peptide leads to enhanced CXCR2
shedding via ADAM17 and impairs neutrophil recruitment,
which can be detrimental during excessive inflammation
[89]. ADAM10 and ADAM17 are both responsible for the
cleavage of epidermal growth factor receptor (EGFR) ligands,
resulting in transactivation of EGFR [90]. However, for
leukocyte migration, a distinct ligand has not been identified
so far [91]. The migration of B lymphocytes towards Notch
ligands was shown to depend on ADAM17 and 𝛾-secretase
activity, indicating a role of Notch receptor shedding in B
cell migration [92]. It is not yet clear whether this could
also account for other leukocyte populations. Involvement
of cleavage events in the interaction with extracellular
matrix proteins has been reported for CD44, the discoidin
domain receptor 1 (DDR1), and the hepatocyte growth factor
(HGF) receptor c-met. CD44 interacts with hyaluronic acid
and is stimulus-dependently cleaved by either ADAM10 or
ADAM17, involving Ca2+ influx or PKC and Rac activation
[93]. Proteolysis of CD44 is essential for leukocyte migration
as was exemplarily shown in liver neutrophil trafficking [94].
DDR1 is expressed on neutrophils, monocytes, and lympho-
cytes and mediates the adhesion to collagen. DDR1-collagen
interaction results in DDR1 phosphorylation and subsequent
shedding by ADAM10 allowing pseudopod extension and
migration through p38 andNF-kB activation [95]. c-met sur-
face expression and signaling are regulated by ADAM10- and
ADAM17-mediated shedding.Migration of G-CSFmobilized
myeloid cells and hematopoietic stem cells was shown to be
in parts mediated via the HGF/c-met axis, increasing matrix
degradation by enhancement of MMP expression [96]. In
addition, cytokines can promote the migratory response
of leukocytes. For example, migration of Langerhans cells
in the skin and the mucosa largely depends on IL-1 and
TNF𝛼 [97]. Also, for IL6, a promigratory function on T cells
has been described [98]. This would imply that proteolytic
shedding of cytokines like TNF𝛼 also regulates immune cell
migration, and this activity could be counterregulated by
receptor shedding of TNFR, IL1R, or IL6R [97, 99, 100].
However, linking investigations are still missing.

Besides ADAM10 and ADAM17, only ADAM8 has been
shown to influence leukocyte migration by catalytic activ-
ity. The P-selectin glycoprotein ligand-1 (PSGL-1) mediates
leukocyte rolling on the vascular endothelium in inflamma-
tion and is further essential for the migration of T lym-
phocytes under homeostatic conditions. ADAM8-dependent
cleavage at the uropod loosens the initial binding and
facilitates leukocyte migration [101–103]. However, besides
ADAM8, also ADAM10 and the aspartyl protease BACE1

have been reported to cleave PSGL-1 [104], and the relative
contribution of each protease remains unclear.

3.2. ADAM Noncatalytic Functions in Leukocyte Migration.
In addition to the proteolytic shedding, many ADAMs
display noncatalytic functions that can contribute to
leukocyte migration. Such activity has been reported for
ADAM8, ADAM9, ADAM10, ADAM15, ADAM17, ADAM19,
ADAM28, and ADAM33. Most of these functions involve the
regulation of integrins, directly affecting integrin-dependent
adhesion as one of the first steps in leukocyte recruitment.
Adhesive contacts via integrins are required for cell motility,
but too tight adhesions prevent cell migration. Regulation
of integrins can be a direct result of integrin binding
to noncatalytic domains of ADAMs or result from the
activation of signaling pathways leading to modulation of
integrin expression and activity at the cell surface.

ADAM8 is essential for the clustering of 𝛽
1
integrin

at the leading edge of migrating cells [48]. However, the
function of this mechanism was not yet shown for leukocytic
cells, but a promigratory/proasthmatic as well as antimi-
gratory/antiasthmatic function of ADAM8 was reported in
ovalbumin induced asthma [105, 106]. ADAM15 is expressed
on endothelial cells and enhanced during inflammatory pro-
cesses, but circulating monocytes lack ADAM15 expression
[107]. ADAM15 surface expression correlates with expression
of 𝛼
5
integrin, thereby influencing migration through adhe-

sion [108]. Furthermore, the cytoplasmic tail of ADAM15
induces signaling processes including ERK1/2 and Src phos-
phorylation, which enhance endothelial permeability and
monocyte transmigration [107, 109]. ADAM28 in Jurkat
cells can support 𝛼

4
𝛽
1
, 𝛼
4
𝛽
7
, and 𝛼

9
𝛽
1
dependent adhesion,

whereas ADAM33 can only interact with 𝛼
9
𝛽
1
[110]. ADAM9

was shown to promote neutrophil activation and chemotaxis
by engagement of 𝛼V𝛽3 and 𝛼9𝛽1 integrins within a hierar-
chical cross talk of integrins with CXCR2, involving GPCR,
PI3K/AKT, and MAPK activation [111]. In myeloid cells,
ADAM10 deficiency correlated with reduced surface upregu-
lation of 𝛼

5
𝛽
1
integrin upon CCL-2 stimulation accompanied

by impairment of p38 andRho activation, cell-matrix interac-
tion, and cytoskeletal rearrangement, resulting in inhibition
of migration [91].

4. Migratory Function of ADAM
Proteases in Inflammatory Diseases

The role of ADAMs in inflammatory diseases is still not
fully understood. As described above, leukocytes and tissue
cells express various ADAMs, which are likely to modulate
cell migratory processes involved in the pathogenesis of
many inflammatory diseases. As examples, we here briefly
mention multiple sclerosis (MS), rheumatoid arthritis (AR),
and atherosclerosis. We will here focus on the impact
of ADAMs in cell migration. Other ADAM-dependent
pathogenic mechanisms are reviewed elsewhere [112].

It was clearly shown that MMPs and TIMPs hold promi-
gratory functions in MS, contributing to the pathogenesis
of the disease [113]. However, ADAM proteases can be only
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indirectly linked to migratory processes so far. Investiga-
tion of postmortem brain sections of MS patients revealed
that ADAM10 is expressed in astrocytes and sometimes
in perivascular macrophages [114]. On the other hand,
ADAM17 expression is associated with active MS lesions
and gadolinium-enhancing lesions of relapsing-remittingMS
patients [115], more specifically in blood vessel endothelial
cells, activated macrophages, microglia, astrocytes [116], and
invading T lymphocytes [114]. Invading T lymphocytes are
one major source of TNF, which is shed by ADAM17 and
associated with the relapse phase but would rather indirectly
contribute to migratory processes. Further, CX3CL1, which
is found in the brain and serum during MS, could fulfill
different functions. On the one hand, CX3CL1 could activate
and recruit circulating leukocytes, but, on the other hand, the
adhesion to membrane-bound CX3CL1 could be blocked by
its soluble form [117].

ADAM8, ADAM10, ADAM15, and ADAM17 have been
shown to be upregulated in synovial fluid or tissue of RA
patients compared to healthy individuals [47, 73, 118, 119].
ADAM17 is responsible for the strong TNF release, which
orchestrates the inflammatory response in RA. However, the
TNF release influences the migratory process only indirectly.
Expression levels of ADAM8 and ADAM10 in the synovial
fluid correlate with the degree of joint inflammation and
disease severity, respectively [47, 73]. ADAM10 knockdown
in RA reduced the LPS-induced migration and invasion of
fibroblast-like synoviocytes (FLS) in vitro [120]. ADAM10
was clearly enhanced in biological fluids of RA patients, dis-
playing a higher monocyte migratory activity [73]. Further,
ADAM10 plays a proangiogenic role in RA indicated by an
elevated tube formation of endothelial cells, which may be
due CX3CL1 and vascular endothelial growth factor (VEGF)
release [121]. One possible treatment of RA is tocilizumab,
an antibody against the IL-6R. ADAM10 has been shown to
be the major sheddase involved in induced shedding of IL-
6R in human [122]. ADAM10 was shown to correlate with
soluble CX3CL1, which was reduced upon antibody treat-
ment and could serve as predictive marker [123]. However,
the orchestration of the events and the contribution to cell
migration of endothelial cells, FLS, and leukocytes in RA
have still to be examined. Similar to ADAM10, knockdown
of ADAM15 results in suppressed migration and invasion of
FLS and silencing of ADAM15 in a rat model of CIA reduced
the arthritis score and the extent of joint damage [124]. It
was further shown that VEGF treatment enhances ADAM15
expression in synovial fibroblasts and in endothelial cells,
if VEGFR2 expression was increased by TNF𝛼 stimulation.
The overexpression of ADAM15 in RA synovium and the
regulation through VEGF and VEGFR2 suggest a possible
function of ADAM15 in angiogenesis in RA synovium [125].

ADAMs 8, 9, 10, 12, 15, 17, and 33 are expressed in human
atherosclerotic lesions [126–128]; however, their causal role
in the pathogenesis still remains ill-defined. Influences on
involved migratory processes have been described only for
ADAM10 and ADAM15 so far. The expression of ADAM10
in atherosclerotic lesions has been associated with human
plaque progression and neovascularization [60, 127, 129].
Genetic ablation of ADAM10 or its inhibition reduces

migration of endothelial cells, monocytes, macrophages, and
vascular smooth muscle cells in vitro [60, 130, 131]. Further,
the proatherosclerotic effect ofMMP8deficiency indicated by
higher neointima formation was shown to be dependent on
an ADAM10-, N-cadherin, and 𝛽-catenin-mediated pathway
[131]. In addition, myeloid ADAM10 deficiency reduced
expression of MMP9 and MMP13 as well as MMP2 gelati-
nase activity in macrophages. Further, ADAM10-deficient
macrophages displayed amore anti-inflammatory phenotype
with reduced migratory potential and less production of
inflammatory mediators like TNF𝛼, IL-12, and NO upon
LPS stimulation. These effects together led to higher plaque
collagen content, resulting in a shift from inflammation
to fibrosis in atherosclerosis due to altered ECM degra-
dation and a shift in atherosclerotic plaque stability [130].
Furthermore, ADAM15 deficiency reduced atherosclerotic
lesion progression in mice due to improved endothelial
barrier function and reduced monocyte transmigration via
Src activation [107].

5. ADAM Proteases in Cell Migration during
Healing Responses

Wound healing is a highly dynamic process that involves the
coordinated response of a considerable number of different
cell lineages in an attempt to restore tissue integrity and
homeostasis and is fundamentally similar among tissue types.
The wound healing process is characterized by overlapping
phases of inflammation, angiogenesis, reepithelialization,
and resolution [132]. These steps involve proliferative as
well as migratory responses of various tissue cells and
leukocytes. The role of ADAMs in leukocyte recruitment has
been discussed in the previous section. For the purpose of
this review, we will focus on ADAM-dependent migration
in angiogenesis and reepithelialization in this section (see
Table 2).

5.1. Angiogenesis. During wound healing, the angiogenic
process is initiated, which involves sprouting of wound edge
capillaries followed by invasion into the site of damage.
After a few days, the microvascular network is apparent
throughout the wound. Sprouting angiogenesis is a multistep
process involving endothelial cell proliferation and guided
migratory invasion, which are regulated by proteolytic and
nonproteolytic activities of ADAMs [221].

Endothelial cells in sprouts are guided by tip cells fol-
lowed by a multicellular stalk of endothelial cells, which
are interconnected by VE-cadherin at cell-cell junctions and
successfully form an inner lumen. One of the best studied
proangiogenic signals, namely, VEGF, controls the directed
migration of the tip cells [222]. ADAM10, ADAM12, and
ADAM17 have been shown to shed VEGFR2 upon activation
in vitro, thereby limiting vascular sprouting [60, 160, 163].
However, ADAM10 and ADAM17 can have opposing effects
on physiological angiogenesis in vivo. While genetic ablation
or inhibition of ADAM10 increases vascular sprouting, most
likely due to reduced shedding-mediated Notch activation,
ADAM17 hypomorphic mice or inhibition of ADAM17
decreases angiogenesis in vivo [154–157, 223]. Interestingly,
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ADAM17 may exert both positive and negative effects on
angiogenesis by timely release of TNF𝛼 [177] or its receptor
TNFR. TNF𝛼 stimulation increased ADAM17 expression
accompanied by increased shedding of TNFR, which could
be a self-protective mechanism during prolonged immunos-
timulation [178]. Chronic exposure to TNF𝛼 inhibited angio-
genesis, while a 2-3-day pulse stimulated angiogenesis by
inducing a migratory tip-cell phenotype [179]. The different
functions of TNF𝛼 signaling in ischemia-mediated angio-
genesis could be in part explained by the opposite effects
of TNFR1 and TNFR2. Stimulation of TNFR2 enhances
endothelial cellmigration, whereas TNFR1 inhibitsmigration
[180]. However, it remains elusive how and when ADAM17
acts regulatory by the shedding of TNFRs in this process.
Knockdown of ADAM17 reduces the amount of invading
endothelial cells as well as the distance they covered in vitro
[224]. Additionally, the migration of VEGF-A- or FGF7-
stimulated endothelial cells depends on EGFR activation
via shedding of HB-EGF by ADAM17 [17, 172]. Migrating
endothelial cells continuously extend and retract processes
at the leading edge of the sprout [225]. Expression of a
dominant negativemutant of ADAM17 increased the number
of extending processes in endothelial cells, suggesting that
ADAM17 is involved in proper retraction of these peripheral
processes [224]. During angiogenesis, pericytes and smooth
muscle cells are recruited to endothelial cells to stabilize
developing blood vessels. This migratory process is mediated
via the interaction of platelet-derived growth factor- (PDGF-
) B and its receptor PDGFR𝛽. PDGFR𝛽 is constitutively shed
by ADAM10, whereas ligand-dependent activation does not
lead to its own shedding but to stimulation of ADAM17-
dependent EGFR ligand shedding. This PDGFR𝛽-EGFR-
signaling axis was shown to be critical for PDGF-B stim-
ulated cell migration [159]. Not only PDGFR𝛽 but also
DDR1 and its shedding may be important for angiogenesis.
It was shown that DDR is critical in the regulation of
attachment to collagen, chemotaxis, and MMP production
in smooth muscle cells. Further, DDR1-null mice displayed
lower intimal thickening after vascular injury [148]. As
already mentioned before, DDR1 is shed by ADAM10 upon
interaction with collagen [95]. Thus, it seems feasible that
shedding of DDR1 by ADAM10 could be involved in smooth
muscle cell migration and intimal thickening. However,
this possibility still has to be investigated. Smooth muscle
cell migration plays an important role in artery in-stent
restenosis. Studies in minipigs and arterial smooth muscle
cells indicated an involvement of ADAM10 in this process,
partly mediated by Notch1 and Notch3 cleavage, resulting in
nuclear translocation and downstream gene induction [158].

Both ADAM8 and ADAM15 are also implicated in angio-
genesis. Overexpression of ADAM8 in vitro increases shed-
ding of coexpressed proteins, including Tie2, VEGFR1 and
VEGFR2, EphB2, and junctional molecules CD31 and VE-
cadherin [138]. Further, ADAM8 was shown to be associated
with angiogenesis after spinal cord injury in mice [139]. The
expression of ADAM15 is upregulated in endothelial cells
during angiogenesis, where it can interact with 𝛼

5
𝛽
1
and

𝛼V𝛽3 via its RGD motif [167], while ADAM15 knockout mice
showed reduced angiogenic responses to hypoxia [168].

5.2. Reepithelialization. Upon injury, the regrowth of epithe-
lium over a damaged area is pivotal in the repair phase of
wound healing. Epithelial cells at the edge of the wounded
tissue are instructed to loosen their cell-cell and cell-ECM
contacts andmigrate across the denuded area, while epithelial
cells behind the leading edge start to proliferate until a new
epithelium covers the damaged tissue [132].

E-cadherin, an adhesion molecule responsible for
anchoring neighboring cells to one another, is cleaved
by ADAM10, thereby decreasing cell-cell contacts and
increasing migration of keratinocytes [61]. Studies have
reported that ADAM9, ADAM10, and ADAM15 are able to
cleave ECM substrates in vitro, including fibronectin, type
IV collagen, and gelatin, thereby facilitating cell migration
and release of sequestered growth factors to ECM proteins
[166, 226, 227]. Shedding of collagen XVII fromkeratinocytes
by ADAM9, ADAM10, and ADAM17 reduced migration
due to the inhibitory effect of soluble collagen XVII on
migration [140]. In line, wound repair was accelerated
in ADAM9 deficient mice due to increased migration of
keratinocytes and reduced constitutive shedding of collagen
XVII [141]. Additionally, binding of ADAM9 to the integrin
𝛼
3
𝛽
1

in keratinocytes increased MMP9 expression and
subsequent cell migration [142]. EGFR ligands, including
TGF-𝛼, HB-EGF, amphiregulin, betacellulin, and epiregulin,
are expressed by keratinocytes and are key regulators
of their migration [228], which can be processed into
active soluble factors by ADAM9, ADAM10, and ADAM17
[17, 90, 143, 176]. Deficiency of iRHOM2, which is critical
for the maturation of ADAM17 in keratinocytes, reduces
EGFR-dependent keratinocyte migration underlining the
importance of ADAM17 for this response [38]. Besides the
generation of soluble promigratory ligands, ADAM17 may
also interfere with reepithelialization by the shedding of
TNFR1 and TNFR2. Physiological levels of TNF𝛼 enhanced
migration through TNFR2, whereas pathological levels
inhibited wound closure through TNFR1 [181]. However,
as already mentioned studies directly linking ADAM17,
TNFR1 and migration are missing. Skin explants from
ADAM12 knockout mice displayed increased migration
of keratinocytes, potentially via shedding of HB-EGF and
insulin-like growth factor (IGF) [162]. In contrast, wound
healing in ADAM15 deficient mice was unaltered making
ADAM15 dispensable for this process [229].

6. ADAM Proteases in Cancer Cell Migration

Tumor metastasis, the dissemination of cancer cells and
subsequent outgrowth of secondary tumors at distant sites,
is a major contributor to cancer morbidity and mortality.
Metastasis is a multistep process involving the detachment
of cancer cells from their surrounding tissue, the migration
or invasion through the local extracellular matrix towards
lymphatic or blood vasculature, the intravasation into the
circulation, and lastly the extravasation at a distant tissue
to establish a secondary tumor [230]. A number of ADAM
proteins are (over)expressed in malignant tumors and have
been shown to regulate several steps of themetastatic process,
which will be discussed below (see Table 3).
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6.1. Detachment and Invasion of Cancer Cells. The initial
process of tumor invasion involves loss of cell-cell adhesion
and increased cellular mobility, resembling many features
of epithelial to mesenchymal transition program during
developmental processes (e.g., loss of E-cadherin expression,
increased expression of N-cadherin, and enhanced growth
factor signaling) [231]. E-cadherin has been shown to be
cleaved by ADAM9, ADAM10, and ADAM15 in cancer
cells in vitro [61, 186, 194, 232]. The cytoplasmic domains
of cadherins interact with 𝛽-catenin, and reduced surface
expression of E-cadherin causes 𝛽-catenin to dissociate
from the plasma membrane. When stabilized by active
Wnt signaling or by mutations in the 𝛽-catenin phospho-
rylation/degradation pathway, 𝛽-catenin translocates to the
nucleus where it modulates expression of genes involved in
cell migration and invasion [233]. Additionally, soluble E-
cadherin can disrupt adherens junctions and increase migra-
tion and invasion by activating EGFR signaling and upregu-
lating several MMPs [232, 234]. ADAM10 is a major protease
for N-cadherin shedding in vivo [235]. Increased N-cadherin
expression enhances themigration and invasiveness of cancer
cells by acquiring an affinity for mesenchymal stroma cells
[231, 236]. Surprisingly, ADAM10-mediated cleavage of N-
cadherin enhances themigration of glioblastoma cells in vitro
[199]. Tetraspanins have been recognized as positive and neg-
ative regulators of tumor cell migration [237]. As described
above, tetraspanin CD9/TSPAN28 acts as adapter molecule
of ADAM17 and contributes to ADAM17 surface activity.
By this, CD9 indirectly contributes to shedding of adhesion
molecules such as ALCAM, which then may contribute to
its reported tumor suppressive function [237]. TSPANC8
family proteins (TSPAN5, TSPAN10, TSPAN14, TSPAN15,
TSPAN17, and TSPAN33) differentially regulate ADAM10
compartmentalization and thereby selectively promote cleav-
age ofN-cadherin or CD44whichmay represent critical steps
in tumor cell migration [55, 238]. In addition, tetraspanin
TM4SF3/TSPAN8 promotes ADAM12 upregulation and by
this esophageal carcinoma cell migration [239].

Similar to keratinocytes, EGFR ligand shedding and sub-
sequent EGFR signaling are a key factor in tumor migration
and invasion [240, 241]. For instance, ADAM17 enhances
migration and invasion of breast cancer and glioblastoma
stem cells by promoting EGFR signaling through shedding
of several EGFR ligands [214, 215, 242] and PI3K/AKT
activation, for example, shown for TGF-𝛼 shedding in triple-
negative breast cancer cell invasion [215] andEGFRactivation
in hypoxia-induced glioma cell invasion [243]. ADAM17
generates a transmembrane C-terminal fragment (tCTF)
of syndecan-1, which is further processed by 𝛾-secretase,
resulting in a cytoplasmic C-terminal fragment (cCTF). Full-
length syndecan-1 and the tCTF mediated lung cancer cell
invasion andmetastasis, whereas the cCTF antagonized these
functions [174, 175].

Overexpression of ADAM8 in pancreatic ductal ade-
nocarcinoma cells increased their migratory and invasive
capacities in vitro and in vivo by enhancing ERK1/2 signaling
and MMP activity and the clustering of 𝛽

1
integrin [48].

Moreover, lung cancer cells express an alternatively spliced

variant of ADAM8, termed Delta14, which increased lung
metastasis to bone in vivo [244].

Hepatic stellate cells secrete an alternatively spliced sol-
uble isoform of ADAM9 (ADAM9-S), which can interact
with 𝛼

6
𝛽
4
and 𝛼

2
𝛽
1
integrins on colon carcinoma cells via

its disintegrin domain. A similar interaction was also shown
for 𝛼
6
𝛽
1
integrin in prostate tumor cells [187]. Integrin-

bound ADAM9-S increases the invasive capacity of colon
carcinoma cells by cleaving laminin and other ECM compo-
nents in vitro [188]. Additionally, ADAM9-S increases breast
cancer migration via its metalloproteinase activity, while
the transmembrane form of ADAM9 (ADAM9-L) has the
opposite effect on migration, which requires its disintegrin
domain [185]. Furthermore, ADAM9 disintegrin domain
mediates the interaction of fibroblasts and melanoma cells
contributing to proteolytic activities required during invasion
of melanoma cells [245].

ADAM10 can also generate soluble L1 cell adhesion
molecule (L1CAM), which stimulates the migration of tumor
cells through binding to the 𝛼V𝛽5 integrin [149]. Additionally,
L1CAM shedding can take place either at the cell surface or in
the endosomal and exosomal compartments, which is medi-
ated by ADAM10 [196, 246]. The resulting soluble L1CAM
enhances ERK phosphorylation and cell migration [246]. In
glioma cells, upregulation of ADAM10 at the tumor edges was
shown to result in increased soluble L1CAM, interacting with
integrin receptors, activation of focal adhesion kinases, and
focal complex turnover, all resulting in enhanced migration
[197]. ALCAM is also upregulated on many tumors. ALCAM
shedding from epithelial ovarian cancer (EOC) cells by
ADAM17 interrupts adhesive functions, which is an essential
step in EOC cell migration [247]. In oral squamous cell
carcinoma, overexpression of ADAM10 associates with 𝛼V𝛽6
mediated invasiveness of the tumor cell [205]. In human non-
small-cell lung cancer, overexpression of ADAM10 increased
themigration and invasion potential of the tumor cells via the
activation of the Notch 1 signaling pathway [200].

Highly metastatic tumors are associated with increased
expression of ADAM12 [248]. Overexpression of ADAM12
increases migration and invasion of small cell lung cancer
and head and neck squamous cell carcinoma cells [248,
249]. Further, adhesion states for migration and anchorage
of melanoma cells are partly regulated by interactions of
ADAM12 with 𝛼

9
𝛽
1
[207]. As already described for ADAM9,

ADAM12 exists in a transmembrane and in a soluble form. In
particular, ADAM12-S was associated with breast cancer cell
invasion in vitro and metastasis in vivo [206].

ADAM15 promotes the migration and invasion of non-
small-cell lung cancer cells by increasing the expression of
MMP9 and the conversion of pro-MMP9 to active form
[210]. In contrast, ADAM15 suppresses vitronectin- and
fibronectin-induced cell adhesion and migration in ovarian
cancer cells by binding to the 𝛼V𝛽3 integrin via its RGD
domain [212]. Interestingly, macrophage- and tumor-derived
exosomes containing ADAM15 have a similar effect on
cancer cell adhesion and migration via the same mecha-
nism [250]. Similar to ADAM15, the proteolytically inactive
ADAM23 can function as adhesion molecule by binding to
the 𝛼V𝛽3 integrin and promoting cell-cell interactions and
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concomitantly modulating metastasis by reducing migration
and adhesion to vitronectin [220]. Hyaluronic acid, another
component of the ECM, is a ligand for the cellular adhesion
molecule CD44. ADAM10 and ADAM17 regulate cell-ECM
adhesion by shedding CD44, thereby stimulating CD44-
mediated migration of adenoma cells through Rac activation
[93, 189].

6.2. Intra- and Extravasation of Cancer Cells. Upon reach-
ing a blood or lymph vessel, invading cancer cells disrupt
the endothelial junctions and cross the endothelium into
the bloodstream. Surviving circulating cancer cells attach
to endothelial cells in a similar manner as leukocytes (as
discussed earlier), involving a wide range of ligands including
transmembrane chemokines, selectins, integrins, cadherins,
CD44, and immunoglobulin superfamily receptors, followed
by transmigration.

ADAM8 stimulates endothelial transmigration of triple-
negative breast cancer cells via 𝛽1-activation in vitro and
promotes tumor metastasis in vivo [183]. Eph receptor tyro-
sine kinases and their membrane-bound ligands, ephrins, are
implicated in a variety of cellular responses, including repul-
sion, attraction, and migration, depending on the cell-type
and receptor-ligand binding partners [251]. Eph receptor A1
and ephrinA1 complexesmaintain cell-cell adhesion between
endothelial cells, however enhancing ADAM12-mediated
shedding of ephrinA1 byTGF-𝛽1 in primary tumors results in
lung hyperpermeability that allows tumor cells to extravasate
into the lungs [208]. Additionally, knockdown of ADAM15
in a prostate cancer cell line (PC-3) reduced adhesion to and
transmigration through a monolayer of endothelial cells in
vitro. In line, loss of ADAM15 in PC-3 cells injected in SCID
mice led to an attenuated bone metastasis [209]. Cleavage
of the transmembrane chemokine and adhesion molecule
CXCL16 is predominantly mediated by ADAM10 [252].
Increased serum levels of shed CXCL16 have been correlated
with high metastasis rate in ovarian cancer cells, which may
reflect a prometastatic ADAM10 activity [191]. Moreover,
soluble CXCL16 can mediate the attraction and adhesion of
prostate cancer cells via 𝛼V𝛽3 integrin clustering [192]. On
the other hand, high expression of CXCL16 but low ADAM10
expression, which presumably leads to less CXCL16 shedding
and accumulation of transmembrane CXCL16, correlated
with longer survival in renal cancer patients. Interestingly,
transmembrane CXCL16 in renal cancer cells was found to
act proadhesive but antimigratory [193].

7. Conclusion and Outlook

In summary, ADAMs 8, 9, 10, 12, 15 and 17 can contribute
to cell migration by interfering with distinct steps of cell
migration via a number of different effector molecules. This
is true for inflammatory cells, various tissue cells, and cancer
cells and involves proteolytic cleavage or nonproteolytic
interactions of the proteases. Importantly, to promote cell
migration, these actions must become efficient at the right
time and the right place. For example, shedding of adhesion
molecules on leukocytes before the migration process has
started will result in less adhesiveness, but once an adherent

leukocyte needs to resolve adhesion in order to move to its
destination shedding of adhesionmolecules may be required.
Furthermore, when a tumor cell acquires amotile phenotype,
ADAMs can resolve adhesion contacts to the ECM, thereby
allowing dissemination of the tumor, but, on the other hand,
when it comes to settlement of this motile cell to form a
metastasis shedding of adhesion molecules can also prevent
its attachment.

Studies with genetically altered mice indicate which
ADAMs may hold a promigratory function in general.
Deletion ofADAM10 in leukocytes reduces leukocyte recruit-
ment in a murine model of acute lung inflammation [91].
ADAM10 deficient hepatocellular carcinoma showed less
metastasis formation in vivo [203]. Transfer experiments
also showed a promigratory role of ADAM8 on leukocytes
(unpublished data) and on breast and pancreatic cancer cells
[48, 183]. Moreover, ADAM9 deficiency in lung cancer cells
reduces metastasis in the brain [253]. However, deficiency of
pathophysiologically important ADAM proteases does not
necessarily reduce cell migration in general. For example,
deficiency of ADAM17 in leukocytes clearly reduces inflam-
matory mediator production and reduces the response to
bacterial sepsis [254], but the absence of this protease does
not lead to diminished recruitment of inflammatory cells to
inflammatory sites [88, 91, 255].

Thus, inhibition approaches for selectedADAMproteases
on leukocytes or cancer cells are warranted. Inhibitor devel-
opment is most advanced for ADAMs 8, 10, and 17 [32, 256].
In endotoxin-induced acute lung inflammation, treatment
with a combined ADAM10/17 inhibitor was found to limit
leukocyte recruitment [257]. In a murine model of allergic
lung inflammation, ADAM10 inhibition could yield protec-
tive effects, whichmay be partly due to inhibition of leukocyte
migration [258]. Interrupting ErbB receptor transactivation
by a combined inhibitor of ADAM10 and ADAM17 reduced
non-small-lung-cancer-cell formation, subcutaneous tumor
growth, and breast cancer and fibroplasia [259, 260]. Fur-
thermore, alsoADAM8 inhibition via a neutralizing antibody
or a cyclic peptide inhibitor led to a reduction of allergic
lung inflammation, which is associated with a reduction of
inflammatory cell infiltration [134, 261]. ADAM8 inhibition
could also decreasemetastasis of implanted pancreatic tumor
cells [48]. ADAM12 inhibitory antibodies or genetically
altered tissue inhibitor of metalloproteinases 2 (TIMP2)
for specifically blocking ADAM12 or recombinant ADAM12
prodomain still need to be investigated in animal models of
cancer cell migration [262, 263].

The present data indicate that inhibition of selected
ADAMs may be of benefit in a situation of severe acute
inflammation and/or cancer. However, as summarized in
several other reviews, ADAMs also contribute to regenerative
processes and additionally, for some less specific metallopro-
teinase inhibitors, hepatotoxicity has been reported [32, 256].
Therefore, it may be advisable to particularly target ADAMs
on immune cells or cancer cells to prevent their undesired
migration. The development of bivalent reagents binding
to these target cells on the one hand and also specifically
blocking ADAM proteases on the other hand may lead to
a more specific treatment strategy. This approach may be of
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particular interest for breast cancers that critically depend on
the generation of ErbB-family growth factors via ADAM10 or
ADAM17 not only in terms of cell migration and metastasis
but also in terms of cell proliferation and tumor growth.
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[36] S. Düsterhöft, M. Michalek, F. Kordowski et al., “Extracellular
juxtamembrane segment of ADAM17 interacts with mem-
branes and is essential for its shedding activity,” Biochemistry,
vol. 54, no. 38, pp. 5791–5801, 2015.
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