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Objective: To develop a method for detection of bradycardia and ventricular tachycardia
using the photoplethysmogram (PPG).

Approach: The detector is based on a dual-branch convolutional neural network (CNN),
whose input is the scalograms of the continuous wavelet transform computed in 5-s
segments. Training and validation of the CNN is accomplished using simulated PPG
signals generated from RR interval series extracted from public ECG databases. Manually
annotated real PPG signals from the PhysioNet/CinC 2015 Challenge Database are used
for performance evaluation. The performance is compared to that of a pulse-based
reference detector.

Results: The sensitivity/specificity were found to be 98.1%/97.9 and 76.6%/96.8% for the
CNN-based detector, respectively, whereas the corresponding results for the pulse-based
detector were 94.7%/99.8 and 67.1%/93.8%, respectively.

Significance: The proposed detector may be useful for continuous, long-term monitoring
of bradycardia and tachycardia using wearable devices, e.g., wrist-worn devices,
especially in situations where sensitivity is favored over specificity. The study
demonstrates that simulated PPG signals are suitable for training and validation of a CNN.
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1 INTRODUCTION

Continuous, long-term monitoring of atrial fibrillation using the photoplethysmogram (PPG) has
received considerable attention in recent years, with early detection and prevention of serious health
consequences, e.g., stroke, as main motivations Freedman et al. (2017); Pereira et al. (2020). Thanks
to its simplicity, noninvasive PPG technology can be easily incorporated at a low cost in wearable
digital devices for use in daily life. Among these devices, the wrist-worn is particularly attractive for
continuous long-term monitoring Eerikäinen et al. (2020), relying on either traditional machine
learning or deep learning for detection, e.g., Corino et al. (2017); Harju et al. (2018); Eerikäinen et al.
(2018); Sološenko et al. (2019); Fallet et al. (2019); Selder et al. (2020); Väliaho et al. (2021). However,
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performance has so far only been established on short-term data
due to the lack of public, annotated databases with long-term
PPG recordings Eerikäinen et al. (2020).

While most research has focused on developing methods for
PPG-based detection of atrial fibrillation, just a handful of studies has
dealt with detection of other arrhythmias, notably premature atrial
and/or ventricular beats Gil et al. (2013); Sološenko et al. (2015); Han
et al. (2020) and bradycardia and ventricular tachycardia Bonomi
et al. (2017). While neither bradycardia nor ventricular tachycardia
are life-threatening arrhythmias, their extreme manifestations are
known to be risk factors of serious conditions such as sudden cardiac
death Harris and Lysitsas (2016). Using a wrist-worn device for
continuous, long-term monitoring of bradycardia and tachycardia,
valuable information may be acquired on initiating factors such as
stress, medication, physical activity, and sleep Bonomi et al. (2017).
Patients suffering from end-stage kidney disease undergoing
hemodialysis treatment is a group of particular interest for such
monitoring. Most studies point to that bradycardia, rather than
tachycardia, is the pre-eminent pattern of serious arrhythmias and
sudden cardiac death, with the highest incidence occurring during
the interdialytic periods of conventional thrice-weekly hemodialysis
Kalra et al. (2018); Foley et al. (2011); Boriani et al. (2015); Wong
et al. (2015); Roy-Chaudhury et al. (2018). Continuous, long-term
monitoring of extreme bradycardia in hemodialysis patients was
recently established as an important procedure, accomplished using
an implantable loop recorder Kalra et al. (2018). However, as an
alternative, a wrist-worn device may be preferred as it offers the
important advantages of low cost, low risk of infection, and
avoidance of discomfort often experienced after insertion of the
implantable loop recorder.

To detect bradycardia and tachycardia may seem like a simple
problem solved by testing whether the heart rate is below/above a
certain fixed limit for a certainminimumnumber of beats. However,
such an approach tends to favor specificity over sensitivity Bonomi
et al. (2017), without any means to alter the balance between the two
performance measures. Irrespective of the approach taken to
detection, the problem is made complicated by noise causing
false detections. In addition, tachycardia with decreased
hemodynamics is manifested in the PPG signal as much reduced
or no pulsations, leading to missed beats when pulse-based detection
is employed. These observations represent important incentives to
explore new approaches to detection.

The present paper investigates the use of a dual-branch
convolutional neural network (CNN) for PPG-based detection
of bradycardia and tachycardia. The scalograms of successive
signal segments, accounting for temporal and spectral
information, constitute input to the network. To reduce the
number of false alarms due to motion artifacts, a simple signal
quality assessment is included in the detection process.

The main novelties of the present study are that, for the first
time, a CNN is used to detect bradycardia and tachycardia, and
that simulated PPG signals are employed for network training
and validation. The performance of the CNN-based detector is
also compared to that of a reference pulse-based detector.

The paper is organized as follows: Section 2 describes the
datasets used for training, validation, and testing, Section 3
describes the proposed detector and the reference detector,

Section 4 presents the results obtained on a clinical dataset,
followed by a discussion in Section 5.

2 DATASETS

Due to the lack of public PPG databases with annotated episodes
of bradycardia and tachycardia, an unconventional approach is
adopted in which simulated PPG signals are used for training and
validation, whereas real, manually annotated PPG signals are
used for testing. In the following, since the study focuses on
ventricular tachycardia, tachycardia refers to ventricular
tachycardia.

2.1 Datasets for Training and Validation
The simulator, originally developed to model PPG signals in
paroxysmal atrial fibrillation using RR intervals alone as input
Sološenko et al. (2017); Paliakaitė et al. (2019), is equally well-
suited to model PPG signals with episodes of bradycardia or
tachycardia; the simulator is freely available at Physionet
Sološenko et al. (2021). The model signal is created by
placing individual pulses according to the RR intervals so
that a connected signal is formed, where each pulse is
defined by a linear combination of a log-normal and two
Gaussian waveforms. Stationary simulated noise, described
in Sološenko et al. (2017), was added.

Different RR interval series with one episode of extreme
bradycardia were created by concatenating three subseries of
RR intervals, i.e., normal sinus rhythm, bradycardia, and normal
sinus rhythm. The two subseries with normal sinus rhythm were
randomly selected from the MIT–BIH Normal Sinus Rhythm
Database Goldberger et al. (2000) so that 50–100 RR intervals
appeared before the episode and 1–100 RR intervals after (the
actual number of intervals before and after were selected
randomly); in all subseries of sinus rhythm, the heart rate was
above 60 beats per minute (bpm). In total, 147 RR interval
subseries with bradycardia were selected from the PhysioNet/
Computing in Cardiology (CinC) 2017 Challenge Database
Clifford et al. (2017). Each series was approved by visual
inspection to ensure that no aberrant RR intervals were included.

On the other hand, RR interval series with one episode, and in a
few cases a handful of episodes, of tachycardia are contained in the
Spontaneous Ventricular Tachyarrhythmia Database Goldberger
et al. (2000). Since this database is not annotated, episode onset
and end were determined manually, assuming a minimum episode
length of three beats. In all recordings, tachycardia was surrounded
by sinus rhythm, and, therefore, concatenation was superfluous.
From the 135 recordings, a total of 94 RR interval series were selected
with episodes having a heart rate of at least 120 bpm. The definitions
of tachycardia and bradycardia are discussed in Section 5.

Table 1 summarizes the main characteristics of the dataset of
simulated signals containing episodes of bradycardia and
tachycardia.

2.2 Dataset for Testing
The PhysioNet/CinC 2015 Challenge Database Clifford et al.
(2015); Goldberger et al. (2000) is one of the very few PPG
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databases containing episodes of bradycardia and tachycardia
and therefore used for testing. While each 5-min recording
was originally assigned a rhythm label, indicating whether the
recording contains bradycardia or tachycardia, episode onset
and end was not annotated. Therefore, in the present study,
episodes have been annotated using the simultaneously
recorded ECG signals by relying on information on heart
rate and beat morphology, assuming a minimum episode
length of 3 beats. Figures 1A,B shows two excerpts from
PPG and ECG recordings with bradycardia and tachycardia.
In total, 15 recordings with bradycardia and 39 with

tachycardia are used for testing, referred to as test set I; the
Supplementary Table S1 lists all recordings. The total episode
lengths of bradycardia and tachycardia are 79 and 204 min,
respectively.

Due to decreased hemodynamics during tachycardia, much
reduced or no periodic pulsations were observed in 10 of the 39
recordings, illustrated in Figure 2. Therefore, a subset of test
set I is defined excluding these 10 recordings, referred to as test
set II.

Table 1 summarizes the main characteristics of the two test
sets containing episodes of bradycardia and tachycardia.

TABLE 1 | Main characteristics of the datasets used for training, validation, and testing.

Set Characteristic Bradycardia Tachycardia

Training, validation #RR interval series 147 94
Total duration (h) 10 20
#5-s segments 7,200 14,400
#5-s segments with arrhythmia 1,092 437
Min, median, max length (beats) 8, 23, 51 4, 14, 528
Median heart rate (bpm) 36 164

Test set I #recordings 15 39
Total duration (min) 79 204
#5-s segments 948 2,448
#5-s segments with arrhythmia 52 64
Min, median, max length (beats) 3, 4, 21 3, 6, 58
Median heart rate (bpm) 38 142

Test set II #recordings 15 29
Total duration (min) 79 153
#5-s segments 948 1836
#5-s segments with arrhythmia 52 45
Min, median, max length (beats) 3, 4, 21 3, 7, 58
Median heart rate (bpm) 38 142

FIGURE 1 | Synchronous ECG and PPG signals together with heart rate during (A) bradycardia (< 40 bpm) and (B) tachycardia (>120 bpm). The ECG-based
annotation is marked with a red dashed line. The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.
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3 METHODS

The method proposed for detecting bradycardia and tachycardia
is composed of signal preprocessing and segmentation, signal

quality assessment, and computation of the scalogram serving as
input to the CNN-based detector. The block diagram in Figure 3
summarizes the detector structure as well as the datasets for
training, validation and testing of the CNN-based detector.

FIGURE 2 | ECG and PPG signals with much reduced or no periodic pulsations during tachycardia. The ECG-based annotation is marked with a red dashed line.
The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.

FIGURE 3 |Block diagram of the method proposed for detection of bradycardia and tachycardia, including information on the datasets used for training, validation,
and testing.

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9280984

Sološenko et al. PPG-Based Bradycardia and Tachycardia Detection

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


3.1 Signal Preprocessing and Segmentation
The PPG signals, sampled at a rate of 100 Hz, are preprocessed
using a bandpass filter with cut-off frequencies at 0.5 and
40 Hz. To further reduce the influence of baseline wander, an

adaptive, normalized least mean squares filter is employed,
with the reference input set to 1 Sološenko et al. (2019).
Subsequent analysis is performed in non-overlapping 5-s
segments.

FIGURE 4 | Examples of poor-quality PPG segments excluded after signal quality assessment, with the largest spectral peak at (A) 0.4 Hz and (B) 5 Hz, i.e., both
frequencies outside the 0.6–3 Hz range.

FIGURE 5 | Examples of PPG signal segments and related scalograms: (A) real and (B) simulated signals in bradycardia, (C) real and (D) simulated signals in
tachycardia. Since most of the power of a PPG signal is confined to lower frequencies, the vertical scale of the displayed scalograms is upper limited to 10 Hz. The
annotation is marked with a red dashed line. The real signals are extracted from b124s and v837l of the Physionet/CinC 2017 Challenge Database, whereas the
simulated signals are generated using A07531 of the Physionet/CinC 2017 Challenge Database and RRt3 of the Spontaneous Ventricular Tachyarrhythmia
Database 1.0. The PPG signals have been normalized to [0,1] to facilitate comparison.
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3.2 Signal Quality Assessment
To reduce the number of false alarms due to motion artifacts,
signal quality is assessed by performing spectral analysis of the
PPG signal. The location of the largest spectral peak within
each 5-s segment is determined. If the peak is outside 0.6–3 Hz
range, equivalent to 3–15 beats, which is a reasonable number
of beats to occurs within a 5-s segment, the segment is assessed
to be of poor quality and excluded from further analysis.
Figure 4 shows examples of PPG segments excluded after
signal quality assessment.

3.3 CNN-Based Detection
The continuous wavelet transform (CWT), offering good
resolution in both time and frequency, is computed in each
5-s segment assessed to be of good quality. Using the
generalized Morse wavelets, the resulting scalograms are
treated as images with a size of 500, ×, 61 pixels, i.e., 500
samples and 61 scales. The minimum and maximum scales are
determined by the distribution of the energy across the
different scales. Figure 5 presents two examples of
simulated and real PPG signals whose scalograms exhibit
similar characteristics.

The detection of bradycardia and tachycardia relies on two
CNNs (Supplementary Figure S1), where each arrhythmia is
handled by its own particular model. Each model consists of
two 2D convolutional layers with 32 kernels, where each
kernel is followed by average pooling layers (size of 2 × 2
and a stride of 2) and two fully connected layers (input layer
with 256 neurons and output layer with 2 neurons for
segment classification). The kernel size of the two CNN
models differ since bradycardia is composed of lower
frequencies than tachycardia and therefore calls for a
larger kernel size, here set to 13 × 13 (bradycardia) and 5
× 5 (tachycardia). The stride of the convolutional kernels is
set to 1. All layers, except the output layer, are activated using
rectified linear unit (ReLU) functions followed by a dropout
rate of 0.5 to minimize overfitting; the output layer is softmax
activated.

Before training the CNNs, the dataset of simulated signals is
balanced by under-sampling the majority class, i.e., by
randomly removing non-bradycardia (non-tachycardia)
segments to match the number of bradycardia (tachycardia)
segments. Then the dataset is split so that 70% is used for
training and 30% for validation. The CNNs are trained using
the Adam optimizer described in Kingma and Ba (2014) with a
learning rate of 0.01. Training is stopped when the
classification accuracy on the validation set stops improving.

Whenever the output of the bradycardia-trained CNN
exceeds a certain threshold, the segment is classified as
bradycardia, otherwise as other rhythm; the same applies to
the output of the tachycardia-trained CNN except that another
threshold is used. Both thresholds are chosen so that sensitivity
is favored over specificity.

3.4 Reference Detector
For comparison, the pulse-based bradycardia and tachycardia
detector described in Paliakaitė et al. (2021) was chosen. The PPG

signal is bandpass filtered with cut-off frequencies at 0.5 and 6 Hz
(instead of 40 Hz) to suppress high-frequency noise. The heart
rate is obtained from the pulse-to-pulse intervals, where the
occurrence times of the pulses are determined using a
threshold-based detector similar to the one described in Aboy
et al. (2005). The signal quality of each pulse is assessed by
correlating it to a pulse template using the sample correlation
coefficient. The quality is assessed as acceptable when the
maximum correlation coefficient exceeds the threshold ηc =
0.6; for more details, see Sološenko et al. (2019); Paliakaitė
et al. (2021). An episode of bradycardia is detected if the heart
rate drops below 40 bpm for at least 3 high-quality beats, and an
episode of tachycardia is detected if pulse rate exceeds 120 bpm
for at least 3 high-quality beats. The output of the reference
detector is divided into 5-s segments to facilitate a comparison of
performance with the CNN-based detector.

3.5 Labeling of PPG Segments
Based on the annotation, each 5-s segment is labeled as either
bradycardia, tachycardia, or other rhythm. Bradycardia is
assigned if the episode lasts for at least 50% of the 5-s
segment. Since tachycardia is characterized by higher
frequencies, tachycardia is assigned if the episode lasts for at
least 25% of the 5-s segment. The lower percentage reflects the
obvious fact that more beats are contained in an episode of
tachycardia than in an episode of bradycardia when both episodes
have the same length in seconds.

3.6 Performance Measures
Detection performance is evaluated in terms of sensitivity and
specificity by segmentwise comparison of the detector output to
the labeling of the annotation described above. Sensitivity is
defined by the number of correctly detected bradycardia
(tachycardia) segments divided by the total number of
bradycardia (tachycardia) segments, whereas specificity is
defined by the number of correctly detected non-bradycardia
(non-tachycardia) segments divided the total number of non-
bradycardia (non-tachycardia) segments. These two measures are
computed from the entire recordings, not just from segments
assessed to be of good quality. The agreement between the CNN-
based and reference detectors is evaluated in terms of Cohen’s
kappa coefficient McHugh (2012).

4 RESULTS

4.1 Performance as a Function of SNR
Figure 6 shows detection performance when the CNN was
trained with simulated PPGs at different SNRs. For each SNR,
50 training sessions were performed and the average sensitivity
ans specificity were obtained. Lowering the SNR of the training
signals results in a decrease in sensitivity and an increase in
specificity irrespective of whether bradycardia or tachycardia is
detected. Since the best performance in terms of both sensitivity
and specificity were obtained for noise-free PPGs when training
the CNN, the CNN was trained with noise-free simulated PPGs
before analyzing test sets I and II, see below.
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FIGURE 6 | (A) Bradycardia and (B) tachycardia detection performance for a CNN trained with simulated PPGs at different SNRs. The results are based on test
set II.

FIGURE 7 | ROCs of CNN-based detection of (A) bradycardia and (B) tachycardia using test sets I and II.

TABLE 2 | Performance and agreement of the CNN-based and reference detectors on test set I, without and with signal quality assessment (SQA).

Test set 1 Bradycardia Tachycardia

No SQA SQA No SQA SQA

CNN Sensitivity,% 98.1 [89.3, 100] 98.1 [88.7, 100] 79.7 [68.2, 88.5] 76.6 [65.0, 86.1]
Specificity,% 96.7 [96.0, 97.2] 97.9 [97.4, 98.4] 95.6 [94.9, 96.3] 96.6 [96.0, 97.2]

Reference Sensitivity,% 96.1 [89.0, 98.8] 94.7 [87.2, 98.6] 68.5 [57.1, 78.6] 67.1 [55.6, 77.2]
Specificity,% 99.7 [99.5, 99.9] 99.8 [99.6, 99.9] 93.0 [92.1, 93.9] 93.8 [92.9, 94.5]

Cohen’s kappa 0.42 [0.32, 0.51] 0.49 [0.39, 0.59] 0.39 [0.32, 0.46] 0.39 [0.31, 0.46]

Square brackets indicate 95% confidence interval.
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4.2 Detection Performance on Test set I
Figure 7 presents the receiver operating characteristics (ROCs) of
CNN-based detection of bradycardia and tachycardia, obtained
by varying the two detection thresholds. No ROC is presented for
the reference detector as its structure does not embrace a
detection threshold.

Table 2 presents the performance of the CNN-based
detector, using thresholds that put more emphasis on
sensitivity, and the reference detector. Without signal
quality assessment, the CNN-based detector offers higher
sensitivity for both bradycardia and tachycardia and
considerably higher specificity for tachycardia than does the
reference detector. The exception is bradycardia specificity
which is better for the reference detector.

With signal quality assessment, the specificity increases for
both detectors, although the increase is somewhat larger for
CNN-based detection. The sensitivity decreases slightly for
both detectors and arrhythmias, except for CNN-based
bradycardia detection. This decrease is primarily due to the
segments in which tachycardia is either contaminated with

artifacts or the signal quality is low because of decreased
cardiac output and perfusion leading to lack of periodic
pulsations.

4.3 Detection Performance on Test set II
Table 3 presents the performance on test set II, i.e., test set I
but excluding 10 problematic tachycardia recordings with
much reduced or no periodic pulsations. As expected, the
exclusion leads to improved sensitivity and specificity of both
detectors. However, the increase in sensitivity of CNN-based
detection is substantially larger than that of the reference
detector. This is likely due to that the reference detector relies
on pulse detection rather than on analysis of the whole 5-s
PPG segment as does the CNN-based detector. For both
detectors, signal quality assessment has only a minor effect
on performance.

Figure 8 illustrates the outputs of the CNN-based and
reference detectors together with correct labels. The Cohen’s
kappa coefficient sheds some light on the disagreement
between the detector outputs, mostly dictated by a small

TABLE 3 | Performance and agreement of the CNN-based and the reference detectors on test set II, without and with signal quality assessment (SQA).

Test set II Bradycardia Tachycardia

No SQA SQA No SQA SQA

CNN Sensitivity,% 98.1 [88.6, 100] 98.1 [89.1, 100] 97.8 [87.7, 100] 97.8 [87.6, 100]
Specificity,% 96.2 [95.4, 96.9] 97.7 [97.1, 98.2] 97.8 [97.2, 98.3] 98.4 [97.9, 98.8]

Reference Sensitivity,% 96.1 [89.0, 98.8] 94.7 [87.3, 98.6] 74.5 [61.0, 85.3] 72.6 [58.8, 83.9]
Specificity,% 99.7 [99.4, 99.9] 99.7 [99.5, 99.9] 96.8 [96.1, 97.4] 97.6 [97.0, 98.2]

Cohen’s kappa 0.43 [0.33, 0.52] 0.50 [0.40, 0.60] 0.39 [0.29, 0.49] 0.40 [0.29, 0.51]

Square brackets indicate 95% confidence interval.

FIGURE 8 | Outputs of the CNN-based and reference detectors for (A) bradycardia and (B) tachycardia detection on test set II, with signal quality assessment.
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number of 5-s segments with arrhythmias in the two test sets, and
different patterns of false alarms in either of the detectors.

5 DISCUSSION

The present study shows that simulated PPG signals, based on
real RR interval series, are practicable for training and validation
of the CNN-based detector. Although the simulator offers the
option to generate signals with realistic noise, noise-free signals
were used for training and validation as this choice was found to
produce better performance on the test set consisting of real PPG
signals with occasional artifacts. However, if specificity is to be
favored, noise should be added to the signals used for training and
validation. On the other hand, randomly distributed noise
episodes (i.e., nonstationary noise) may bias the training of the
CNN-based detector, resulting in reduced performance.

A large bandwidth (0.5–40 Hz) of the bandpass filter was
chosen so as to provide the CNN with rich training information.
While a reduced bandwidth, e.g., 0.5–6 Hz used in the reference
detector, may be motivated from a noise suppression standpoint,
initial trials showed that the training and validation performance
did not improve.

Thanks to the input segmentation, the CNN-based
tachycardia detector is less sensitive to situations with
reduced-amplitude pulsations than is the pulse-based reference
detector since the scalogram carries additional information on
tachycardia which helps to improve performance. This
improvement is supported by the results in Table 2 which
show that the sensitivity of the CNN-based tachycardia
detector on test set I is superior to that of the reference
detector, combined with better specificity of the CNN-based
detector. The advantage of the CNN-based tachycardia
detector becomes even more pronounced on test set II, see
Table 3. Still, the CNN-based detector is susceptible to
pulseless episodes as indicated by low sensitivity of tachycardia
detection on test set I (see Table 2), which contained 10
recordings with much reduced or no periodic pulsations
during tachycardia. Since these recordings are excluded from
test set II, the sensitivity of the CNN-based tachycardia detector
reported in Table 3 is considerably higher.

Pairs of pulses with a rate below 40 bpm or above 120 bpm are
not considered an arrhythmia. However, the CNN-based detector
may falsely detect bradycardia/tachycardia in segments where a
single or a slow/fast pulse pair appears, resulting in lower
specificity for bradycardia. Such behavior of the CNN may be
the source of disagreement between the two bradycardia
detectors, resulting in Cohen’s kappa values of 0.42–0.50.
When detecting tachycardia, the CNN-based and reference
detectors also exhibit different detection patterns as illustrated
in Figure 8. Apparently, sensitivity of the reference detector is
highly affected by the tachycardia-caused decrease in pulse
amplitude resulting in missed beats. Even though the
specificity for tachycardia detection is comparable, the sources
of false alarms of the two detectors are different, and thus, the
agreement in terms of Cohen’s kappa is low. Noise mimicking
tachycardia misleads the reference pulse-based detector, whereas
frequent premature beats might trick the CNN-based detector.

When reporting on detection performance, it is essential to
state whether performance is computed using the annotations of
all segments of the recordings or only the annotations of the
segments which remain after signal quality assessment; the latter
alternative tends to exaggerate the performance by ignoring false
negatives corresponding to arrhythmia segments excluded due to
poor quality Paliakaitė et al. (2021). In the present study, the
performance measures are computed independently of segment
exclusion since the annotations were determined from good-
quality ECG signals, not from the PPG signals.

Several architectures of neural networks, including 1D
CNNs, 2D CNNs, long short-term memory networks, and
their combinations using either raw PPG signal or
scalograms were investigated as a first step of the study.
However, the best performance was achieved by using
scalograms as input to the 2D CNNs. A rather basic CNN
architecture was adopted in this study because its major
objective was to demonstrate that a machine learning
algorithm, trained on simulated data, can be employed to
detect bradycardia and tachycardia in PPG signals. Thus,
the comparison of different machine learning architectures
and extensive testing of hyper-parameters were outside the
scope of this study. Even though the proposed CNN-based
detector is not complex, feasibility to implement and run it on
a portable device should be investigated in the future.

A dual-branch CNN was selected for detection of tachycardia
and bradycardia. Initial efforts showed that separate training of
shallow network branches resulted in better performance than
did one deep CNN. This result agrees with other studies
proposing multi-branch structures of multi-class classifiers,
e.g., Zhao et al. (2019). It has been argued that such structures
are more robust in mitigating overfitting issues due to a small
training dataset. Another advantage is that two parallel branches
of the classifier allow parallel execution on separate kernels of the
CPU or different threads in the software, resulting in reduced
time to decision. Moreover, each branch of a dual-branch
detector can function as an independent detector adapted to
tachycardia or bradycardia detection.

In the present study, the output labels of the CNN branches
were not merged, and the performance was reported separately
for bradycardia and tachycardia detection. In no case was a
segment labeled both tachycardia and bradycardia. However,
in the extremely unlikely case when the same segment is
labeled both bradycardia and tachycardia, the arrhythmia
corresponding to the largest output should be selected.

CNN training with different segment lengths was not
performed due to that bradycardia and tachycardia episodes
are very brief. Segment labelling was defined so that
bradycardia should occupy at least 50% of 5 s segment, while
tachycardia should occupy at least 25% of 5 s segment. Therefore,
using a different length, a segment containing bradycardia or
tachycardia may not be labelled as an arrhythmia.

The prevailing clinical definition of bradycardia and tachycardia is a
heart rate lower than 60 bpm and higher than 100 bpm, respectively,
whereas no minimum duration is specified, see, e.g., Wagner and
Strauss (2016). In the context of automated ECG analysis, various
definitions can be found relating to the extreme manifestations of
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these two arrhythmias: extreme bradycardia is defined by a heart rate
lower than 40 bpm with fewer than five beats within a period of 6 s,
and extreme tachycardia is defined by a heart rate higher than 140
bpm with at least 18 beats within a period of 6.85 s Clifford et al.
(2016). Yet another definition of extreme tachycardia can be found
in Paliakaitė et al. (2021), replacing 18 with 5 beats, whereas the
definition of extreme bradycardia remains unchanged; episodes has
to be separated by at least 3 non-arrhythmic beats.

In the present study, the following definition is used to
annotate the Spontaneous Ventricular Tachyarrhythmia
Database and to evaluate the performance of the reference
detector: bradycardia is defined by a heart rate lower than 40
bpm for at least 3 beats and tachycardia is defined by a heart rate
higher than 120 bpm for at least 3 beats. One reason for using 120
bpm is due to that tachycardia slower than 140 bpm can still be
life-threatening Roy-Chaudhury et al. (2018). It should be noted
that none of these criteria apply to CNN-based detection as the
scalogram serves as the basis for making informed decisions.

Tachycardia can have ventricular or supraventricular origin. In
the present study, only ventricular tachycardia was investigated as it
is more serious. Whether the PPG can be used to distinguish
ventricular from supraventricular tachycardia remains to be
demonstrated. Since the hemodynamics is more compromised by
fast ventricular pacing, the amplitude of PPG pulses should in theory
be less affected during supraventricular tachycardia. Still, the
difference in PPG characteristics during ventricular and
supraventricular tachycardia deserves to be investigated in future
studies. The CNN-based detector may be trained to use such
information, while the pulse-based reference detector is poorly
suited for this purpose as it relies on heart rate only.

In the pioneering study on PPG-based detection of bradycardia
and tachycardia Bonomi et al. (2017), only 3-min episodes and longer
were detected. However, when the aim is to detect life-threatening
episodes of extreme bradycardia and tachycardia, as is the goal of the
present study, the minimum duration needs to be much shorter to
ensure that an episode is composed of just a few beats. As a
consequence, it is not meaningful to compare the present results
to those in Bonomi et al. (2017). Of course, the intention to detect
shorter arrhythmia episodes leads to increased number of false alarms
or missed cases. However, since PPG-based detection is better suited
for long-termmonitoring outside the clinical setting, it could serve as a
screening tool to initiate a clinical investigation of those at risk for life-
threatening arrhythmias.

Using the arterial blood pressure signal as input, the problem
of detecting bradycardia and tachycardia has been addressed by
synthesis-by-analysis modeling Chou et al. (2019)—a technique
closely related to the mixture models proposed in Liu et al. (2013);
Sološenko et al. (2017); He et al. (2017). Such modeling results in
a feature vector describing each pulse used for the classifier
training [probabilistic neural network and random forest were
investigated in Chou et al. (2019)]. This approach was found
useful to the arterial blood pressure signal, however, it may be
equally useful when applied to a PPG signal.

A limitation of the present study is the relatively small subset of
short recordings from the PhysioNet/CinC 2015 Challenge Database
used for the testing. Also, this subset does not include clinical data,
and thus, it is unclear if some confounding factors can influence the

performance of the CNN-based detector. However, to our
knowledge, it is the only publicly available database with
synchronous ECG and PPG signals with labeling of extreme
bradycardia and tachycardia. Since the CNN-based detector was
tested on recordings containing baseline sinus rhythm with episodes
of bradycardia and tachycardia, it is unclear how the network
generalizes to discriminate other arrythmias, e.g., atrial
fibrillation. This issue deserves to be investigated in a future study.

6 CONCLUSION

A PPG-based bradycardia and tachycardia detector based on a
dual-branch CNN is proposed, trained and validated on
simulated PPG signals while tested on a dataset of real PPG
signals. The results suggest that the proposed detector can be used
for continuous, long-term monitoring, especially in situations
where sensitivity is favored over specificity. In contrast to the
reference detector, the CNN-based detector makes it possible to
chose different operating points on the ROC. The study
demonstrates that the use of simulated PPG signals is
practicable for training and validation of a CNN.
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