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Abstract: In the era of rapid development of the Internet of things, deep learning, and communication
technologies, social media has become an indispensable element. However, while enjoying the
convenience brought by technological innovation, people are also facing the negative impact brought
by them. Taking the users’ portraits of multimedia systems as examples, with the maturity of
deep facial forgery technologies, personal portraits are facing malicious tampering and forgery,
which pose a potential threat to personal privacy security and social impact. At present, the deep
forgery detection methods are learning-based methods, which depend on the data to a certain extent.
Enriching facial anti-spoofing datasets is an effective method to solve the above problem. Therefore,
we propose an effective face swapping framework based on StyleGAN. We utilize the feature pyramid
network to extract facial features and map them to the latent space of StyleGAN. In order to realize
the transformation of identity, we explore the representation of identity information and propose
an adaptive identity editing module. We design a simple and effective post-processing process to
improve the authenticity of the images. Experiments show that our proposed method can effectively
complete face swapping and provide high-quality data for deep forgery detection to ensure the
security of multimedia systems.

Keywords: multimedia security; facial anti-spoofing; biomedical big data; generative adversarial
network; latent feature analysis

1. Introduction

With the development of Internet of things technologies [1,2], deep learning [3–5],
and communication technologies [6,7], wearable devices and intelligent terminal devices
have developed rapidly, which have brought unprecedented changes to many fields. In-
telligent medical systems, intelligent industrial systems, and smart home systems are
changing people’s lifestyles. At the same time, they also speed up data collection, process-
ing, and transmission [8]. However, in the era of big data, it is inevitable that it will cause
malicious tampering and forgery of data, which poses a potential threat to personal privacy
and public opinion [9]. Especially when the deep learning technologies gradually mature,
various forgery technologies have achieved realistic results. Taking personal portraits as
an example, face forgery technologies cannot be detected by the human eye, as shown
in Figure 1. Many countries and regions actively have carried out the improvement of
relevant regulations and laws. Portrait data, especially in the digital medical system, is
extremely sensitive personal data. Improving privacy and security has become one of the
hot topics.

With the development of deep learning technologies [10–12], great progress has been
made in image understanding [13,14], image generation [15,16] and image classification [17].
With the development of deep face forgery technologies [18,19], researchers also carry out
deep forgery detection technologies [20,21] at the same time. However, most of the current
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deep forgery detection technologies are learning-based methods. These methods rely heav-
ily on data. Diversification and sufficient data is one of the necessary means to improve
the generalization and accuracy of deep forgery detection methods. Due to the sensitivity
of human eyes to familiar structures, generating high-quality face images that meet the
downstream tasks is very challenging work.
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Figure 1. Some technologies realize the results of face forgery. The first line is face reenactment and
the second line is face swapping. The result of face swapping is realized by the framework proposed
in this paper.

In order to improve portrait security in social media, we propose an effective face
swapping framework to enrich facial anti-spoofing datasets. Firstly, we utilize the feature
pyramid network to extract the latent codes of the images. Secondly, the identity weight
generation module is used to increase the attention to the identity information in the
latent codes. Thirdly, we propose an adaptive identity editing module, which is based on
the AdaIN [22] mechanism and can realize identity transformation. Fourth, through the
generator of StyleGAN [15], the edited latent codes can be decoded into high-quality face
images. Finally, in order to improve the overall authenticity of the images, we propose a
post-processing method. In this work, our main contributions are as follows:

1. We propose an effective face swapping framework, which can generate photo-
realistic results.

2. We use the identity weight generation module to increase the attention to the
identity information.

3. We propose an adaptive identity editing module to realize the identity transformation.
4. We utilize post-processing to improve the authenticity, and experiments verify the

efficiency of our face swapping framework.

The rest of this paper is arranged as follows: we introduce the related works of
this paper in Section 2. In Section 3, we introduce the method in detail, including the
feature pyramid network, mapping network, identity weight generation module, adaptive
identity editing module, generator, post-processing process, and loss functions. In Section 4,
we show the results of the proposed face swapping framework, and design ablation
experiments and comparative experiments to verify the efficiency of our proposed method.
Finally, in Section 5, we elaborate on our conclusions and the focus of future work.
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2. Related Works

In this section, we introduce the related works of this paper from four aspects. In
Section 2.1, we introduce the fundamental of the paper, that is, the generative adversarial
network. In Section 2.2, we introduce the deep face forgery detection methods and the
composition of existing face forgery datasets. In Section 2.3, we briefly introduce the latent
code operation based on the latent space. In Section 2.4, we report the related works of face
forgery methods.

2.1. Generative Adversarial Network

Goodflow et al. [3] proposed the generative adversarial networks in 2014. The gen-
erative adversarial network consists of a generator and a discriminator. The function of
the generator is to generate sufficiently real images, and the function of the discrimina-
tor is to identify whether the input image is from the real image (i.e., the images in the
dataset) or from the fake images (i.e., the images generated by the generator). The genera-
tor and the discriminator are against each other during the training process, and finally,
the discriminator cannot distinguish the authenticity of the images. The special structure
and training method of the generative adversarial network ensure the authenticity of the
generation, and then it is widely used in image generation [15], image editing [18,23], and
other fields [24,25].

2.2. Deep Face Forgery Detection Methods and Datasets

Since deepfake was developed in 2017, face forgery videos or images based on deep
learning have emerged on the Internet. Relevant statistics show that more than 96% of
face forgery videos and images are illegal, which poses a potential threat to personal
privacy and public opinion. At the same time, deep forgery detection technologies are also
developing. Tariq et al. [26] proposed a forgery images forensics platform, FakeFaceDetect.
The platform uses dual stream faster R-CNN to capture the high-level information and
low-level information of the images, so as to realize the detection of various forgery facial
images. Yang et al. [27] found that there are subtle texture differences in image saliency
between real images and forgery images for the first time. They used the guided filter with
saliency mapping as the guidance mapping, showing the potential characteristics of forgery
facial images. Yu et al. [28] found that different generative adversarial networks have
specific fingerprints, and these specific fingerprints are left in the generated images. Yu et al.
utilized this feature to distinguish between real images and forgery images. Yang et al. [21]
found that multi-scale texture information played an important role in depth forgery
detection in the process of exploring CNN to distinguish true and fake images. Based
on this discovery, they proposed MTD-Net for deep forgery detection by using central
difference convolution and atrous spatial pyramid pooling. Qian et al. [29] introduced the
frequency domain into forgery detection. They found that the frequency domain provided
a complementary viewpoint of forgery artifacts and can better describe compression errors,
and then they proposed a novel frequency in the face forgery network.

At present, deep forgery detection methods are mostly learning-based methods, which
rely heavily on data. Commonly used face forgery datasets include Faceforensics++, Celeb-
DF [30], Deeperforensics [31] and DFDC [32]. Faceforensics++ includes fake face videos and
real face videos. The fake videos were generated by four face forgery methods. The meth-
ods of forgery face videos include Deepfakes, Faceswap, Face2Face, and NeuralTexture.
Faceforensics++ divides the quality of forgery videos from low to high into three levels:
raw, c23, and c40. Celeb-DF contains 5639 high-quality deepfake videos and 590 real videos,
corresponding to more than 2 million frames. Real videos were collected from YouTube,
including 59 characters, which are diverse in gender, age, posture, and so on. Deepforen-
sics collected 100 face images and 1000 public videos on YouTube. They swapped each
image to the corresponding 10 videos, and 1000 forgery videos were obtained. DFDC is
a large-scale face forgery dataset published by Facebook and Microsoft, which contains
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100,000 forgery video clips. These forgery videos are obtained by deepfake, GAN-based
methods, and non-learned methods.

2.3. Latent Code Editing

Since the proposal of convolutional neural networks, researchers have found that the
shallow features extracted by convolutional networks have low-level semantic information,
such as structure, color, and so on, while the deep features have high-level semantic
information, such as identity information and so on. In addition, researchers found that
editing images through latent codes could achieve better results. After Ian et al. [3] proposed
that after generative adversarial network, the latent space editing based on GAN has
achieved a great leap. Härkönen et al. [33] found the latent direction of attributes in
the latent space based on principal component analysis. Shen et al. [34] first found that
generative adversarial networks learned semantics in linear subspaces of the latent space.
After the proposal of StyleGAN, due to the powerful generation ability of StyleGAN and
the feature de-entanglement ability in the latent space of StyleGAN, a large amount of latent
space editing work is set to be completed in the latent space of StyleGAN. Emily et al. [35]
utilized the fully supervised method to realize latent code editing in StyleGAN for the
first time to realize the change of attributes. Or et al. [36] used the prior knowledge in
natural language processing to find the relationship between features in latent space and
text information.

2.4. Face Forgery Technologies

According to the effect of face forgery generated by different methods, face forgery tech-
nologies can be divided into three categories: face reenactment [37,38], face swapping [17,18],
and face local editing [39]. Facial reenactment refers to changing only the expression and
posture attributes in the whole facial image while keeping other attributes unchanged.
The specific effect is shown in the first line of Figure 1. Face swapping refers to changing
only the identity information in the whole facial image while keeping other attributes
unchanged. The effect is shown in the second line of Figure 1. Face local editing refers
to changing only a partial region of the facial image while maintaining other regions un-
changed, such as changing the hairstyle, changing the hair color, changing eye shape, etc.

The early face swapping works carry out face cutting and face fusion on the basis of
similar posture. These kinds of methods have great limitations and cannot complete the face
swapping in the case of large skin color differences and large posture differences. With the
proposal of convolutional neural networks and generative adversarial networks, the above
problems are gradually solved through the extraction and fusion of high-level features and
low-level features. Güera et al. [40] used CNN to extract frame-level information and used
RNN to judge whether a subject needed to be operated in each frame. Natsume et al. [41]
proposed RSGAN, which independently processed the facial region and hair region in
the latent space, and realized face swapping by replacing the latent spatial representation
of the facial region. Nirkin et al. [42] introduced a continuous interpolation of the face
viewpoints based on reenactment, Delaunay triangulation, and barycentric coordinates and
realized face swapping with subject agnostic. Li et al. [19] proposed a dual-stream network,
which provided attribute information and identity information respectively. Through the
proposed fusion model, high-fidelity results are achieved. Zhu et al. [43] realized one-shot
face swapping by using the face transfer module with the help of the powerful generation
ability of StyleGAN.

3. Method

In this section, we introduce the method proposed in this paper in detail. The section
is divided into five parts. First, we explore the position of identity information in latent
codes, which will affect subsequent decisions on how to edit latent codes. In Section 3.2,
we briefly introduce the encoder, mapping network, and generator. In Section 3.3, we
focus on the identity editing module, which is the key to achieving accurate identity
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transformation. In Section 3.4, we introduce the post-processing process proposed in this
paper, which will improve the authenticity of the generated images. In Section 3.5, we
report the loss functions.

The overall structure of the network is shown in Figure 2. The network is composed
of a feature pyramid network with ResNet, mapping network, identity weight generation
module, adaptive identity editing module, generator, and post-processing process. For the
convenience of representation, we unify the representation of symbols here. We use Iid to
represent the image that provides identity information, and Iatt to represent the image that
provides attributes other than identity information. The output of the StyleGAN generator
is represented by Iresult. After the post-processing process, the final generation result is
represented by I f inal .

ResNet

ResNet

ResNet

ResNet

Encoder

𝑰𝒊𝒅

𝑰𝒂𝒕𝒕

Mapping Network

FPN encoder

FPN encoder
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Figure 2. The overall structure of the network, which is composed of feature pyramid network with
ResNet, mapping network, identity weight generation module, adaptive identity editing module,
generator, and post-processing process.

3.1. Exploration and Motivation

It is well known that the latent codes of an image contain all the features of the corre-
sponding image. These features can be roughly divided into two categories: fine-grained
features, such as identity information, expression information, and posture information,
and coarse-grained features, such as color information and structure information. In order
to design the subsequent adaptive identity editing module, we explore the location of
identity information in latent codes. As shown in Figure 2, we use an encoder, mapping
network, identity weight generation module, and generator consistent with the structure of
the face swapping process.

In the latent space, the specific location of these features is uncertain, and the features
are entangled with each other, which causes a great degree of confusion. In order to edit
only the features that we want to edit and prevent the interference of other features as
much as possible, we need to extract the area to be edited. At this stage, researchers have
done too little research on the structural level of latent space, so they can not accurately
determine the specific location of the corresponding features. Therefore, we propose an
identity weight generation module, which can adaptively find the location of the area to be
edited through a large number of data training and weight updating.

Different from the face swapping process, the function of the weight generation
module here is to obtain a weight map between 0 and 1, which is used to visualize the
position of identity information in latent codes. The loss functions in this process are
consistent with the loss functions in the face swapping process, but the accuracy of the
identity information transformation is not required (we introduce the loss function in detail
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in Section 3.5). In the identity transformation stage of the exploration and motivation
process, the obtained mask is multiplied by the latent codes mapped into StyleGAN to
obtain the region of interest, and simple feature fusion is realized by element addition.
Finally, the fused latent codes are input into the generator to get the result of changing only
the identity information.

When the network training converges, we visualize the output value of the identity
weight generation module to obtain the heat map shown in Figure 3.
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Figure 3. The visualization result of the output value of the identity weight generation module.

From Figure 3 we can see that the distribution of identity information in latent codes
does not have a certain regularity, and the content of identity information in each latent
vector is also different. We believe that the reason for this phenomenon is that the image
is in the wild, which is different from the image generated by a neural network. Each
feature is entangled with others, resulting in the global distribution of identity information
in latent codes.

3.2. Encoder, Mapping Network, and Generator

In order to extract the latent features of the image more comprehensively, we use
the feature pyramid structure [44] with ResNet [45] as the encoder. In order to meet the
requirements of StyleGAN, according to the resolution of the input image, we choose
(i.e., 256 × 256), we set the dimension of encoder output is 14 × 512. The latent space
of the latent code output by the encoder and the w+ latent space of StyleGAN are two
different latent spaces. In order to map the latent code obtained by the encoder only to
the latent space of StyleGAN, we set up the mapping network. The main structure of the
mapping network is the linear layer, and each latent vector corresponds to a mapping
sub-network, that is, the mapping network is composed of 14 mapping sub-networks.
We use the StyleGAN generator as the generator of our framework. With the help of the
powerful generation ability of StyleGAN and the face generation prior knowledge, we can
get high-quality results.

3.3. Identity Editing Module

We divide the latent codes editing stage into two parts: identity weight generation
and adaptive identity editing.
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3.3.1. Identity Weight Generation

The weight generation module is composed of multiple 1× 1 convolution and the
sigmoid activation function, whose function is to add an identity weight on the basis of
the original latent code. For the latent code of Iid, it pays more attention to the region
representing identity information, and for the latent code of Iatt, it pays more attention to
the feature other than identity information. In the network, there are two identity weight
generation modules. They have the same structure. They are responsible for extracting
the regions of interest of identity information and attribute information respectively. The
process is as follows:

maskid = IWG(Lid) (1)

maskatt = IWG(Latt) (2)

RoIid
id = maskid × Lid (3)

RoIatt
att = maskatt × Latt (4)

where IWG represents the identity weight generation module, Lid and Latt represent the
latent codes of Iid and Iatt respectively. RoIid

id represents the latent code after enhancing the
identity information in the latent code of Iid.

3.3.2. Adaptive Identity Editing

The adaptive identity editing module is the key to realizing identity transformation
in this paper. The module uses the identity information extracted from the existing face
recognition network to change the specific information in the latent codes. We use the
identity information extracted from the face recognition network to fix the direction of
the latent codes. The adaptive mask in this module further extracts the feature regions
that need to be edited and reduces the overall effect decline caused by changes to other
latent features.

The structure of the adaptive identity editing module is shown in Figure 4. The struc-
ture is based on the AdaIN [22] mechanism and the adaptive blending mechanism.

…
×14

…

…

mask

1-mask

…

𝑰𝒊𝒅
ArcFace face 

recognition network

adaptive identity editing module

AdaIN layer

1×1 conv

sigmoid activation function

Figure 4. The structure of the adaptive identity editing module.
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The main structure of the adaptive identity editing module is divided into three paral-
lel channels, and the output result is the increment of identity transformation. The process
is as follows:

Step 1: Input RoIid
id into the intermediate channel, that is, the adaptive mask generation

path. The adaptive mask generation module is composed of two 1× 1 convolutions and a
sigmoid activation function. The process is as follows:

mask = AMG(RoIid
id ) (5)

where AMG is the adaptive mask generation module.
Step 2: Input RoIid

id into the upper path, which is to edit the identity information in the
latent code. The identity editing module is composed of four identity editing blocks based
on AdaIN. Because there are no learnable parameters in the AdaIN mechanism, we design
a residual structure for learning identity information editing. The process is as follows:

Lid
edit = IEB(RoIid

id ) (6)

Lout = (
Lin −mean(Lin)

std(Lin) + eps
× std(vid)) + mean(vid) (7)

where IEB is the identity editing blocks. Lin and Lout are the input and output of the
AdaiN layer respectively. vid is the output of the face recognition network. mean is the
process of calculating the average value and std is the process of calculating the variance.
eps = 10 × 10−5 to prevent the denominator from being 0.

Step 3: Use the adaptive mask obtained in Step 1 to eliminate irrelevant features,
and finally only retain the increment of identity transformation. The process is as follows:

∆id = mask⊗ Lid
edit ⊕ (1−mask)⊗ RoIid

id (8)

The reason why we set the adaptive mask in the adaptive identity editing module
is to retain other information related to identity information in Lid

edit, such as location
information. At the same time, the information irrelevant to identity information, such as
color information, is eliminated in RoIid

id . Finally, the edited latent codes are shown below:

Lall
edit = RoIatt

att + ∆id (9)

where Lall
edit is the edited latent code, then Lall

edit is input into the StyleGAN’s generator,
and we can get high-quality results.

3.4. Post-Processing

In order to achieve high-resolution face generation, we use StyleGAN’s generator as
the face generator of the method proposed in this paper. However, there is a defect in using
the prior knowledge of the face, that is, the generated images only focus on the face region,
and often ignore the hair region and the background region. This greatly reduces the
authenticity of the generated image. To solve the above problems, we use the existing face
parsing to get the face semantic segmentation mask, use the mask to weight the generated
image and the image that provides other attributes, and finally get the photo-realistic
results. The specific steps are as follows:

Step 1: Firstly, we use the face parsing network to get Iatt’s face parsing map. The bi-
nary mask is obtained by classifying the foreground and background of the face pars-
ing map.

Step 2: Because the result of the direct combination has sharp edges, we use Gaussian
blur to process the binary mask to obtain maskgua to solve this problem. In this way,
a transition area will be formed at the edge of the foreground and background, which will
eliminate the above sharp edges.
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Step 3: We use maskgua to combine Iatt and Iresult to get the final result I f inal .

I f inal = Iatt ⊗ (1−maskgua)⊕ Iresult ⊗maskgua (10)

3.5. Loss Functions

In this work, we set identity loss Lid, self-reconstruction loss Lrecon, and attribute loss
Latt as the loss functions of this paper. In the exploration stage and the face swapping stage,
we use the same loss functions to train the network.

3.5.1. Identity Loss

In order to ensure that the identity information of Iresult is consistent with that of Iid,
we set identity loss. We use face recognition network as the extractor of identity information
(in this paper, we use ArcFace [46] as the extractor). Identity loss is shown as follows:

Lid = cos(extractor(Iid), extractor(Iresult)) (11)

where cos represents cosine similarity loss, and extractor represents face recognition network.

3.5.2. Self-Reconstruction Loss

Because there is no ground truth in the face swapping task, there is no strong constraint
in the training process. In order to enhance the robustness and stability of the network, we
propose the self-reconstruction loss. We set a self-reconstruction every four times. When
the network is self-reconstruction, Iid = Iatt. The self-reconstruction loss is shown as follows:

Lrecon = L1(Iid, net(Iid, Iid)) (12)

where L1 is the l1 loss. Through the above process, we can achieve strong constraints in the
training network, which greatly improves the stability and robustness of network training.

3.5.3. Attribute Loss

In order to ensure that the attributes are consistent with Iatt during face swapping,
we set attribute loss. We use VGG-19 [47] loaded with pre-training parameters as an
attribute feature extractor. Some of the feature maps are taken for constraints to ensure the
consistency of attribute information.

Latt =
1
L

L

∑
i=1
||Fi(Iresult)−Fi(Iatt)||2 (13)

where L is the number of the feature maps, Fi is the i-th feature maps extracted by VGG-19.

3.5.4. Objective Function

The objective function of the network is as follows:

Lnet = λid ×Lid + λrecon ×Lrecon + λatt ×Latt (14)

where λid = 3, λrecon = 5 and λatt = 3, which are the hyper-parameters respectively.

4. Results and Experiments

We introduce this section in five parts: in Section 4.1, we introduce the dataset and
experimental setting. In Section 4.2, we briefly introduce the evaluation metrics used for
quantitative comparison. In Section 4.3,we display some generation effects of our proposed
model. In Section 4.4, we prove the superiority of the adaptive identity editing module. In
Section 4.5, we compare our framework qualitatively and quantitatively with other models.
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4.1. Dataset and Experimental Setting
4.1.1. Dataset

In this work, the dataset we used is CelebA-HQ [48]. The dataset is a large-scale HD
face dataset with a resolution of 1024× 1024. The dataset is widely used in face recognition,
face segmentation, and other face tasks. CelebA-HQ is further developed on the basis of
CelebA [49]. CelebA-HQ has 30,000 centered face images through cutting and rotating.

4.1.2. Experimental Setting

The hardware conditions of the experiments are Intel (R) Xeon (R) CPU E5-2620 V4 and
two NVIDIA GTX Titan XP GPUs. The whole experiment is implemented on the PyTorch
platform. We use Adam [50] as the optimizer of the training process. The epoch of training
is 250,000 and the batch size is 1. Model weights and results are saved through hyper-
parameters.

4.2. Evaluation Metrics

In the quantitative experiment, we take identity similarity, expression similarity,
and FID [51] value as quantitative metrics.

4.2.1. Identity Similarity

Similar to identity loss, the formula of identity similarity is as Equation (15). The larger
the identity similarity, the closer the generated image is to the identity information of Iid

id similarity = cos(extractor(result), extractor(Iid)) (15)

4.2.2. Expression Similarity

We use a 3D face attribute extraction network to extract expression information.
The expression similarity formula is as Equation (16). The smaller the expression similarity,
the smaller the expression similarity between the result and Iatt.

exp similarity = L1(result, Iatt) (16)

4.2.3. FID

FID is a metric used to measure the quality and diversity of generated images.
The smaller the FID value, the better the quality of the generated images.

4.3. The Generation Results of Our Model

As shown in Figure 5, we display partial results of our framework. Our proposed
framework can realize the maintenance of expression and the transformation of identity
and can achieve photo-level authenticity.

4.4. Superiority of the Adaptive Identity Editing Module

In order to verify the superiority of the adaptive identity editing module in the
process of identity transformation, we set up an ablation experiment. Firstly, we set up the
comparison model net-w/o AIE: the network has the same encoder, mapping network,
identity weight generation module, and decoder as the face swapping network in this
paper but does not include an adaptive identity mapping module. The results generated
by the two networks are shown in Figure 6.
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𝑰𝒂𝒕𝒕 𝑰𝒊𝒅 𝑰𝒇𝒊𝒏𝒂𝒍 𝑰𝒂𝒕𝒕 𝑰𝒊𝒅 𝑰𝒇𝒊𝒏𝒂𝒍

Figure 5. Partial results of our framework.

𝑰𝒊𝒅 𝑰𝒂𝒕𝒕 net net-w/o AIE

Figure 6. The results of the experiment to verify the superiority of the adaptive editing module.

4.4.1. Qualitative Analysis

From the qualitative analysis of the figure, we can see that although the generation
results of net-w/o AIE can reach photo-realistic authenticity. However, from the perspective
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of effect and details, there are still many defects. Firstly, in terms of effect, the images
generated by net-w/o AIE are not as good as net in identity transformation. We can infer
that the identity editing based on the AdaIN mechanism in the adaptive identity editing
module is effective. Secondly, in terms of details, the hair color, skin color, and general
tone of the background of net-w/o AIE are not consistent with Iatt. Therefore, we can
infer that the adaptive mask mechanism plays a key role. In summary, we can infer
that the adaptive identity editing module has advantages in identity transformation and
attribute maintenance.

4.4.2. Quantitative Analysis

In order to more clearly reflect the superiority of the adaptive identity editing module,
we set up a quantitative analysis. We select 30 pairs of images as the objects of quantitative
analysis. Calculate the identity similarity and expression similarity of each pair of images
respectively and calculate FID between two groups of images. Then the calculated identity
similarity and expression similarity are averaged. The results are shown in Table 1.

Table 1. Quantitative analysis of the superiority of the adaptive identity editing module. Bold
represents the optimal value.

Method Id Similarity ↑ Exp Similarity ↓ FID ↓
net−w/oAIE 0.57 0.25 58.7864

net 0.58 0.23 58.8624

It can be seen from the Table 1 analysis that when the adaptive identity editing module
is removed, the performance of the generated images in identity similarity and expression
similarity decreases. Although net-w/o AIE is slightly better than net in FID performance,
there is little similarity between the two network generation results.

4.5. Comparison with Other Models

We choose FaceSwap, FSGAN [42], SimSwap [52], and Faceshifter [19] as the com-
parison methods of this paper. The results generated by similarity models are shown in
Figure 7.

4.5.1. Qualitative Analysis

It can be seen from Figure 7 that the comprehensive effect of our proposed method
on identity transformation and attribute maintenance is the best. In terms of skin color
maintenance, some results generated by Faceshifter are better than our proposed method,
but they are inferior to our proposed method in identity transformation. We find that
there are abnormal facial distortions or irregular color patches in the implementation
results of FaceSwap. This is because FaceSwap is completed based on dlib and opencv
and lacks the fitting between samples with large differences in posture, skin color, and so
on. Although FSGAN has achieved good results in identity transformation, the overall
quality is low. After amplification, it will be found that the overall effect is poor com-
pared with other methods. To sum up, our proposed method solves some defects of the
existing face swapping methods and significantly improves identity transformation and
attribute maintenance.
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𝑰𝒂𝒕𝒕 𝑰𝒊𝒅 our method FaceSwap FSGAN SimSwap Faceshifter

Figure 7. Compared with other methods. The comparison methods consist of FaceSwap, FSGAN,
SimSwap, and Faceshifter.

4.5.2. Quantitative Analysis

In order to clarify the detailed differences between various face swapping methods,
we set up a quantitative comparison. We select 30 groups of results generated by different
models as the objects of quantitative comparison. Calculate the identity similarity and
expression similarity of each pair of images respectively and calculate FID between two
groups of images. Then the calculated identity similarity and expression similarity are
averaged. The results are shown in Table 2.

Table 2. Quantitative analysis of the comparative experiment with other method. Bold represents the
optimal value.

Method Id Similarity ↑ Exp Similarity ↓ FID ↓
FaceSwap 0.37 3.32 216.78
FSGAN 0.45 1.64 67.54

SimSwap 0.54 1.31 69.84
Faceshifter 0.51 0.19 58.9625
Ourmethod 0.58 0.19 58.8624

From the Table 2 analysis, we can see that our proposed method is the best in the two
metrics of identity similarity and FID. Although our effect is slightly inferior to FSGAN
in expression similarity, the gap with Faceshifter is relatively small. On the whole, our
proposed method has certain efficiency, which can solve some problems of existing methods
and provide more realistic and high-definition face forgery images.

5. Conclusions and Expectations

In this work, we propose a face swapping framework for enriching facial anti-spoofing
datasets. Through experimental verification, we prove the efficiency of our overall frame-
work and the superiority of the adaptive identity editing module. The generated results
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achieve photo-level authenticity and can be used in social media to improve the accu-
racy of deep forgery detection and ensure portrait security. In future work, we focus on
higher quality and more detailed face swapping results and the privacy and security of
multimedia systems.
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