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Abstract
While integrins were originally discovered as cell adhesion receptors, recent
studies have reinforced the concept that integrins have central roles in cancer
that extend far beyond controlling cell adhesion and migration. Indeed, as
transmembrane cell surface receptors that occupy a critical position at the
interface of cellular and extracellular interactions and are capable of both
“inside-out” and “outside-in” signaling, integrins are uniquely poised to regulate
the cell’s ability to promote, sense, and react to changes in the tumor
microenvironment. Moreover, integrins are present on all cell types in the tumor
microenvironment, and they have important roles in regulating intercellular
communication. Decades of promising pre-clinical studies have implicated
certain integrins as attractive therapeutic targets in the cancer clinic.
Nevertheless, results of the few clinical trials that target integrins in cancer have
thus far been disappointing. Importantly, these clinical failures likely reflect the
emerging complexity of individual and combinatorial integrin function within
both tumor cells and other cell types of the tumor microenvironment, together
with a need to explore integrin-targeting agents not just as monotherapies but
also as adjuvants to more conventional radiotherapies or chemotherapies. In
this review, we will examine recent advances toward understanding how
integrins regulate cancer progression, including their roles in intercellular
communication and modulation of the tumor microenvironment. Additionally,
we will discuss factors that underlie the limited efficacy of current efforts to
target integrins in the cancer clinic as well as potential strategies to overcome
these challenges.
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The integrin family of cell adhesion receptors
Integrins are the major receptors on the cell surface for adhesion  
to the extracellular matrix (ECM)1. All members of the integrin 
family are heterodimeric, transmembrane glycoproteins that  
consist of an α and a β subunit, each with a cytoplasmic domain, 
a single-pass transmembrane domain, and a large extracellu-
lar domain. The dimerization of 18 α subunits and 8 β subunits 
in limited combinations leads to the formation of 24 different 
integrin pairs with distinct and often overlapping ligand-binding  
specificities. As a group, integrins interact with a plethora of  
ECM proteins, to which they bind via their extracellular  
domains1. Simultaneously, integrins interact with cytoskeletal  
proteins via their cytoplasmic domains to mediate a physical,  
transmembrane linkage of the ECM to the cytoskeleton, which is 
critical for controlling cell shape, polarization, and motility1–5.

It has long been known that integrins can also interact directly or 
indirectly with a wide variety of signaling effectors, thereby func-
tioning as conduits of bidirectional signal transduction across the 
cell membrane1,2,6,7. Indeed, integrins can regulate intracellular 
pathways in response to ECM binding or other extracellular cues 
(i.e. “outside-in” signaling) while cytoplasmic interactions can 
regulate the activation state of an integrin to alter its affinity for 
extracellular ligands (i.e. “inside-out” signaling)1,6,8. Such integrin-
mediated signal transduction controls a wide variety of cell func-
tions that are important for both normal and pathological processes, 
including survival, proliferation, migration, ECM remodeling, and 
gene expression1,3,6.

Integrins play critical roles in cancer progression, where they are 
expressed on the surfaces of both tumor cells and all other cell  
types present in the tumor microenvironment (TME). From within 
these distinct cellular compartments, integrins regulate func-
tions of both tumor cells and stromal cells that promote tumor 
growth and malignant progression, including the above-mentioned  
cell-autonomous functions, as well as communication between 
different cell types of the TME (for reviews, see 9–14). Thus, as  
bidirectional signaling receptors that regulate both cell-mediated 
changes to the microenvironment and cellular responses to those 
changes, integrins are attractive targets for therapeutic strate-
gies against cancer. Indeed, the general concept of targeting 
integrin function to treat cancer or other diseases is already well  
established10,11,15,16. Here, we will briefly examine the current state 
of integrin-targeting cancer therapeutics, as well as limitations 
and knowledge gaps in the field that must be overcome to better 
exploit integrins as efficacious cancer targets. In particular, we will 
consider recent advances in understanding the complex roles that 
integrins play in modulating the TME and how this knowledge 
may impact the development of strategies to target integrins in the  
clinic, either as monotherapies or as adjuvants to conventional  
radiotherapies or chemotherapies.

Pro-tumorigenic integrin signaling in cancer cells
Generally, integrin-mediated signal transduction occurs through 
direct or indirect interaction of the integrin cytoplasmic domain 
with cytoplasmic signaling effectors, which in some cases may be  
aided through lateral interactions with other integrin-associated 

cell surface proteins such as tetraspanins, caveolin, or urokinase-
type plasminogen activator receptor (uPAR)11,17–19. It has long been  
known that various intracellular signaling effectors can propagate 
outside-in integrin signaling, as reviewed in detail elsewhere6. 
Among the best-studied integrin-mediated signaling effec-
tors in cancer cells are the non-receptor tyrosine kinases focal 
adhesion kinase (FAK) and Src. FAK and Src are both elevated 
in solid tumors of many origins, including breast, epidermal, 
and colon cancers, where they contribute to tumor growth and  
malignancy20,21. Following integrin-mediated cell adhesion, FAK 
is activated by an autophosphorylation event on Y397, which  
generates a high-affinity binding site for the SH2 domain of Src. 
Once bound, Src mediates the phosphorylation of additional  
tyrosine residues of FAK, creating binding sites for other sig-
naling and adaptor molecules. The activated FAK/Src scaffold  
thereby links integrins to downstream signaling effectors  
such as the Rac1 GTPase or the mitogen-activated protein  
kinases (MAPKs, i.e. ERK1/2, JNK, or p38).

Such signaling pathway activation can augment tumor cell  
migration, proliferation, survival, and gene expression, thus con-
tributing to tumor growth and metastasis and implicating these 
pathways as potential therapeutic targets22,23. Interestingly, results 
of studies in breast and squamous cell carcinoma models suggest 
that integrins, possibly through FAK signaling pathways, promote  
tumorigenesis by maintaining the pool of slow-cycling stem 
cells that are the primary targets of oncogenic transformation24,25.  
Importantly, integrin signaling (in some cases through FAK) has 
been shown to mediate resistance to conventional therapies such 
as radiation and chemotherapy26–30, indicating that the inhibi-
tion of integrins may prove to be most beneficial in the adjuvant  
setting to render other therapies more effective (as reviewed  
in 30). On the other hand, the stimulation of integrin signaling 
using agonists has also been shown to improve the response of 
melanoma to chemotherapy, suggesting that in some cancers the  
activation, rather than inhibition, of certain integrins may be  
beneficial, as reviewed elsewhere31.

Roles for integrins in the regulation of the tumor 
microenvironment
It is now well accepted that transformed cells, in and of them-
selves, are not sufficient to generate appreciable tumors with meta-
static potential. Rather, cancer development additionally requires  
a permissive TME, and recent work in the field of cancer biology 
has begun to focus more on non-tumor cell components of the  
stroma as drivers of malignant progression (for reviews on this topic, 
see 32–34). As bidirectional signal transducers that are expressed 
on all cell types within the TME, integrins have emerged as  
regulators of tissue remodeling and intercellular communication 
between different cell types that drive tumor-supporting features of 
the tumor niche. In the following sections, we will focus on the 
roles that integrins play in modulating the TME through control 
over matrix remodeling and paracrine communication between  
distinct cell types. We will also discuss the importance of  
considering the complexity of these roles when attempting to  
circumvent the challenges associated with integrin-targeting  
therapies in the cancer clinic.
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Integrin regulation of tumor cell invasion and metastasis
The journey of a cancer cell from the primary tumor to a distant 
metastatic site is an arduous one. To survive this journey, cancer 
cells must be able to disassociate from the primary tumor, invade 
adjacent stroma, intravasate the vasculature (either blood or  
lymph), survive circulation, then extravasate from the vascula-
ture into a hospitable secondary site. Each step of this metastatic  
process selects for those tumor cells that have acquired genetic  
and/or epigenetic traits that allow them to survive, grow, and  
invade in the face of a dynamic microenvironment and to degrade  
or remodel basement membranes/ECM along the way35.

Integrins play vital roles in cancer metastasis during every leg  
of the metastatic cascade36,37. Indeed, integrins are critical in  
mediating adhesion dynamics and migration during metastasis 
through their ability to regulate both physical interactions with 
the ECM and actin cytoskeletal dynamics3–5. Certainly, roles for 
integrins extend well beyond cell adhesion and migration in their 
capacity to stimulate intracellular signaling pathways that pro-
mote proliferation and survival6,38. Consistently, the upregulation 
or persistence of certain integrins has been generally linked to  
tumor invasiveness9,12. For example, the expression on certain  
cancer cells of a number of integrin subunits, including α3, α5,  
α6, αv, β1, β3, and β4, has been linked to invasive and metastatic  
potential39–42.

With regard to the metastatic spread of cancer, the ability of 
integrins to control cell adhesion and migration alone is insuf-
ficient to drive invasion/metastasis, since an intact basement  
membrane and stromal ECM provides a physical barrier that  
precludes a normal cell’s ability to invade local and metastatic  
sites. Thus, a critically important function of integrins is their 
additional ability to regulate matrix organization and remodeling  
through both proteolytic and non-proteolytic mechanisms12,43. 
Indeed, their dual roles in modulating both cell migration and  
ECM remodeling makes them astute mediators of invasion and 
metastasis and further implicates them as viable targets for  
therapeutic intervention.

Numerous studies have shown that integrins can promote cell  
invasion through controlling the expression and/or proteolytic  
function of matrix metalloproteases (MMPs) and other extracel-
lular proteases that directly degrade ECM proteins, as reviewed  
extensively elsewhere12,44. Additionally, it is important to keep 
in mind that integrin-mediated modulation of MMPs and other 
matrix-modifying enzymes can impact tumorigenesis through the 
release of ECM-bound reservoirs of stored growth factors into 
the TME45,46. In these ways, the impact of integrin-dependent pro-
tease expression/function can have profound effects on cancer  
progression, including by mediating intercellular communica-
tion between cells in the TME via proteolytic activation of growth  
factor signaling47–49.

Integrin regulation of tumor angiogenesis
Since intratumoral vessel generation is essential for appreci-
able tumor growth, many anti-cancer therapeutics have focused  
on the inhibition of endothelial cell functions required for  

angiogenesis rather than directly targeting tumor cells  
themselves50,51. It is well documented that several endothelial 
integrins, such as certain αv integrins and α5β1, have complex 
roles in promoting tumor angiogenesis through the regulation of 
endothelial cell migration and proliferation52–54 and that simul-
taneous inhibition of both αvβ3 and α5β1 may be required for 
potent anti-angiogenic effects in some cases55. Interestingly, 
another recent study showed that endothelial-specific deletion 
in mice of key RGD-binding integrins (i.e. α5β1 and αvβ3/
β5) failed to reduce tumor angiogenesis, indicating compensa-
tory involvement of other integrins and illustrating the potential 
importance of targeting multiple integrins at once to inhibit tumor  
angiogenesis56. Indeed, pro-angiogenic roles for the collagen-
binding integrins α1β1 and α2β1 have been described57. Addi-
tionally, integrin α4β1 and its ligand, vascular cell adhesion  
molecule-1 (VCAM-1), have been demonstrated to be important 
in vessel formation in both tumor and non-tumor settings58,59.  
Other potentially important receptors on endothelial cells include 
the laminin-binding integrins α3β1, α6β1, and α6β460,61; however,  
their roles in angiogenesis are less well explored. Results of  
genetic studies indicate that while endothelial β4 promotes tumor 
angiogenesis62, the α6 and α3 integrin subunits have suppressive 
roles in tumor angiogenesis63,64. Collectively, these findings may 
reflect opposite roles for α6β1 and α6β4 in tumor angiogenesis62,63, 
emphasizing the importance of delineating between integrin het-
erodimers that share a subunit. Clearly, elucidating the complex 
roles of endothelial integrins in the regulation of tumor angiogen-
esis will require further studies that take into consideration the  
complex interplay between the various integrins that are expressed 
by the vasculature.

Some integrins on tumor cells can promote angiogenesis in a 
paracrine fashion by inducing the secretion of soluble factors that 
stimulate endothelial cells, emphasizing the importance of target-
ing integrins within the appropriate cellular compartment of the 
tumor. For example, we and others have shown that integrin α3β1 
in breast cancer cells can stimulate the expression of MMP-965 and  
Cox-266, indicating a role for this integrin in generating  
pro-angiogenic paracrine signals from tumor cells to endothelial 
cells. This function reflects a similar role for α3β1 in wound epi-
dermis, where it regulates the expression of pro-angiogenic fac-
tors that induce the paracrine stimulation of angiogenesis67. Simi-
larly, integrin α6β4 has been shown to enhance the expression of  
vascular endothelial growth factor in breast carcinoma cells, 
impacting not only angiogenesis but also tumor cell survival68.  
Paradoxically, as mentioned above, the expression of α6 or α3 on 
vascular endothelial cells has been associated with the repression 
of pathological angiogenesis63,64, illustrating the important point 
that roles for specific integrins are dependent on cellular context  
and that these roles are not necessarily the same across distinct cel-
lular compartments. Additionally, our recent study demonstrated 
that integrin α9β1 in the epidermis can inhibit α3β1-dependent, 
paracrine stimulation of wound angiogenesis69, indicating that cross- 
suppression/transdominant inhibition amongst integrins70–72 adds 
another level of complexity to their roles in regulating angiogen-
esis that must be considered when developing integrin-targeting  
strategies.
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Integrin regulation of intercellular communication within the 
TME
While it has been well established for some time that a pro- 
angiogenic microenvironment is critical for cancer progression, 
contributions from other stromal components of the TME had 
been underappreciated until more recently. For example, tumor- 
associated fibroblasts (TAFs)/cancer-associated fibroblasts  
(CAFs) and tumor-associated macrophages (TAMs) had been 
viewed largely as passive stromal constituents or bystanders to 
the ravaging effects of tumorigenesis and metastasis. On the  
contrary, critical roles for these tumor-associated stromal cells in 
cancer progression are now beginning to be understood32,34,73,74. 
In the preceding section, we discussed recent evidence that  
certain integrins (e.g. α3β1) can control paracrine communica-
tion from tumor/epithelial cells to endothelial cells of the vascu-
lature. It seems likely that such roles for integrins in intercellular  
communication will extend to other tumor-associated stromal  
cells that contribute to a tumor-permissive microenvironment.

It is now well known that TAFs/CAFs promote invasion and  
metastasis in several cancer types, owing in large part to their  
myofibroblast-like traits that generate a stiff ECM75–77. There is 
evidence that some integrins can contribute to the generation 
of stiff ECM. For example, integrin α2β1 ligation by collagen  
has been shown to regulate lysyl oxidase expression in cardiac 
fibroblasts78, raising the possibility that integrins on TAFs have 
similar roles in promoting collagen crosslinking and ECM  
stiffness. Furthermore, as mediators of outside-in signal trans-
duction, integrins play important roles in mechanosensing in  
response to ECM stiffness79. Indeed, matrix stiffening has been 
demonstrated to promote tumorigenesis, at least in part, through 
the activation of integrin signaling80. This potential for integrins 
to both promote and respond to ECM stiffening is consistent with  
their central role in the “dynamic reciprocity” that has long been 
known to exist between cells and the ECM81.

While ECM stiffness is certainly important in tumorigenesis82,  
it has become apparent that the roles of TAFs extend beyond 
the promotion of a desmoplastic TME to include the genera-
tion of paracrine signals to other cell types. In some cases, the 
response of the target cell to signals generated by TAFs (or other  
mesenchymal cells of the stroma) is mediated by integrins. For 
example, it was recently demonstrated in a gastric cancer model 
that activation of CXCL12/CXCR4 signaling in TAFs promotes 
the clustering of β1 integrins on tumor cells, thereby activating  
FAK signaling and promoting invasion83. Similarly, β1 integrins 
were essential in tamoxifen-resistant breast cancer cells for  
migration and epithelial–mesenchymal transition that was  
induced by signals from TAFs84. In another example, CD151  
(a tetraspanin that complexes with certain laminin-binding  
integrins) was recently found to mediate pro-tumorigenic 
responses of prostate cancer cells to signals from tumor-associated  
osteoblasts85. Additionally, some tumor cell integrins may  
activate pro-invasive proteolytic cascades through interactions 
with stromal cells. For example, the interaction of integrin α6β1  
expressed on pancreatic cancer cells with uPAR expressed on stro-
mal fibroblasts was linked with activation in the latter cells of the 
uPAR–uPA–MMP-2 proteolytic cascade, thereby aiding in tumor 
progression86.

TAMs have also been linked to tumor progression in particular 
through their ability to promote tumor angiogenesis and inva-
sion, although the molecular underpinnings of this link have just 
begun to be elucidated87–89. Importantly, some recent studies have  
implicated integrins in regulating the ability of TAMs to pro-
mote tumor progression. For example, an osteopontin-rich matrix  
activates TAMs in a melanoma model through ligation of  
integrin α9β1, leading to prostaglandin E2 production by TAMs 
that then stimulates the migration of both endothelial and cancer  
cells90. Similarly, the ECM protein periostin, secreted by gliob-
lastoma stem cells, may promote TAM recruitment to tumors  
via activation of αvβ3 on the latter cells91. Additionally, integrin  
β2 interactions have been implicated in TAM-driven dissemi-
nation of tumor cells in an in vitro microfluidic model of lung  
adenocarcinoma92.

Integrins as targets for anti-cancer therapy
Integrins have several characteristics that make them attrac-
tive anti-cancer targets. First, they are generally important for  
mediating numerous cellular functions in all stages of cancer pro-
gression, including tumor cell proliferation, survival, angiogenesis, 
invasion, and metastasis9,10,38. Additionally, as cell surface receptors, 
the integrins are relatively accessible by targeting agents. Finally, 
the broad impact on cell function of integrin-mediated signaling 
indicates that targeting a single integrin, or group of integrins, 
might generate a combinatorial and potentially potent effect.  
Unfortunately, these same broad functions of integrins, which  
occur in both normal cells and tumor cells, also make them  
difficult to exploit as targets in the clinic. The remainder of this 
review will discuss integrin-targeting strategies and the associ-
ated challenges as we move forward in exploiting these targets  
more efficaciously in the cancer clinic, including their develop-
ment as adjuvant targets in currently used therapies.

Clinical limitations of integrin-targeting anti-cancer 
therapeutics
From around the late 1990s to date, pre-clinical studies performed 
in a wide variety of cancer models have demonstrated that block-
ade or suppression of certain integrins can inhibit tumor growth or 
metastasis9,10,38,93. Outside the cancer clinic, a number of integrin-
based therapeutics have progressed to phase II or phase III clini-
cal trials, and some have had significant benefits for patients suf-
fering from a number of disorders, including multiple sclerosis, 
thrombotic complications, and inflammatory bowel disease (IBD) 
(for excellent reviews on this topic, see 16,31,94). As one exam-
ple, vedolizumab, an antibody against integrin α4β7, is approved 
for use in the United States, Canada, and Europe for patients 
with either subtype of IBD (ulcerative colitis or Crohn’s dis-
ease), both of which are potential precursors to gastrointestinal  
malignancies94,95. With regard to cancer, the concept of target-
ing integrins in the clinic using small molecule integrin antago-
nists (SMIAs) was realized when the integrin-blocking RGD 
mimetic Cilengitide entered clinical trials after performing well  
pre-clinically16. Unfortunately, the transition of Cilengitide 
to the cancer clinic as a monotherapy has been met with lit-
tle success96,97, which may be attributable in large part to 
several limitations. First, RGD mimetics target only the 
subgroup of integrins that bind RGD-containing ligands  
(e.g. fibronectin, tenascin, and vitronectin)1 while failing to block 

Page 5 of 11

F1000Research 2017, 6(F1000 Faculty Rev):1612 Last updated: 31 AUG 2017



other potentially important integrins that bind non-RGD ligands 
such as laminins. Indeed, the laminin-binding integrins remain 
unexplored as clinical targets despite abundant pre-clinical  
evidence that supports their participation in tumor growth and 
metastasis11,15,24,66,68,98–103. Additionally, as discussed more below, 
integrin-targeting agents may prove to be most effective in the  
cancer clinic as adjuvant therapies alongside more conventional 
chemotherapy or radiation treatments30,104–106.

Importantly, while Cilengitide was conceptualized to target  
RGD-binding integrins on endothelial cells to inhibit tumor  
angiogenesis, perhaps through abrogation of the FAK/Src/AKT 
pathway10,107, this approach is complicated by the presence of  
these integrins on additional cell types within the TME. For  
example, a recent study in a glioblastoma multiforme model 
showed that treatment with an RGD peptide also inhibits αvβ3 on 
TAMs, restricting their recruitment to the TME91. Accordingly, 
moving forward it will be important to consider the potential  
effects of integrin-targeting agents on various cells within the 
tumor milieu as a whole. This approach is especially important  
considering that integrin expression profiles show overlap between 
distinct cell types and that integrins play important roles in  
paracrine crosstalk between different cells in the TME (discussed 
above).

An additional challenge is the necessity to create more directed 
therapeutic strategies that target key integrins within the appro-
priate cellular compartment(s) of the tumor. For example, while  
several current strategies rest on the premise of targeting 
endothelial cells to suppress tumor angiogenesis, other strategies  
that target integrins on tumor cells, or other stromal cells, remain 
relatively underexplored from a clinical perspective despite strong 
pre-clinical evidence to support this approach. Additionally, 
while many studies of integrin function in cancer have provided  
strong support for focus on the β1 integrins as a group, more atten-
tion must be paid to the functional diversity among the 12 distinct 
αβ heterodimers that comprise the β1 integrin subfamily1. Indeed, 
it has long been known that individual β1 integrins have different 
expression patterns in many tumors108, and studies have demon-
strated diverse or opposing roles for distinct integrins. For example, 
α2β1 is a suppressor of metastasis in breast cancer cells109, while 
α3β1 and α6β1 are pro-tumorigenic or pro-metastatic in breast  
cancer66,102,110,111. Moreover, some integrins may have pro- 
tumorigenic roles in some cancers but anti-tumorigenic roles in 
other cancers, as has been shown for α3β1 in breast or skin ver-
sus prostate cancer, respectively24,66,112, indicating that the cancer 
context matters in terms of predicting the effects of inhibiting a  
particular integrin. Indeed, there are many additional examples 
wherein the ability of specific β1 integrins to perpetuate hallmarks 
of malignant progression can vary between different types of  
cancer, as recently reviewed113.

Minding the microenvironment: the future of integrin-targeting 
therapies
Despite the successful use of different integrin-targeting agents 
in pre-clinical cancer models, efforts to translate these findings to 
the cancer clinic have so far failed. This discordance most likely  
reflects the increasingly appreciated complexity of the integrin  

family and the knowledge gaps in the field that must be over-
come for effective exploitation of integrins as therapeutic targets.  
Moreover, as already mentioned, a number of studies have indi-
cated that targeting certain integrins may sensitize cancer cells to  
radiotherapy or other chemotherapies104,105,114, suggesting that 
integrin-targeting agents may be most effective in the cancer clinic 
when administered as adjuvants to supplement more traditional 
cancer therapeutics.

As discussed in the preceding sections, current literature clearly 
supports critical roles for integrins in cell-mediated modulation 
of the microenvironment that drives normal tissue remodeling 
or contributes to pathological tissue remodeling. It is also likely 
that individual integrins have distinct but collectively critical 
roles in controlling intercellular communication within the TME  
based on mounting evidence described above that integrins can 
regulate paracrine signals that emanate from the epithelium or  
stroma in normal and pathological tissue states. Therefore,  
identification of the full spectrum of integrins that is expressed on 
cells within the TME, as well as improved understanding of the 
combined roles that different integrins play from within these  
distinct cell types, will be critical for effective exploitation of 
integrins as anti-cancer targets.

In addition to SMIAs discussed above, there are other integrin- 
targeting strategies that might eventually be exploited in the can-
cer clinic. An example is the use of aptamers, which act as RNA  
ligands that can be used to antagonize the protein targets to which 
they are directed (for a review on the use of aptamers in targeted 
therapies, see 115). Interestingly, a recent study demonstrated that 
an aptamer directed at integrin α6β4 caused reduced adhesion 
of PC3 prostate cancer cells to laminin-332116. Internalization of 
this aptamer was also demonstrated, suggesting potential utility  
(i.e. beyond adhesion-blocking) for the delivery of siRNA, 
microRNA, or toxins to α6β4-decorated cancer cells116. Fur-
thermore, an aptamer that targets an epidermal growth factor  
receptor (EGFR)–integrin αvβ3 complex was shown to impair  
αvβ3-dependent adhesion, as well as the matrix-induced inter-
action of the integrin with EGFR, thereby inhibiting growth and  
vasculogenic mimicry of triple-negative breast cancer cells117.

Another example of integrin-targeting agents that may be clini-
cally useful are the disintegrins, which are a family of small  
proteins found in snake venom that can target and block the  
adhesion functions of specific integrins (for a review on disin-
tegrins and their potential use in cancer therapy, see 118). Indeed,  
therapeutic modulation of integrin signaling through the admin-
istration of disintegrins was recently shown to elicit anti- 
migratory and anti-angiogenic effects in both in vitro and in vivo 
cancer models118–120, indicating potential utility in the clinic.

In summary, while numerous studies have identified  
different integrin-targeting strategies, it is becoming increas-
ingly clear that minding the TME will be critical for their 
effective implementation in the clinic. Moreover, it is highly 
likely that integrin-targeting agents will be most effective 
as part of a multi-combinatorial approach rather than as a  
monotherapy.
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Conclusions
The multifaceted nature of integrin biology is increasingly evident 
as more and more studies reveal the wide range of both  
distinct and overlapping roles that integrins play, individually and 
cooperatively, both in normal tissue remodeling and in pathologi-
cal processes such as tumor progression and metastasis. When  
considering integrins as possible anti-cancer targets, the vast  
functionality of the integrin repertoire present on cancer cells, as 
well as on cells of the tumor stroma, provides considerable com-
plexity even before considering the additional complexities of a  
dynamic TME. Indeed, the ever-evolving TME must be better  
understood, and we must take into account the repertoire of  
integrins that are expressed by distinct cells within the TME (as 
well as the availability of ligands for those integrins in the TME) 
while also keeping in mind that the function of a specific integrin 
may depend on cellular context. In addition, we must consider 
the abilities of some integrins to regulate paracrine communica-
tion between cells as well as the potential for combinatorial and  
compensatory functions of different integrins.

Despite the challenges raised by these complexities, as a group 
the integrins remain potentially powerful anti-cancer targets 
worthy of further investigation and exploitation in the clinic.  
Whether integrins will be useful as adjuvant targets or targets 
of monotherapies remains to be seen. In any case, the future of 
exploiting integrins as anti-cancer targets begins at the bench and 
will likely require a holistic approach that effectively considers 
the above-mentioned complexities of integrin biology within the 
context of an evolving TME. Achieving this goal will require not 
only the identification of the full spectrum of integrins expressed 
by both tumor cells and stromal cells within the TME but also 
the elucidation of how different integrins function coordinately 
and cooperatively within these cells. Such an approach should  
facilitate our ability to determine the most effective integrin  

combinations to target at the most appropriate stages of disease  
progression.
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