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A resource for integrated genomic 
analysis of the human liver
Yi‑Hui Zhou  1,2*, Paul J. Gallins2, Amy S. Etheridge3, Dereje Jima2, Elizabeth Scholl2, 
Fred A. Wright1,2,4 & Federico Innocenti3*

In this study, we generated whole-transcriptome RNA-Seq from n = 192 genotyped liver samples 
and used these data with existing data from the GTEx Project (RNA-Seq) and previous liver eQTL 
(microarray) studies to create an enhanced transcriptomic sequence resource in the human liver. 
Analyses of genotype-expression associations show pronounced enrichment of associations with 
genes of drug response. The associations are primarily consistent across the two RNA-Seq datasets, 
with some modest variation, indicating the importance of obtaining multiple datasets to produce a 
robust resource. We further used an empirical Bayesian model to compare eQTL patterns in liver and 
an additional 20 GTEx tissues, finding that MHC genes, and especially class II genes, are enriched for 
liver-specific eQTL patterns. To illustrate the utility of the resource to augment GWAS analysis with 
small sample sizes, we developed a novel meta-analysis technique to combine several liver eQTL 
data sources. We also illustrate its application using a transcriptome-enhanced re-analysis of a study 
of neutropenia in pancreatic cancer patients. The associations of genotype with liver expression, 
including splice variation and its genetic associations, are made available in a searchable genome 
browser.

Genomic studies of the human liver have predominantly focused on its role as the most important organ 
for detoxification1, while recent research has also expanded an understanding of its role in metabolism and 
homeostasis2, and an important role in immunology3. Studies of genetic influence on liver-related phenotypes 
have elucidated predisposing factors to liver disease4, drug-induced liver injury5, and have provided evidence 
for pharmacogenomic variation in response to chemotherapy6 and other drugs7,8. However, relevant human 
genome-wide association studies (GWAS), especially for pharmacogenomics, have been challenging due to 
sample size limitations9. Furthermore, many of these analyses have been discovery-based, while an improved 
mechanistic understanding of genetic regulation may be needed in order to identify novel targets and develop 
novel therapeutics10.

The utility of genetic association for liver-relevant phenotypes has also been shown less directly. Drugs that 
exploit targets the genes of which have evidence of GWAS association for multiple phenotypes have been shown 
to have greater success in early phase clinical trials11, following work by Nelson et al.12, who used liver expression 
quantitative trait loci (eQTLs) as a key source of evidence for genetic and physiological relevance. Here eQTLs 
serve as a bridge between genetic association and phenotypes, likely reflecting causal genetic effects13 and the 
more proximal effects of gene expression as intermediate traits14.

Liver eQTL studies using microarray expression quantification have been among the largest performed (after 
blood)15, and a recent liver eQTL meta-analysis16 in n = 1183 individuals described evidence of sex-biased effects 
and colocalization for loci related to blood metabolite and lipid levels. These previous liver eQTL studies pro-
vided important results, but have encountered some limitations, partly due to sensitivity and specificity issues 
common with microarrays17. In addition, previous microarray-based eQTL studies have not enabled study of 
splicing variation18 under genetic influence. RNA sequence-based genotype-expression resources such as the 
Genotype-Tissue Expression project (GTEx)19 have greatly advanced our understanding of genetic variation in 
gene regulation (including splicing) across a variety of human tissues, including liver. However, limitations in 
sample size and in representing potential heterogeneity in sampling protocols has prevented the community 
from fully exploiting the connections between tissue-specific variation and human disease. In addition, the 
focus of GTEx has emphasized functional information and annotation for the eQTLs (i.e., associated SNPs)20, 
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leaving considerable room for analysis of the genes that are eQTL targets within a tissue of interest. In contrast, 
a perspective based on the target genes can potentially provide a more immediately interpretable context, with 
the ability to reach clear conclusions on aspects such as pathway enrichment, and in quantifying degree of tissue 
specificity among gene targets of eQTLs. Moreover, in contrast to earlier GTEx papers21, which had employed 
fully Bayesian methods to quantify tissue specificity among eQTLs, the final GTEX v822 has provided less formal 
modeling of tissue-tissue relationships, leaving room to expand our understanding of these relationships.

The extent of heterogeneity across eQTL studies has been relatively unexplored, including for liver. Many 
previous studies had employed microarrays, so that the sources of observed variation across studies are difficult 
to attribute definitively, for example to heterogeneity in sampling protocols vs. platform variation. A potential 
strategy to identify meaningful heterogeneity across eQTL studies is to examine variation in comparison to 
phenomena such as the degree of enrichment of eQTLs with respect to GWAS signals23. Moreover, for complete-
ness, eQTL association analyses should not be restricted to a single analysis type, but should include both robust 
association methods24 and the newer concept of quantification of allelic fold-change25,26.

In this study, we performed RNA-Seq profiling of n = 192 liver samples (hereafter the “UNC Liver” samples), 
nearly doubling the number (n = 208) of liver samples available from the GTEx project19,22. We present (i) new 
data with (ii) a re-analysis of GTEx liver data, and analyses including 19 additional GTEx tissues, and (iii) results 
from the microarray datasets comprising a previous liver eQTL meta-analysis16, in order to create a more com-
prehensive resource of liver eQTL results. Our analyses include results from robust association methods24,27, 
quantification of allelic fold-change25,26, and exon usage-based evidence for splicing eQTLs28. This comprehensive 
work has created the largest and most complete liver eQTL resource with this requisite depth of analysis. We 
provide novel enrichment observations, and careful modeling to quantify the degree of liver specificity in com-
parison to other tissues. In addition, we illustrate the utility of the data by describing a novel method to combine 
transcriptome-wide association results across our datasets, and illustrate the approach with an application to 
genetic association with treatment-associated neutropenia in pancreatic cancer patients. We present cis-eQTL 
results in a new public portal, with the link listed in https://​github.​com/​zhouL​abNCSU/​Liver_​proje​ct_​resou​rces.

Results
Data sources and quality control.  The UNC Liver (RNA-Seq) data have not been previously described 
for eQTL analysis, although a minority subset of the patient samples overlap with the previous microarray meta-
analysis16. Samples were subjected to extensive quality control, emphasizing appropriate matching of genotype 
and expression samples (Methods), reducing the number of paired genotype-expression samples from n = 206 to 
n = 192. Analyses were performed using expression of 29,245 genes and approximately 10.8 million genotyped 
or imputed single nucleotide polymorphisms (SNPs, see Methods). Data for 20 tissues including GTEx liver 
(n = 208) from the GTEx project version 822 (RNA-Seq and genotypes) were obtained from dbGaP phs000424.
v1.p1. This set of tissues had been previously analyzed using GTEx v6 data by Li et al.29. Finally, results from a 
previous meta-analysis of four individual microarray liver eQTL studies16 were used for comparison for some 
analyses. The sample sizes, number of genes, and other details for all data sources are shown with publication 
links in Supplementary Table 1.

Association results.  For the GTEx liver and UNC Liver datasets (RNA-Seq) local eQTL analysis (cis, ± 1 Mb 
window from the transcription start site), Matrix-eQTL24 was used for primary linear modeling after a robust 
expression transformation as used in GTEx , and ACMEeQTL26 as an allelic fold-change alternate approach. 
Distant (trans) association mapping was performed using Matrix-eQTL and vetting to avoid spurious cross-
mapping as described in Methods. The four datasets and combined meta-analysis from16 were used as published. 
An “eGene” analysis based on the FastQTL software27 was used to generate gene-level p values for the RNA-Seq 
liver datasets.

Figure 1A shows a Manhattan plot from the linear regression analysis for the UNC Liver data, using the 
minimum p value per gene for cis-eQTLs, while Fig. 1B shows the analogous results for the eGene27 analysis, for 
which p values represent gene-level significance. A total of 881,173 SNP*gene eQTL findings were significant at 
false discovery q < 0.1, for 18,051 unique genes, and 6748 eGenes. For allelic fold change in UNC Liver, there were 
615,195 significant eQTL findings at q < 0.1, representing 15,407 unique genes. The top-ranked genes for the two 
analyses are shown in a higher-resolution version in Supplementary Figs. 1 and 2. Gene-level results, including 
the most significantly associated SNP for gene, for these and subsequent analysis methods are provided in Sup-
plementary File 1. Figure 1C shows a transcriptome-wide eQTL plot for the UNC Liver data, with cis-associations 
generally much more strongly significant than trans-associations. The GTEx Consortium found no significant 
liver trans-eQTLs after applying strict criteria to avoid spurious cross-mapping22, while after applying similar 
criteria to UNC Liver we found five significant trans-eQTLs, targeting FMO2, SRP54 (two different trans-eQTLs), 
SKA3, and CLCN5. These findings and a catalog of trans-eQTL findings for the two liver RNA-Seq datasets are 
shown in Supplementary Table 2, with mapping quality designations. Figure 1D shows genotype (number of 
minor alleles) for SNP rs2910788 vs. normalized expression for ERAP2, the most significant gene in the eGene 
analysis. Comparison of the UNC Liver data to GTEx liver for the allelic fold-change p values in Fig. 1E shows 
broad concordance of results across the two studies.

Enrichment.  Some of the motivation underlying previous eQTL studies has been the observation that 
eQTLs are enriched for GWAS disease associations23 and the GTEx project was motivated to elucidate tissue-
level eQTL variation30. Here we provide refined findings for liver by devising an enrichment test for various 
pharmacogenetically important gene sets, expressed as the natural log of odds ratios that the gene has a highly 
significant cis-eQTL (see Methods). For completeness of comparison, we included the UNC Liver and GTEx 

https://github.com/zhouLabNCSU/Liver_project_resources
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liver RNA-Seq datasets, as well as results from the microarray liver eQTL meta-analysis16. The analyses were not 
corrected for sample size, as the two RNA-Seq studies were of comparable size, and effect sizes for the microarray 
datasets had been combined across platforms, and thus are not of meaningful scale. Due to limitations in micro-
arrays for gene expression detection, fewer genes are available from these datasets, and our assumptions for 
gene set enrichment (see Methods) likely somewhat overstate the enrichment for the microarray meta-analysis. 
The results are shown in Fig. 2, in terms of odds ratios (natural log scale) for correspondence of highly signifi-
cant gene-level eQTL findings with gene set membership. The results generally show substantial enrichment of 
liver eQTLs for all the examined gene sets, with most of the confidence intervals not including zero. The meta-
analysis showed greater enrichment than the RNA-Seq studies, which we attribute to its larger sample size, and 
an upward bias due to fewer genes available for comparison (as discussed in Methods), but the fewer number 
of detected genes creates limitations for future utility of the dataset. Clear enrichment was present for genes in 
the NHGRI-EBI catalog of all trait associations (Fig. 2A), as well as for associations with a targeted set of traits 
considered to be liver-relevant (Fig. 2B, these and other gene sets described here provided in Supplementary File 
1). More targeted gene sets included DrugBank Drug Targets (Fig. 2C) and genes involved in various phases of 
drug metabolism, transport and response (detailed in Methods, Fig. 2D–H). The enrichment for the UNC Liver 
data vs. GTEx liver was generally comparable, which is consistent with their similar sample sizes, and illustrates 
the potential power of a resource combining the datasets. Using reasoning similar to that provided in31, we also 
performed the enrichment analyses after a correction for overall gene expression level, as shown in Supplemen-
tary Fig. 3. After this correction, the enrichment for all categories was generally present and qualitatively similar, 
but slightly attenuated, for most of the gene sets examined.

Splicing association.  We next performed a splice-variation QTL (sQTL) analysis in the UNC Liver and 
GTEx liver studies, following the sQTLseekeR approach28, which essentially identifies genetic association with 

Figure 1.   Liver RNA-Seq eQTLs. (A) SNP-level analysis of the UNC liver data, showing minimum association 
p values for local (cis) SNPs for each gene. (B) Gene level (eGene) results for the resource. (C) Transcriptome-
wide association plot, showing SNP genomic position on the x-axis, and transcription start site for the gene on 
the y-axis. Association P values are color-coded according to two levels of stringency as shown. (D) Normalized 
expression vs. genotype for a strongly associated gene and SNP rs2910788, expressed as number of minor alleles 
(association p < 10–20). (E) P values for an allelic fold-change measure show correspondence of gene-level results 
for GTEx liver vs. the UNC liver data (Spearman ρ = 0.30, p < 0.001).
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exon usage, i.e., proportion of total transcript signal apportioned to each exon. The approach reflects the fact 
that exon variation underlies isoform variation, which is more difficult to measure directly due to the need to 
statistically reconstruct full-length transcripts from short sequencing reads32. Figure 3A shows a Manhattan plot 
for the method applied to the UNC Liver data (2192 significant sQTL genes, q < 0.1), while Fig. 3B shows that 
the UNC Liver and GTEx liver data show significant but very modest gene-level consistency in their splicing 
QTL evidence. The sQTL p values are generally less significant than eQTLs, which we attribute the compara-
tively lower signal, as well as implicit multiple testing required to summarize evidence across exons. Figure 3C 
shows the exon-usage proportions for CYP2D6 as a function of genotypes for SNP rs3892097, for illustration. 
The variant is a splice acceptor site and the minor allele (known as the CYP2D6*4 polymnorphism) results in a 
non-functional protein (www.​snped​ia.​com/​index.​php/​Rs389​2097), and is associated with variation in urinary 
metabolites33 and effects of beta blockers34. Figure 3D shows pharmacologically-relevant gene enrichment plots 
for sQTLs for the UNC Liver and GTEx liver datasets. The enrichment appears generally stronger for the UNC 
Liver dataset than for GTEx, a difference that is statistically significant (p < 0.05) for the PharmGKB, DrugBank, 
and Transporters gene sets.

Tissue relationships.  Following our focus on liver expression regulation, we reasoned that gene-level 
(whole mRNA) analysis of tissue-specific eQTL behavior would be instructive. Bayesian modeling of tissue 
variation in cis-eQTLs has been highly instructive21, with posterior probabilities for eQTL effects that are highly 
interpretable. However, fully Bayesian approaches are infeasible for more than ~ 10 tissues35, with computational 
costs that increase exponentially. We utilized the recently developed approximate Bayesian HTeQTL method29, 
which can analyze up to ~ 20 tissues simultaneously and uses the entire collection of tissues to find tissue-tissue 
correlation structures to increase the power to discover tissue-common eQTLs. For this analysis, we followed 
the tissue selection of 20 GTEx tissues (primarily based on largest sample size) reported in29, to which we added 
the UNC Liver data as if it were a separate tissue. For each of the 21 tissues/datasets, gene-level summaries were 
extracted as posterior probabilities that each gene has an eQTL in that tissue (see Methods). These probabilities 
provide a convenient summary of eQTL evidence, and reflect a full consideration of correlation structures due 
to both (i) sample overlap, which is a design feature of the GTEx data, and (ii) tissue similarity, reflecting true 
biological similarities in eQTL effects35.

Figure 4A shows the results of hierarchical clustering of the tissues based on gene-level eQTL probabilities, 
which reflect the tissue eQTL similarity rather than mere gene–gene correlation between tissues. Several features 
are notable. Tissues such as brain, ovary, and whole blood appear quite distinct from other tissues. The two liver 
datasets also appear quite distinct from other tissues, and most similar to each other, providing reassurance 
about reproducibility of liver eQTL effects. Figure 4B shows the posterior probabilities across the 28,047 genes 
for GTEX v8 liver vs. UNC Liver, shown on the rank scale because a large number of genes have been shown 
to be associated with eQTLs with high probabilities21. We further reasoned that liver-specific eQTLs would be 
of special interest. The HT-eQTL software can provide, for each gene, an estimated posterior probability that 
the gene is influenced by a cis-eQTL. Accordingly, we plotted the rank of these posterior probabilities for liver 
eQTLs (combining GTEx and UNC Liver by averaging) vs. the averages for the non-liver tissues (Fig. 4C). The 

Figure 2.   Enrichment of disease- and pharmacologically-relevant genes among liver eQTLs, as described 
in text, for UNC liver, GTEx liver, and the microarray meta-analysis. Natural logarithms of odds ratios (95% 
confidence intervals) are shown for enrichment of genes with cis-eQTLs with p < 10–5 and each corresponding 
gene set described in text. Heterogeneity p values after Bonferroni correction were p < 0.001 for all comparisons, 
except for Phase I and Phase II (panels D and G), which were not significant at α = 0.05.

http://www.snpedia.com/index.php/Rs3892097
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figure conceptually highlights a region containing genes with high rank for liver eQTL effects, but low rank for 
non-liver eQTL effects. The nature of the HT-eQTL model does not enable a fully probabilistic inference for 
tissue-specific expression across two datasets, so we devised a simple measure of liver specificity as a ratio of 
eQTL posterior probabilities within vs. across tissues (see Methods). The utility of such a measure is primarily in 
providing gene rankings, and we performed gene set enrichment analysis of the ranked genes (Table 1). A clear 
enrichment of HLA/MHC genes was apparent (p < 0.0001) and inspection of the individual highly-ranked genes 
suggested a potential difference between MCH Class I and Class II genes. We created a custom categorization 
based on Class I/II genes, and Fig. 4D shows the enrichment results, expressed as a GSEA plot36.

An illustration of transcriptome‑wide association.  One important use of eQTL studies is in the cal-
culation of transcriptome-wide association (TWAS) p values for genetic association37, which uses expression 
imputation to provide strong evidence for a directional expression-based hypothesis for association23,37. We 
use as a proof of principle the study of treatment-induced neutropenia38 in n = 294 pancreatic cancer patients 
treated with gemcitabine, using the six liver eQTL studies (Supplementary Table 1) as reference dataset input. 
The omnibus statistic proposed by37 is intended to combine information across multiple eQTL reference data-
sets, but for these data appeared to potentially produce false positive results, based on permutation investiga-
tions. Upon further analysis, we observed that the omnibus method37 appeared to be highly sensitive to the 
correlation of the eQTL reference datasets, in a manner that is not fully controlled in the original method. We 
thus devised an approach (Methods) to account for this excess correlation, providing more accurate omnibus 
p values and harnessing the increased power due to consistent direction of expression association. In addition, 
our proposed approach can easily account for missing information, which occurs when gene expression is avail-
able in only some of the datasets. The results for our statistics are shown in Fig. 5A, with several genes reaching 
transcriptome-wide significance. The histogram of p values (Fig. 5B) illustrates that the overall distribution is 

Figure 3.   This study is a large compendium of liver splicing regulation information. (A) Splicing (exon usage) 
eQTLs, with minimum p value per gene shown. (B) Liver splicing eQTL p values (minimum per gene) shown, 
GTEx liver vs. UNC liver (Spearman ρ = 0.19, p < 0.0001). (C) Average exon-usage per genotype for rs3892097 
shows the effect of the SNP on splice variation on Cyp2D6. (D) Enrichment of pharmaco-gene sets for gene-
level splicing eQTLs. Enrichment for the UNC liver data was significantly greater than that of GTEx liver for 
PharmGKB (p < 0.001 after multiple comparison correction), while other gene categories were suggestive but not 
significant.
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reasonably uniform, but with a spike near zero, as expected if the false-positive rate has been controlled. Genes 
with false-discovery TWAS q < 0.15 were UGT1A3, SLC6A13, EIF3I, UGT1A2P, and CLDN3. The TWAS analy-
sis also identified increased MFAP5 expression at suggestive significance (p < 0.0003, q = 0.17) associated with 
decreased risk of neutropenia. In addition to the individually significant genes, a DAVID/EASE pathway analysis 
for “high-density lipoprotein (HDL) particle” (CC) gave false discovery q = 0.037.

Figure 4.   (A) Clustering of gene-level eQTL probabilities from the high-tissue Bayesian model shows that 
the liver studies (UNC and GTEx) are distinct from other GTEx tissues and similar to each other. Color 
identification scheme is the same as used in22. (B) UNC liver and GTEx gene-level liver posterior probabilities 
are highly correlated. (C) Comparison of non-liver to combined liver probabilities shows a distinct set of genes 
that are highly liver-specific for eQTLs. (D) GSEA plots: HLA/MHC genes are highly enriched among liver-
specific eQTL genes, especially for MHC Class II genes.

Table 1.   Pathway enrichment of liver specificity of genes with cis-eQTLs.

DAVID/EASE

Cluster Data source P value Q value

MHC classes I/II InterPro, SMART, UniProt, GO CC, GO BP, GO MF, KEGG 8.7 × 10–9 7.6 × 10–6

Mitochondrion UniProt, GO CC 2.1 × 10–6 2.4 × 10–4

Krueppel-associated box (KRAB) SMART​ 4.3 × 10–5 2.8 × 10–3

Ribosome UniProt, KEGG 4.5 × 10–4 1.9 × 10–2

DNA repair UniProt 1.6 × 10–3 5.3 × 10–2

IPA

Pathway P value Q value

Antigen presentation pathway 1.8 × 10–7 5.5 × 10–5

Allograft rejection signaling 1.5 × 10–6 2.3 × 10–4

OX40 signaling pathway 5.0 × 10–6 5.0 × 10–4

Phagosome maturation 3.0 × 10–5 2.2 × 10–3

Autoimmune thyroid disease signaling 5.1 × 10–5 2.8 × 10–3

Cdc42 signaling 5.5 × 10–5 2.8 × 10–3

Graft-versus-host disease signaling 6.9 × 10–5 3.0 × 10–3

Autophagy 2.3 × 10–4 8.7 × 10–3

B cell development 5.2 × 10–4 1.8 × 10–2

PD-1, PD-L1 cancer immunotherapy pathway 7.4 × 10–4 2.2 × 10–2

Acyl-CoA hydrolysis 2.5 × 10–3 6.5 × 10–2

Glutathione-mediated detoxification 2.6 × 10–3 6.5 × 10–2

Th2 pathway 4.3 × 10–3 1.0 × 10–1
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Discussion
We have intended this dataset to be used as a comparative resource, and for examining the effects of individual 
genes across a combination of liver datasets. Several of the top-line findings reinforce the utility of the dataset 
and relevance of the identified genes. For example, the UNC Liver analysis identified endoplasmic reticulum 
aminopeptidase 2 (ERAP2) as the most significant liver eGene. GTEx also identified ERAP2 as a highly signifi-
cant eGene (q = 3.6 × 10–61), with only one eGene with a lower q value. ERAP2 functions in the immune antigen-
processing pathway by trimming basic amino acid residues at the N-terminus of polypeptides to generate optimal 
peptide lengths for loading onto MHC molecules, thus shaping the repertoire of antigens presented to T cells 
both qualitatively and quantitatively39. The human liver is comprised of approximately 60–70% hepatocytes 
by mass, with the remaining 30–40% consisting of a diverse spectrum of innate and adaptive immune cells40. 
Polymorphisms in ERAP2 have been associated with predisposition to a number of autoimmune41–43 and infec-
tious diseases, including chronic hepatitis C infection44–47. These polymorphisms are in high LD (r2 > 0.75) with 
the leading eQTL for ERAP2 identified in this study, rs2910788, which was associated with increased ERAP2 
expression. Variants that increase the gene expression of ERAP2, including rs2910788, have been consistently 
associated with increased disease risk (Ye et al. 2010; PMID: 29108111). ERAP2 might also have a central role in 
immune-mediated adverse reactions by interacting with the HLA system48. So far, the only observation reported 
has been the interaction of genetic variation in ERAP2, in high LD with rs2910788 reported here, and HLA-
C*04:01 influencing the risk of Stevens-Johnson syndrome/toxic epidermal necrosis secondary to nevirapine49. 
Our study points to the need for an evaluation of ERAP2 for immune-related adverse effects of medications.

The most statistically significant trans-eQTL in our study was rs10413980 (C > T), which was associated 
(p = 2.7 × 10–16) with the expression of flavin containing dimethylaniline monooxygenase 2 (FMO2). The 
rs10413980 variant is also a cis-eQTL of zinc finger protein 160 (ZNF160). ZNF160 belongs to the largest indi-
vidual class of transcriptional repressors50–52. The T allele of rs10413980 was associated with increased ZNF160 
expression and decreased FMO2 expression, suggesting the possibility that rs10413980 regulates FMO2 expres-
sion through the repressor activity of ZNF160. FMO2 is the predominant FMO isoform present in lung53 and 
catalyzes the metabolism of therapeutic drugs including ethionamide which is used to treat multidrug-resistant 
tuberculosis54–56. GTEx did not identify any trans-associations in liver and did not identify rs10413980 as a lung 
trans-eQTL. It is noteworthy that FMO2 expression has a strong genetic cis-regulation, due to the FMO2*2 vari-
ant encoding a truncated, nonfunctional protein57,58. FMO2-mediated metabolism may affect both the efficacy 
and toxicity of ethionamide59. Therefore, in populations expressing the full length FMO2, differences in FMO2 
expression resulting from trans-eQTL regulation by rs10413980 may explain some of the interindividual variation 
in ethionamide pharmacokinetics and potential impacts on therapeutic efficacy and toxicity (PMID: 12356460). 
Here we suggest a novel mechanism for the regulation of FMO2 expression in the human liver.

The two findings of ERAP2 and the liver-specific enrichment of eQTLs in MHC genes point the attention to 
the issue of liver tissue heterogeneity and the biological roles of liver-related immune cells. Hepatocytes are capa-
ble of presenting antigens using the MHC class I pathway. However, only a few cell types (i.e. dendritic, Kupffer), 
considered professional antigen presenting cells, are able to prime naïve T cells. Liver-resident lymphocytes, with 
phenotypes distinct from those in circulation60, potentially play a key role in a variety of processes in response 
to infection and injury61,62. However, considering that hepatocytes are the predominant liver cell type63–65 and 
we use bulk RNA-Seq, this study cannot discern the cell-type origin of the reported signals. For GTEx liver, 
very few hepatocyte cell-type eQTLs were discovered66. Single-cell sequencing studies67 are still in early phases, 
and computational methods to deconvolute cell type-specific eQTLs vary in power68, with very few significant 

Figure 5.   A small neutropenia GWAS study (n = 294) illustrates the power of TWAS analysis from combined 
liver eQTL sources. (A) Quantile–quantile plot of − log10(p values) for TWAS analyses using four earlier liver 
eQTL studies and two RNA-Seq liver eQTL studies. (B) Histogram of p values for the omnibus statistic.
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findings reported for liver hepatocytes66. Thus, current eQTL studies using bulk RNA remain predominant, and 
first-line analyses22 approach cell-type variation largely in terms of covariate control, especially in order to avoid 
false positive findings for loci that affect cell type proportions within tissue31.

Given the cellular composition of liver, the highly polymorphic nature of the MHC69, the critical role of the 
liver as a buffer between gut contents and the systemic circulation, and the susceptibility of the liver to viral 
infection, enrichment of eQTL in immune-related genes representing both MHC class I and II is consistent with 
the immunological composition and function of the liver and differences in gene expression may help to explain 
individual differences in susceptibilities to viral infection and other liver related diseases.

Our TWAS neutropenia example further illustrates the utility of a liver eQTL resource. For the suggestive 
TWAS association of MFAP5, we note that70 have demonstrated that the Mfap5 knockout in mouse models 
results in decreased levels of circulating neutrophils and that MAGP2, the protein product of MFAP5, binds to 
members of the TGFβ superfamily. TGFβs are master regulators of hematopoietic stem cell quiescence suggesting 
regulation of TGFBs by increased expression of MGAP2 may result in increased hematopoiesis.

In conclusion, we describe here a liver eQTL resource including results from linear expression association, 
allelic fold change, and exon usage-based splicing eQTL analyses. We demonstrate the utility of this resource 
for providing mechanistic insights into genetic associations through the example of variation in (1) ERAP2 and 
predisposition to autoimmune and infectious diseases, (2) FMO2 and interindividual variation in ethionamide 
pharmacokinetics and potential efficacy and toxicity, and (3) MFAP5 neutropenia induced by chemotherapy. 
We make this resource available at https://​seeqtl.​org/.

Methods
Sample QC.  GWAS genotype data from the Illumina Human610-Quad v1.0 BeadChip and RNA-Seq 
expression data derived from liver tissues (described in Etheridge et al. 2020) using the Illumina HiSeq2000 
was available from 206 individuals. Four samples with a genotype call rate < 98% across samples were excluded. 
Genotype data was used to calculate pairwise identity by descent (IBD) in PLINK to check for replicated sam-
ples or first-degree relatives. PLINK was also used to calculate heterozygosity rates from genotype data on X 
chromosome SNPs to determine the sex of the individual providing the liver sample. Expression data from the 
X-linked gene XIST and the Y-linked gene RPS4Y1 was used to identify males and females. Four samples whose 
sex did not match between reported sex and the sex determined from both genotyping and expression were also 
excluded. Expression data was also used to check for errors in sample handling, including samples that might 
have been mislabeled or swapped. The top 100 genes associated with the most significant cis-eQTLs (in terms of 
Pearson r, genotype vs. expression) were identified and 100 linear models of expression ~ genotype were fitted. 
These models and genotypes from each sample were then used to predict expression levels for samples. Cor-
relations between actual and predicted expression levels were determined and the maximal correlation across 
samples, corresponding to the actual expression data with the highest correlation to predicted expression, were 
identified. In the case of proper sample handling, maximal correlations are expected between each sample and 
itself. In instances where the maximal correlation of a sample corresponded to a sample other than itself, both 
samples were excluded from analysis, following similar reasoning as71. Based on the criteria described above, six 
samples were excluded, and the number of samples remaining was n = 192 (124 males and 68 females).

RNA‑Seq pre‑processing.  Reads were trimmed of adapter and for quality using Trimmomatic v0.35 leav-
ing paired reads with a minimum length of 20 bp. Trimmed reads were mapped to the human genome refer-
ence hg19/GRCh37 via HiSat2. Alignment files were sorted and converted into bam files and Picard Tools used 
to mark duplicates in the alignments. Resulting bam files were indexed. Counts for exons, genes and TPMs 
(Transcripts per Kilobase Million) were generated with RNASeqC v2.1 in “legacy” mode with the Gencode.
v19.gene.v7.patched_contigs.gtf annotation file as a guide. Count files were then aggregated into single files for 
each of exon reads, gene reads and gene TPMs with a Python script. The 29,245 gene transcripts with expression 
thresholds of > 0.1 TPM and ≥ 6 reads in at least ten individuals were selected for analysis. The distribution of 
TPMs in each sample was quantile normalized to the average empirical distribution observed across all samples. 
The normalized TPMs for each gene were subsequently transformed to the quantiles of the standard normal 
distribution.

Genotype pre‑processing and imputation.  Genotype data was imported into PLINK for quality con-
trol filtering. Variants with a call rate below 95% across samples, a minor allele frequency (MAF) < 0.01, or 
with significant deviation from Hardy–Weinberg equilibrium (HWE, p value < 1 × 10–6) were excluded prior to 
imputation. Stranding was verified for all remaining variants to ensure alignment with the 1000 Genomes Pro-
ject reference population. In instances where a stranding mismatch was identified, alleles were either flipped to 
match those in the 1000 Genomes Project data or variants were excluded due to ambiguous stranding. In order 
to supplement the directly interrogated genotypes on the platform, genotype imputation was performed for 
each chromosome. A two-step process was performed for imputation. First, QC-filtered genotype data was uti-
lized for sample haplotype estimation using the MACH (http://​csg.​sph.​umich.​edu/​abeca​sis/​MACH/​index.​html) 
software package. Phased haplotypes were subsequently used in Minimac2 (http://​genome.​sph.​umich.​edu/​wiki/​
Minim​ac2) to impute missing genotypes using the 1000 Genomes Project Phase 1 haplotypes as a reference. The 
information metric from Minimac2 was used to determine variants that were imputed with a high degree of 
certainty and variants with a r2 quality score < 0.3 were excluded from analysis. In addition, variants that had a 
MAF < 0.01 were excluded from analysis. Dosages in terms of the minor allele were calculated for the 10,856,510 
variants remaining in the analysis.

https://seeqtl.org/
http://csg.sph.umich.edu/abecasis/MACH/index.html
http://genome.sph.umich.edu/wiki/Minimac2
http://genome.sph.umich.edu/wiki/Minimac2
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Covariates.  Sex, age, genetic ancestry, and experimental batch effects were included as covariates in the 
analysis. The covariates for genetic ancestry were generated by running a principal component analysis of the 
genotype data using smartpca in the EIGENSOFT software package72. The first three principal components were 
determined to be significant. We applied correction of potential confounders in the expression data by control-
ling for 30 probabilistic estimation of expression residuals (PEER) factors, following19.

eQTL mapping.  cis-eQTL mapping was performed using the ACMEeQTL (https://​github.​com/​andre​yshab​
alin/​ACMEe​qtl)26 and Matrix-eQTL24(http://​www.​bios.​unc.​edu/​resea​rch/​genom​ic_​softw​are/​Matrix_​eQTL) 
software packages. Matrix-eQTL uses a linear model, and expression values were rank inverse transformed to 
follow a normal distribution prior to analysis. ACMEeQTL uses a log of linear model (i.e. both expression and 
the linear term are subjected to natural log transformation) applied to the TPM values. The mapping window 
was defined as 1 Mb to either side of the transcription start site (TSS) to identify cis-variants. Minor allele dosage 
of variants was used along with covariates to examine the association with processed expression data. The result-
ing t-statistics for each transcript-variant pair were used to generate p values. An “eGene” analysis based on the 
FastQTL software27 was used to generate gene-level p values from the most significant cis-SNP. The significance 
of the most highly associated variant per gene was determined from empirical p values (106 permutations), 
extrapolated from a beta distribution fitted to adaptive permutations. Results of these cis-eQTL analyses were 
integrated with liver eQTL data on 208 individuals in release V8 of the Genotype-Tissue Expression (GTEx) 
Project. Trans-eQTL mapping was performed using Matrix-eQTL to identify trans-variants that were on a differ-
ent chromosome from the target gene. The regionally most significant eQTL was determined for putative trans-
eQTL associations with FDR q < 0.1, and then subjected to additional quality control for (i) cross-mappability 
with another gene, following the criteria used in22, (ii) more than 2 significant eQTL regions associated with a 
single gene, (iii) a poorly annotated target gene with no gene symbol, (iv) a target gene that is a pseudogene. 
Only trans-associations with none of these potential flags was considered “high-quality,” an approach that leaves 
the possibility of false negatives. False discovery rate (FDR) control was applied for each set of findings using the 
Benjamini–Hochberg approach, with cis- and trans- tests corrected separately.

Splicing‑QTLs.  The sQTLseekeR software package (https://​github.​com/​guigo​lab/​sQTLs​eekeR)28 was used 
to detect splicing QTLs (sQTLs), which are variants associated with change in the splicing pattern of a gene. 
Here, splicing patterns are represented by the relative expression of exons in a gene as a proportion of all mapped 
reads. This software can assess the association between the genotype at a given variant and the splicing ratios of 
a given gene, using a multivariate approach, providing resampling-based gene-level p values (108 permutations) 
that were then subjected to Benjamini–Hochberg FDR control.

Designation for genes involved in drug response.  The NHGRI-EBI catalog (www.​ebi.​ac.​uk/​gwas/) 
was accessed and downloaded in March, 2020, and genes were cataloged as having associations in the cata-
log or not. A list of 1496 genes of drug response was compiled from the Pharmacogenomics Knowledge Base 
(PharmGKB) (http://​www.​pharm​gkb.​org/) (January, 2017), a comprehensive database that curates information 
about the impact of genetic variation on drug response; the PharmaADME Working group list of absorption, 
distribution, metabolism, and excretion genes (http://​www.​pharm​aadme.​org); the US Food and Drug Admin-
istration (FDA) Pharmacogenomics Biomarkers (https://​www.​fda.​gov/​drugs/​scien​ce-​and-​resea​rch-​drugs/​table-​
pharm​acoge​nomic-​bioma​rkers-​drug-​label​ing), the Nuclear Receptor Signaling Atlas (NURSA) Consortium73; 
the DrugBank catalog (https://​www.​drugb​ank.​ca/), a comprehensive database containing information on drug 
targets; and the literature74,75. This list was used to filter eQTLs for association with genes of drug response. The 
drug target gene set was compiled from the DrugBank catalog and is a list of genes that are targeted by approved 
drugs. Drug metabolism enzymes were divided into Phase I and Phase II, and “Transporters” used to denote 
liver transport enzymes. The PharmGKB gene set76 was compiled from the PharmGKB database and included 
all curated variants with gene–drug relationships regardless of level of evidence. Supplementary File 1 shows the 
full set of indicators (Yes/No) whether each gene belongs to each of the gene sets.

Enrichment for liver‑relevant gene sets.  To provide an easily interpretable enrichment statistic, for 
liver-relevant pharmacogenetically important gene sets, we used logistic regression to provide natural log odds 
ratios at the gene level for gene set membership and the presence/absence of a nominally significant cis-eQTL 
or eGene (p < 10–5). The UNC Liver and GTEx Liver datasets are of approximately the same size (~ 200 samples), 
and thus this simple approach can provide an effective comparison. We used the same approach for the microar-
ray meta-analysis, although with a larger sample size the power (and therefore log odd ratios) was expected to 
be considerably larger. However, the expression detection limitations for microarrays provide a challenge. Using 
only the genes considered to be above detection limits produced little evidence of gene set enrichment. We opted 
to consider all genes, by assuming genes with lower expression as “not significant,” which likely exaggerated the 
log odds ratios for the microarray meta-analysis, because higher expression genes are more likely to have signifi-
cant eQTLs and to belong to well-studied pathways. For the UNC Liver and GTEx Liver datasets we also pro-
duced a log odds ratio for enrichment, after correcting for the TPM average expression level for each gene in the 
logistic regression model. Tests of heterogeneity of enrichment reflect differences in the log odds ratios, and were 
tested using Cochran’s Q. For the sQTLSeeker results, we performed the analogous analyses in the same manner.

Multi‑tissue analysis and tissue specificity.  The HT-eQTL method (https://​github.​com/​reaga​n0323/​
MT-​eQTL/​tree/​master/​HT-​eQTL)29 was applied to the UNC Liver dataset along with 19 additional GTEx V8 

https://github.com/andreyshabalin/ACMEeqtl
https://github.com/andreyshabalin/ACMEeqtl
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL
https://github.com/guigolab/sQTLseekeR
http://www.ebi.ac.uk/gwas/
http://www.pharmgkb.org/
http://www.pharmaadme.org
https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.drugbank.ca/
https://github.com/reagan0323/MT-eQTL/tree/master/HT-eQTL
https://github.com/reagan0323/MT-eQTL/tree/master/HT-eQTL
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datasets, including two brain tissues, two adipose tissues, and a heterogeneous set of 16 other tissues including 
liver. This method jointly analyzes all cis pairs to enable the characterization of tissue specificity. The results of 
this analysis are probabilities that for a given cis pair, an eQTL is detected across any tissue, across all tissues, or 
specifically in one tissue. The methods of29 were used to provide a profile of probabilities, for each gene, whether 
the gene has a cis-eQTL in a particular tissue. These probability profiles (of length 21) were then used as vectors 
for hierarchical clustering of tissues, using a distance matrix of 1-ρ (Spearman correlation) and average linkage.

The Bayesian analysis revealed that a large proportion of genes have cis-eQTL associations in a large variety of 
tissues, even if weak19. The concept of tissue-specificity is then largely a matter of degree. Additionally, computing 
formal posterior probabilities for the combined liver datasets was not possible from the individual datasets, as 
several summation steps by HT-eQTL are done within each tissue (set of samples). Thus, we adopted a rank-
based procedure that was less formal but served to point to potential pathway findings. For each of the UNC 
Liver and GTEx datasets and the set of all genes, the rank was computed for the posterior probability that the 
gene had a cis-eQTL. The ranked vectors for liver and non-liver were contrasted by computing scores for each 
gene, score1 = (rank of UNC Liver + rank of GTEx liver) and score2 = (mean rank in all non-liver tissues). Then 
an approximate liver-specificity score was computed as specificity = score1/score2. The top 200 genes for this 
liver-specificity score were then used for DAVID/EASE (https://​david.​ncifc​rf.​gov/, version 6.8) and Ingenuity 
pathway analysis, while the liver-specificity score for all genes were used in the investigation of MHC pathway 
enrichment using GSEA36 (https://​www.​gsea-​msigdb.​org).

TWAS analysis.  A transcriptome-wide association study (TWAS) analysis (http://​gusev​lab.​org/​proje​cts/​
fusion)37 was performed to identify associations between a GWAS phenotype and a functional phenotype that 
was only measured in reference data. First gene expression weights from the UNC Liver and the 20 GTEx data-
sets, and four microarray datasets (“tissue”), were computed as the reference datasets. GWAS summary statistics 
for the neutropenia-related phenotype were available, and by following37 an association z-statistic vector zi for 
the neutropenia phenotype across all genes was obtained for each tissue i. Separate association results were 
generated for each reference dataset as z-statistics. The omnibus statistic in37 that is based on association p 
values was investigated using null permutations of the neutropenia-related phenotype from38, which should 
have resulted in nearly uniform p values. However, numerous false positives appeared, even under multiple test 
corrections, which we attributed to high correlations among the GTEx samples. We thus devised an alternative 
directional omnibus statistic, z =

∑
i zi/

√
v , where v =

∑
i

∑
j ρij and ρij is the observed correlation across the 

genes between zi and zj . As a final measure to ensure robustness, an approach similar to77 was used to linearly 
re-scale the resulting omibus z-statistics so that the 0.25 and 0.75 quantiles of the resulting distribution matched 
the corresponding quantiles of a standard normal.

Data availability
Genotype data for the UNC Liver study are made available as GEO submission GSE 26105, and expression data 
will be made available in July 2022, GSE 179250.
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