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BACKGROUND: Ewing’s sarcoma family of tumours (ESFT) is a malignant small round-cell tumour of the bone and soft tissues. It is
characterised by a strong tendency to invade and form metastases. The microenvironment of the bone marrow is a large repository
for many growth factors, including the basic fibroblast growth factor (bFGF). However, the role of bFGF in the invasive and metastatic
phenotype of ESFT has not been investigated.
METHODS: The motility and invasion of ESFT cells were assessed by a wound-healing assay, chemotaxis assay, and invasion assay. The
expression and activation of FGF receptors (FGFRs) in ESFT cell lines and clinical samples were detected by RT–PCR, western
blotting, and immunohistochemistry. The morphology of ESFT cells was investigated by phase-contrast microscopy and fluorescence
staining for actin. Activation of Rac1 was analysed by a pull-down assay.
RESULTS: bFGF strongly induced the motility and invasion of ESFT cells. Furthermore, FGFR1 was found to be expressed and activated
in clinical samples of ESFT. Basic FGF-induced cell motility was mediated through the FGFR1–phosphatidylinositol 3-kinase (PI3K)–
Rac1 pathway. Conditioned medium from bone marrow stromal cells induced the motility of ESFT cells by activating bFGF/FGFR1
signalling.
CONCLUSION: The bFGF–FGFR1–PI3K–Rac1 pathway in the bone microenvironment may have a significant role in the invasion and
metastasis of ESFT.
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Ewing’s sarcoma family of tumours (ESFT) is a small round-cell
tumour that typically arises in the bones and rarely in the soft
tissues of children and adolescents. It contains a characteristic
chromosomal translocation, t(11; 22), that is present in 90–95% of
tumours. The resulting fusion protein, EWS/FLI1, contains the
amino terminus of EWS and the carboxy terminus of FLI1. Ewing’s
sarcoma family of tumours is a highly metastatic tumour, and
patients with metastatic ESFT typically have a poor prognosis
(Burchill, 2003; Iwamoto, 2007). Despite new chemotherapeutic
regimens, treatments for metastatic ESFT have been largely
unsuccessful (Pinkerton et al, 2001; Bernstein et al, 2006; Miser
et al, 2007). Therefore, it is important to identify and validate novel
therapeutic targets that can prevent the metastasis of ESFT.

The process of tumour cell invasion and metastasis is believed to
occur in sequential steps. During tumour progression, subsets of
cells change from an immotile to motile state. Motile cells then
detach from the primary tumour, enter blood/lymphatic vessels,
and seed in distant organs (Sahai, 2007; Nguyen et al, 2009). Thus,
learning more about the cellular and molecular machinery that
controls cell motility will help us understand how tumour cells

disseminate and generate metastases. The principles of cell
motility were initially investigated in non-neoplastic cells, such
as fibroblasts and keratinocytes. Recent studies have also shown
that the basic machinery of cell motility is retained in tumour cells,
particularly in cancer cells (Friedl and Wolf, 2003; Yamazaki et al,
2005). However, the mechanisms that control the motility of ESFT
cells have not been clearly described, despite the aggressive nature
of these tumour cells.

The bone is a large repository for many growth factors,
including transforming growth factor-b (TGF-b), hepatocyte
growth factor (HGF), endothelial growth factor (EGF), insulin-like
growth factor (IGF), b-platelet-derived growth factor (PDGF), and
fibroblast growth factor (FGF), and provides a rich environment
for tumour cell growth (Bussard et al, 2008). Moreover, growth
factors in the bone microenvironment can stimulate the migration
of tumour cells by acting as chemoattractant molecules (Mundy
et al, 1981; Mundy, 2002). Recent studies have begun to elucidate
the effects of certain growth factors within the bone microenviron-
ment on the biological phenotype of ESFT. For example, IGF-1
signalling is essential for tumourigenesis (Toretsky et al, 1997),
maintenance of tumour growth (Scotlandi et al, 1998), and ESFT
cell migration. In addition, PDGF-BB was shown to enhance the
growth and cell migration of ESFT (Uren et al, 2003), and PDGF
receptors are reportedly activated in clinical ESFT specimens
(Bozzi et al, 2007).
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Basic FGF (bFGF) mediates various cellular events, including
proliferation, motility, and differentiation (Powers et al, 2000;
Bottcher and Niehrs, 2005; Chalkiadaki et al, 2009). However, there
are several contradictory results on the biological functions of
bFGF in ESFT. Basic FGF has been shown to induce the growth
arrest and apoptosis of ESFT cells in vitro (Sturla et al, 2000;
Westwood et al, 2002). In contrast, it was also shown that bFGF
may support the proliferation of ESFT cells and maintain their
malignant phenotype by upregulating the EWS/FLI1 protein under
serum-free conditions (Girnita et al, 2000). Hence, the biological
and clinical impact of bFGF signalling in ESFT cells is still
unknown. Basic FGF stimulates the cell motility of fibroblasts
(Bikfalvi et al, 1997) and various types of tumours, such as
melanoma, prostate cancer, and glioma (Powers et al, 2000; Kwabi-
Addo et al, 2004; Chalkiadaki et al, 2009). However, the impact of
bFGF on the motility of sarcoma cells, including ESFT, has not
been investigated.

In this study, we showed that bFGF significantly enhanced the
motility and invasion of ESFT cells. Remarkably, we found that
FGFR1 was activated in clinical samples of ESFT. Next, we
determined that bone marrow stromal cells (BMSCs) could be a
source of bFGF in the bone microenvironment and may promote
a metastatic phenotype in ESFT cells by stimulating cell motility.
Finally, we showed that activation of the phosphatidylinositol
3-kinase (PI3K)– Rac1 signalling pathway downstream of FGFR
was essential for bFGF-induced cell motility in ESFT.

MATERIALS AND METHODS

Cell culture

Human ES cell lines, RD-ES, SK-ES-1, SK-N-MC, and WE68, as
well as human osteosarcoma cell lines, MG63, SaOS2, and U2-OS,
were obtained from the American Type Culture Collection
(Rockville, MD, USA). The human ES cell line WE68 was kindly
provided by Dr Frans van Valen (Westfalische-Wilhelms
University, Munster, Germany). Both RD-ES and WE68 cells
were maintained in RPMI 1640 (Invitrogen, Carlsbad, CA, USA),
whereas the other cell lines were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Invitrogen). Both of these media
preparations were supplemented with 10% FBS, 100 mg ml�1

penicillin, and 100 mg ml�1 streptomycin. The cells were incubated
at 371C in a humidified atmosphere containing 5% CO2. Human
BMSCs were purchased from Lonza Inc. (Walkersville, MD, USA)
and cultured in RPMI 1640 containing 10% FBS at 371C with
5% CO2.

Reagents

Recombinant human bFGF, IGF-1, PDGF-BB, HGF, EGF, TGF-b1,
and an anti-FGF basic antibody were purchased from R&D
Systems (Minneapolis, MN, USA). SU5402, PD98059, LY294002,
U-73122, a Rac1 inhibitor (NSC23766), and rapamycin were
purchased from Calbiochem (San Diego, CA, USA). A Rho
inhibitor was purchased from Cytoskeleton (Denver, CO, USA).
The anti-FGF receptor1 antibody and anti-phospho-FGFR-pY653/
654 antibody were purchased from Cell Signaling Technology
(Beverly, MA, USA) and Abgent (San Diego, CA, USA),
respectively. The anti-FGFR2 antibody was purchased from Novus
Biologicals (Littelton, CO, USA), and anti-FGFR3 and anti-FGFR4
antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA).

Wound-healing assay

Wound-healing assays were performed as described previously
(Riou et al, 2006). Confluent cell monolayers in 6-well plates
were wounded by scraping with a micropipette tip. The cells were

washed and then cultured in complete media containing the noted
reagents and inhibitors. Time-lapse videomicroscopy was per-
formed to monitor wound repair using the CCM-330F monitoring
system (Astec Co., Tokyo, Japan) in a 371C incubator with 5% CO2.
The degree of wound closure was assessed in five randomly chosen
regions by measuring the distance between the wound edges just
after wounding and after 12 h. Cells were stained using the Diff-
Quik kit (Sysmex, Hyogo, Japan) as follows: the upper chamber
was immersed in a Diff-Quik fixative for 2 min, drained, and
immersed sequentially in solution I and solution II for 1 min on a
24-well plate.

Chemotaxis assay

Transwell migration assays were performed as described pre-
viously (Matsumoto et al, 2002; Hanada et al, 2005) using modified
Boyden chambers, which consist of Transwell (Corning Costar,
Cambridge, MA, USA) membrane filter inserts with 8 mm pores in
24-well tissue culture plates. After 24 h of serum starvation, the
cells (2� 105 cells) were harvested and re-plated onto the upper
chamber of a Transwell filter with 8 mm pores (Corning Costar)
that was coated with type I collagen. The chamber was placed in
DMEM containing 0.1% FBS and the indicated growth factors,
antibodies, and inhibitors. After 12 h of incubation at 371C in 5%
CO2, cells on the upper surface of the filter were completely
removed by wiping with a moist cotton swab. Cells that had
migrated through the filter and adhered to its lower surface were
fixed, stained using the Diff-Quik kit (Sysmex), and counted by
examining five fields per filter under a microscope. Each assay was
performed in triplicate and repeated three times.

Invasion assay

Invasion assays were performed using the Biocoat Matrigel
invasion chamber (BD Biosciences, Bedford, MA, USA) according
to the manufacturer’s protocol and as described previously
(Harimaya et al, 2000). After 24 h of serum starvation, cells
(2� 105 cells) were harvested and re-plated onto the upper
chamber of a Transwell filter that was placed in DMEM containing
0.1% FBS and the indicated growth factors. After a 24-h incubation
at 371C in 5% CO2, the filters were fixed and the number of cells
that had migrated was determined as described for the chemotaxis
assay.

RT–PCR and quantitative real-time PCR

The Institutional Review Board of the Kyushu University School of
Medicine, Fukuoka, Japan, approved the protocol for obtaining
and examining the surgical ESFT specimens. Ewing’s sarcoma
family of tumours was diagnosed on the basis of histological
features. Total RNA from ESFT clinical samples was extracted
using an RNeasy kit (Qiagen, Heiden, Germany). Overall, 1 mg of
total cellular RNA was used in a reverse transcription reaction with
SuperScriptII reverse transcriptase (Invitrogen). The PCR was
performed for 30 (GAPDH) or 35 (FGFR1 –4 and bFGF) cycles in a
final volume of 50 ml with the following primers: GAPDH (forward:
50-TTACCAAAAGTGGCCCACTA-30 and reverse: 50-GAAAGATGG
TGAACTATGCC-30; product size 450 bp), FGFR1 (forward: 50-A
ACTGGGATGTGGAGCTGGAAGTGC-30 and reverse: 50-AGGTG
GTGTCACTGCCCGAGGGGCT-30; product size 344 bp), FGFR2
(forward: 50-ATCTCTCAACCAGAAGTGTACG-30 and reverse: 50-C
TGTGTTGGTCCAGTATGGTGC-30; product size 349 bp), FGFR3
(forward: 50-GGGGCCCACTGTCTGGGTCAAG-30 and reverse: 50-G
TCTTCGTCATCTCCCGAGGAT-30; product size 202 bp), FGFR4
(forward: 50-CCTGTTGGGGGTCCTGCTGAGTGTG-30 and reverse:
50-CTTGCTGGGGGTAACTGTGCCTATT-30; product size 419 bp),
and bFGF (forward: 50-GGCTTCTTCCTGCGCATCCA-30 and
reverse: 50-GCTCTTAGCAGACATTGGAAGA-30; product size 354 bp).
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Each PCR cycle consisted of a denaturation step at 951C for 30 s or
1 min, a primer-annealing step at 601C (bFGF and GAPDH), 581C
(FGFR1), or 551C (FGFR2 –4) for 30 s, and an extension step at
721C for 30 s or 1 min, using HotStar Taq DNA polymerase
(Qiagen) for hot-start PCR. The PCR products were examined on
a 1.5% agarose gel. Real-time PCR was carried out using
a LightCycler 1.5 (Roche Diagnotics, Indianapolis, IN, USA) in a
final volume of 20 ml containing 10 ml of SYBR Premix Ex Taq
(Perfect Real Time; Takara Bio, Shiga, Japan), 0.1mmol l�1 of each
primer, and template DNA did not exceed 100 ng per PCR reaction
using the conditions as follows: initial denaturation step at 951C
for 5 s, denaturation at 951C for 10 s, and annealing at 601C for 30 s
for 40 cycles. The following primers were designed as following;
FGFR1 (forward: 50-CTCCTCTTCTGGGCTGTGCT-30 and reverse:
50-TGGACCAGGAAGGACTCCAC-30; product size 119 bp), FGFR2
(forward: 50-CCGAATGAAGAACACGACCA-30 and reverse: 50-TC
ATGGAGGAGCTGGACTCA-30; product size 122 bp), FGFR3
(forward: 50-TCAAGCACGTGGAGGTGAAT-30 and reverse: 50-A
GCTCCTTGTCGGTGGTGTT-30; product size 100 bp), FGFR4
(forward: 50-TGAAGGTGAAGCAGGTGGAG-30 and reverse: 50-C
CTTCCCTGGGCTAATGTCA-30; product size 123 bp), and glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) (forward: 50-GG
AAGGCCATGCCAGTGAGC-30 and reverse: 50-CATTGTGGA
AGGGCTCATGA-30; product size 194 bp). The expression of
mRNA was calculated using LightCycler version 3.5 software
(Roche Diagnotics). Data were standardised using GAPDH as a
housekeeping gene. A negative control was also prepared in
triplicate using distilled water instead of a DNA template. The
assay was performed in triplicate and was repeated in at least three
separate experiments.

Western blot analysis

Cells were washed twice with ice-cold PBS, scraped, collected in a
microcentrifuge tube, and then centrifuged. The cells were lysed by
adding lysis buffer (20 mM Tris-HCL (pH7.5), 150 mM NaCl, 1 mM

Na2EDTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate,
1 mM b-glycerophosphate, 1 mM Na3VO4, 1 mg ml�1 leupeptin,
and 1 mM PMSF), with a protease inhibitor cocktail (Complete
Mini, EDTA-free; Roche Diagnotics). After incubating the cells for
10 min on ice, the cellular debris was pelleted by centrifuging for
10 min at 12 000 g and the resulting protein-containing supernatant
was transferred into another tube. The protein levels were
determined using the Quant-iT assay kit (Invitrogen). The samples
were boiled for 5 min, and 20 mg of total protein from each of
sample was separated on a 4–12% gradient pre-cast MOPS
polyacrylamide gel (Novex, San Diego, CA, USA) and then
transferred onto a nitrocellulose membrane. The filter was blocked
with TBS containing 5% non-fat dry milk or 5% BSA and 0.1%
Tween 20 for 1 h at room temperature. The filter was then
incubated overnight with the appropriate primary antibodies at
41C. After washing the filter, a horseradish peroxidase-conjugated
secondary antibody (Santa Cruz Biotechnology) was added and the
filter was incubated at room temperature for 1 h. After a final set of
washes, the immunoreactivity of the blots was detected using an
enhanced chemiluminescence detection system (Amersham, Buck-
inghamshire, UK).

Immunohistochemistry

The formalin-fixed and paraffin-embedded tumour specimens
were sectioned into 5-mm-thick sections. One section was stained
with HE, and the others were immunohistochemically examined
using Dako’s Envision method. Briefly, the deparaffinised sections
were incubated in hydrogen peroxide to abolish endogenous
peroxidase activity. Next, the sections were autoclaved to enhance
anti-genicity. The sections were incubated in goat serum albumin

and then treated with an anti-pFGFR-pY653/654 (RB5787, 1:50;
Abgent) antibody or control anti-IgG antibody as the primary
antibody for 1 h. Next, the sections were treated with Envision
polymers (Dako, Glostrup, Denmark) for 1 h. The reaction
products were visualised with diaminobenzidine tetrahydro-
chloride and counterstained with haematoxylin. After each step,
the sections were washed with phosphate-buffered saline.

Rac1 activation assay

The Rac1 activation assay was performed as described previously
(Leung and Bolland, 2007). The RD-ES cells were stimulated with
bFGF and pre-treated with or without the indicated inhibitors for
2 h. Next, the cells were lysed with cell lysis buffer for 15 min on ice
and then centrifuged at 12 000 g for 10 min to collect the
supernatants. The samples were incubated with PAK-1-PBD
agarose (Cell Biolabs, San Diego, CA, USA) at 41C for 1 h. The
samples were washed three times with cell lysis buffer and then
boiled in 4� LDS sample buffer for 5 min. The boiled samples
were subsequently centrifuged at 12 000 g for 10 min. Active Rac1
(GTP bound) in the supernatants was detected by western blot
using a mouse anti-Rac1 mAb (Cell Biolabs). The optical density
was measured for each band using ImageJ software (National
Institutes of Health, Bethesda, MD, USA). Rac activity is indicated
by the amount of GTP-bound Rac1 normalised to the amount of
Rac in whole-cell lysate.

Analysis of cytoskeletal alterations

The RD-ES cells were seeded on type I collagen-coated coverslips
in DMEM with 10% FCS and then incubated for 12 h with bFGF
(10 ng ml�1). Next, the cells were washed twice with PBS, fixed in
4% paraformaldehyde at room temperature, and permeabilised
with 0.1% Triton X-100 in PBS. All preparations were incubated
with PBS containing 1% BSA to saturate non-specific binding.
Tetramethylrhodamine-5-isothiocyanate (TRITC)-conjugated phalloidin
(Sigma, St Louis, MO, USA) was applied for 1 h at room
temperature. The coverslips were mounted with Vectashield
(Vector Laboratories, Burlingame, CA, USA) using DAPI as a
nuclear counterstain and then examined under a fluorescence
microscope.

Statistical analysis

Statistical comparisons were performed using Student’s t-test. The
minimal level of significance was P¼ 0.05.

RESULTS

bFGF-induced motility and invasion of ESFT cells

First, to examine the impact of growth factors that are stored in the
bone microenvironment on the motility of ESFT cells, we
performed a wound-healing assay and chemotaxis assay. Of the
five different growth factors that were tested, bFGF was
particularly interesting because it strongly stimulated the chemo-
kinesis of RD-ES cells (% wound closure; control: 22.8±3.8%,
bFGF: 76.0±9.9%, IGF-1: 61.0±9.3%, PDGF-BB: 41.3±5.4%, HGF:
29.7±4.7%, EGF: 25.4±5.0%, TGF-b: 20.9±9.7%) (Figure 1A
and B). Basic FGF enhanced the chemotaxis of RD-ES cells, and
an anti-bFGF neutralising antibody suppressed bFGF-induced
chemotaxis of RD-ES cells (Figure 1C). In addition, IGF-1 and
PDGF-BB were also confirmed to act as chemoattractants for ESFT
cells, as was reported previously (Scotlandi et al, 1998; Uren et al,
2003) (data not shown). The chemokinetic and chemotactic effects
of bFGF on RD-ES cells were also supported by a checkerboard
analysis (Supplementary Table 1). We further showed that bFGF
promoted the motility of other ESFT cell lines, notably SK-ES-1

Molecular mechanisms of invasion and metastasis

S Kamura et al

372

British Journal of Cancer (2010) 103(3), 370 – 381 & 2010 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



0 h

PDGF-BB HGF EGF TGF-β1

Control bFGF IGF-1

***

***

**

***

***

**N
o.

 o
f m

ig
ra

te
d 

ce
lls

bFGF 
(10 ng ml–1)

bFGF (10 ng ml–1)

600

500

400

300

200

100

0

RD-ES SK-ES SK-N-MC

+ + +– – –

**

N
o.

 o
f m

ig
ra

te
d 

ce
lls

***

***

***

N
o.

 o
f i

nv
ad

ed
 c

el
ls

1400

1200

1000

800

600

400

200

0

Con
tro

l

bF
GF

IG
F-1

PDGF-B
B

***

R
el

at
iv

e 
m

ig
ra

te
d 

ce
lls

10

8

6

4

2

0
– + – + – + – + – + – +

SW982SYO-1SaOS2U2OSMG63RD-ES

Osteosarcoma Synovial sarcoma

bFGF
(ng ml–1)

bFGF (10 ng ml–1) 

0 0.1 1.0 10 20 50 100

Con
tro

l

Ig
G Ab 

1
Ab 

5

1000

800

600

400

200

0

***

***

*

%
 W

ou
nd

 a
re

a 
fil

le
d

100

80

60

40

20

0

Con
tro

l

bF
GF

IG
F-1

PDGF-B
B

HGF
EGF

TGF-�
1

Figure 1 Basic fibroblast growth factor (bFGF)-induced motility and invasion of ESFT cells. (A and B) An ESFT cell line, RD-ES, was wounded using a
rotating silicon tip and treated with growth factors that are typically stored in the bone microenvironment at the indicated concentrations for 12 h: bFGF
(10 ng ml�1), IGF-1 (20 ng ml�1), PDGF-BB (20 ng ml�1), HGF (20 ng ml�1), EGF (20 ng ml�1), and TGF-b1(1 ng ml�1). In the control experiment, cells were
treated with DMEM containing 0.1% serum. (Panel A) Representative photographs (� 10) at 0 and 12 h after wounding. Cells were stained with Diff-Quik
kit. Bars: 100 mm. (Panel B) The percentage of wound closure corresponds to the distance between the wound edges in five randomly chosen regions. The
experiments were repeated at least three times and data are shown as mean±s.d. *Po0.05, ***Po0.001. (C) The chemotaxis of RD-ES cells was assessed
by a chemotaxis assay when various concentrations of bFGF were added to the lower chamber. In addition, RD-ES cells (2� 105) were either left untreated
or pre-treated with the indicated concentrations of an anti-bFGF-neutralising antibody and then subjected to the chemotaxis assay. Data are depicted as
mean±s.d. of at least three independent experiments. **Po0.01 vs control IgG, ***Po0.001 vs bFGF 0 ng ml�1. (D) Effects of bFGF on chemotaxis of
various ESFT cell lines, RD-ES, SK-ES-1, and SK-N-MC, were assessed by the chemotaxis assay. Data are depicted as mean±s.d. of at least three
independent experiments. **Po0.01, ***Po0.001 vs an absence of bFGF. (E) Effects of bFGF on the chemotaxis of osteosarcoma and synovial sarcoma
cell lines were assessed by the chemotaxis assay. Data are depicted as mean±s.d. of at least three independent experiments. ***Po0.001 vs an absence of
bFGF. (F) In vitro invasion assays were performed in which the indicated growth factors were added to the lower chamber: bFGF (10 ng ml�1), IGF-1
(20 ng ml�1), PDGF-BB (20 ng ml�1). RD-ES cells (2� 105) were plated onto the upper chamber and incubated for 24 h. The number of cells that migrated
across the Matrigel-coated transwell chambers was measured. Experiments were performed in triplicate and repeated at least twice. Data are shown as
mean±s.d. ***Po0.001 vs control.
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and SK-N-MC. (Figure 1D). The effects of bFGF on the cell motility
of other sarcomas, such as osteosarcomas and synovial sarcomas,
were investigated in the chemotaxis assay. Interestingly, the
motility of osteosarcoma and synovial sarcoma cell lines did not
increase in response to bFGF (Figure 1E). As cell motility is a
critical factor for tumour cell invasion, we next examined the
effects of bFGF on the invasion of RD-ES cells. We found that
bFGF induced the invasion of RD-ES cells, and that the effects of
bFGF were more potent than those of IGF-1 and PDGF-BB
(Figure 1F). The effect of bFGF in the invasion of other ESFT cell
lines, namely SK-ES-1 and SK-N-MC, was observed. (Supplemen-
tary Figure 1) On the other hand, bFGF did not enhance the ability
of RD-ES cells to attach to the ECM (Supplementary Figure 2A). In
addition, bFGF did not stimulate RD-ES cells to produce ECM-
degrading enzymes, including matrix metalloproteinases (Supple-
mentary Figure 2B). These findings suggested that bFGF induced
the invasion of ESFT cells mainly by increasing cell motility. From
these results, we hypothesized that bFGF is one of the critical
factors that stimulates the motility and invasion of ESFT cells in
the bone microenvironment.

Expression of FGFRs in ESFT cell lines and clinical samples

Next, we dissected the molecular mechanism by which bFGF
induces the motility of ESFT cells. To examine the expression of
the profile of FGFRs in ESFT, we performed a real-time
PCR analysis and western blotting analysis for ESFT cell lines,
and RT–PCR analysis for ESFT biopsy samples. Consistent with a
previous report (Girnita et al, 2000), we found that all ESFT cell
lines and ESFT biopsy samples expressed FGFR1 (Figure 2A
and B). We showed that the moderate-to-high expression of mRNA
of FGFR2 was observed in WE68, and that of FGFR3 in all samples.
The expression of mRNA of FGFR4 was low in ESFT cells. In
contrast, in protein levels, FGFR2 was detected in RD-ES and
WE68, FGFR3 in SK-ES-1, SK-N-MC, and WE68, and FGFR4 in
RD-ES, SK-N-MC, and WE68. Out of 10 biopsy samples, FGFR2
was detected in 3, FGFR3 in 8, and FGFR4 in 2 (Figure 2B). These
results indicated that the expression of FGFRs, particularly that of
FGFR1, was a prevalent feature in ESFT. As bFGF binds FGFR1
preferentially (Ornitz et al, 1996), we further clarified the role of
FGFR1 in ESFT cells. After ligand binding, FGFR dimerises,
acquires increased tyrosine kinase activity, and becomes highly
phosphorylated on C-terminal cytoplasmic tyrosine residues.
When RD-ES cells were treated with bFGF, FGFR1 was tyrosine
phosphorylated and a specific inhibitor of FGFR, SU5402,
abrogated this tyrosine phosphorylation of FGFR1 (Figure 2C).
Similar results were observed in SK-ES-1 cells (Supplementary
Figure 3A). To further confirm that bFGF-mediated activation of
FGFR1 was required for bFGF-induced cell motility, we examined
the effects of SU5402 on bFGF-induced motility of RD-ES cells. The
wound-healing assay (Figure 2D) and chemotaxis assay (Figure 2E)
both showed that bFGF-induced motility of RD-ES cells was
significantly suppressed by SU5402, confirming that the receptor
kinase activity of FGFR was required for bFGF-induced motility of
RD-ES cells. As SU5402 only weakly inhibits tyrosine phosphory-
lation of the PDGF receptor, PDGF-BB-induced chemotaxis, but
not chemokinesis, was also inhibited (Figure 2D and E). However,
IGF-1-induced cell motility was not inhibited by SU5402 (Figure
2D and E). Similar results were observed in SK-ES-1 cells
(Supplementary Figure 3B and C).

Presence of active FGFR1 signalling in clinical samples
of ESFT

To confirm that FGFR1 activation in the human bone micro-
environment is important in ESFT, we next investigated the
expression of tyrosine-phosphorylated FGFR1 in ESFT biopsy
samples by immunohistochemistry. Remarkably, we found that

seven out of nine (77.8%) ESFT biopsy samples had moderate-to-
high levels of phosphorylated FGFR1, whereas serial sections that
were stained with the control anti-IgG Ab showed no non-specific
signalling (Figure 3C and D). We then analysed the pattern of
FGFR1 expression in tissue sections of the normal bone marrow
and found ubiquitous expression of FGFR1 in the specimens (data
not shown). In contrast, the expression of tyrosine-phosphorylated
FGFR1, in most cases, was only detected on the vascular
endothelium and the subset of stromal cells within the bone
marrow (Figure 3E). Thus, we considered, that FGFR1s are hyper-
phosphorylated in Ewing’s sarcoma cells. Taken together, these
results strongly showed that functional FGFR1 signalling occurs in
the human bone microenvironment in ESFTs.

BMSCs expressed bFGF, and conditioned BMSC medium
induced the motility of ESFT cells by activating bFGF/
FGFR1 signalling

The microenvironment of the local host tissue can actively
participate in the progression and metastasis of tumour cells.
For example, at the boundary between tumour cells and normal
host tissues, such as stromal cells, these cells exchange several
factors that modify the local ECM, promote proliferation and
survival, and stimulate cell motility. It was reported that BMSCs
produce bFGF and that their ECM can serve as a reservoir for this
growth factor (Brunner et al, 1993). Thus, we hypothesized that
BMSCs are a possible source of bFGF in the bone microenviron-
ment. To examine this hypothesis, we first confirmed that bFGF
was expressed in human BMSCs by examining bFGF mRNA levels
by real-time PCR (Figure 4A). We then cultured BMSCs for 72 h
and collected the conditioned medium (CM/BMSC). Remarkably,
CM/BMSC enhanced the tyrosine phosphorylation of FGFR1 in
RD-ES cells, and a specific anti-bFGF-neutralizing antibody
reduced this CM/BMSC-induced phosphorylation (Figure 4B).
Next, we tested the effects of CM/BMSC on the motility of RD-ES
cells. The CM/BMSC significantly induced chemotaxis of RD-ES
cells and neutralizing antibodies to both bFGF and SU5402
reduced the CM/BMSC-induced chemotaxis of RD-ES cells
(Figure 4C). To examine whether this is dependent on cell type,
we also studied the effect of CM/BMSC in SK-ES-1, and basically
similar results were observed in SK-ES-1 (Supplementary Figure
4A and B). The chemokinesis of RD-ES cells was also slightly
induced by CM/BMSC (data not shown). These results strongly
suggested that CM/BMSC enhanced the motility of ESFT cells by
activating bFGF/FGFR1 signalling.

The PI3K pathway was involved in bFGF-induced motility
of ESFT cells

The binding of bFGF to FGFRs and to heparin sulphate
proteoglycans (HSPGs) leads to the formation of a ternary
complex between FGF, FGFR, and HSPGs. This complex provides
a platform to recruit and activate downstream signalling modules,
including PI3K, mitogen-activated protein kinase (MAPK) cascade,
and phospholipase C (PLC)g (Dailey et al, 2005). To identify the
dominant signalling pathway downstream of FGFRs that was
required for bFGF-induced cell motility, we used various
pharmacological inhibitors, including LY294002 for PI3K,
PD98059 for MEK/ERK, and U-73122 for PLCg. LY294002, but
not PD98059 and U-73122, remarkably attenuated bFGF-induced
chemotaxis of RD-ES cells (Figure 5). Similar results were
observed in SK-ES-1 cells (Supplementary Figure 5). A wound-
healing assay confirmed that LY294002 also significantly
suppressed bFGF-induced chemokinesis (% wound closure;
control: 14.7±8.9%, bFGFþDMSO: 74.9±8.0%, LY294002:
9.3±3.5%). These results suggested that PI3K activation down-
stream of FGFRs was indispensable for the bFGF-induced motility
of ESFT cells.
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bFGF induced significant morphological alterations of
ESFT cells

Recently, PI3K activation was found to be essential for cellular
polarisation and elongation, which are the first steps in cell
motility (Barber and Welch, 2006). Thus, we studied the
morphological alterations of RD-ES cells upon bFGF treatment.
We recorded cellular movements and alterations by time-lapse
videomicroscopy. We observed that bFGF treatment resulted in
cell scattering and an altered cellular morphology from a round

shape to a polarised and elongated shape (arrowheads in
Figure 6A, right panel). The percentage of cells exhibiting an
elongated shape was visualised and quantitated using phase-
contrast microscopy. As shown in Figure 6B, bFGF stimulated a
two-fold increase in the percentage of elongated cells (treated with
bFGF: 38.3±5.2%, control: 11.9±1.2%; Po0.001). Next, we
examined cytoskeletal alterations in RD-ES cells by phalloidin
staining. Non-treated RD-ES cells (control) had a polygonal shape
with organised stress fibres (arrows in Figure 6C, left panel). In
contrast, treating RD-ES cells with bFGF for 8 h resulted in the
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Figure 2 Expression profiles of FGF receptors (FGFRs) in ESFT cell lines and clinical ESFT samples and essential role of FGFR1 in bFGF-induced motility of
ESFT cells. (A, left panel) Transcript levels of FGFRs, relative to GAPDH, determined by quantitative real-time PCR in ESFT cell lines. Control of FGFR1, 2
and 3; U20S, FGFR4; MG63. (A, right panel) Representation of protein status of the FGFRs by western blot in various Ewing’s sarcoma cell lines. Actin was
used as a loading control. (B)The expression profile of ESFT biopsy samples was detected by RT–PCR. GAPDH was used as an internal control. P: positive
control. (C) RD-ES cells were incubated with bFGF (20 ng ml�1) for 20 min, and the total cell lysates were subjected to western blot analysis with anti-
FGFR1 and anti-tyrosine-phosphorylated FGFR1 antibodies. In RD-ES cells, bFGF induced the tyrosine phosphorylation of FGFR1, and pre-treating RD-ES
cells with a specific inhibitor of FGFR1, SU5402 (20 mM), for 2 h inhibited this phosphorylation. Actin is shown as a loading control. Data are representative of
at least three independent trials. (D and E) The effects of SU5402 on growth factor-induced motility of RD-ES cells were assessed by a wound-healing assay
(panel D) and a chemotaxis assay (panel E). The concentrations of the respective growth factors in the assays were as follows: bFGF (10 ng ml�1), IGF-1
(20 ng ml�1), and PDGF-BB (20 ng ml�1). The growth factors and SU5402 were added into the lower chamber at the same time. In chemotaxis assay,
2� 105 cells were plated onto the upper chamber. Experiments were performed in triplicate and repeated at least three times. Data are shown as
mean±s.d. ***Po0.001, *Po0.05 vs indicated growth factor with DMSO. #, not significant.
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organisation of cortical actin with a remarkable degree of
lamellipodia formation (arrowheads in Figure 6C, right panel).
Similar cytoskeletal alteration by bFGF treatment was observed in
SK-ES-1 cells (Supplementary Figure 6).

Rac1 was essential for bFGF-induced motility of ESFT cells

The Rho family of small GTP-binding proteins includes key
signalling molecules that regulate cell polarisation and motility
(Heasman and Ridley, 2008). Rac1, a small GTP-binding protein,
acts as a downstream modulator of PI3K-induced cell polarisation
and lamellipodia formation in leukocytes (Inoue and Meyer, 2008;
Bosco et al, 2009). Therefore, we considered that Rac1 might be
involved in bFGF-induced motility in ESFT cells. To test this
hypothesis, we first determined the kinetics of Rac1 activation in
RD-ES cells after bFGF stimulation. As shown in Figure 7A, Rac1
was activated upon bFGF stimulation. We repeated the experi-
ments at least three times and quantified ‘the mean activity of Rac
activation’ by densitometric analysis (Figure 7A). This activation
was suppressed by SU5402. Importantly, LY294002 inhibited Rac1
activation upon bFGF stimulation, indicating that Rac1 acts as a
downstream modulator of the FGFR/PI3K pathway (Figure 7A).
We then showed that pharmacologically inhibiting Rac1 abrogated
bFGF-induced cell motility (Figure 7B and C). The Akt/mTOR

pathway is another dominant downstream modulator of PI3K, and
the Akt/mTOR pathway is involved in IGF-1-induced cell motility
and cytoskeletal alterations in ESFT cells (Liu et al, 2008).
Therefore, we also studied the role of the Akt/mTOR pathway in
bFGF-induced motility in RD-ES cells. Rapamycin, a selective
inhibitor of the Akt/mTOR pathway, did not reduce Rac1
activation after bFGF treatment (Figure 7A), indicating that the
Akt/mTOR pathway had no effect on bFGF-induced Rac1
activation. In addition, rapamycin treatment did not reduce
bFGF-induced cell motility (Figure 7B and C). These results
implied that the Akt/mTOR pathway may not be involved in the
bFGF-induced motility of ESFT cells. Similar results were observed
in SK-ES-1 cells (Supplementary Figure 7A–C). Rho is another
prototypical small GTP-binding protein in the Rho family that
contributes to cell movement by generating actomyosin contractile
forces (Amano et al, 1997). In sarcomas, RhoA regulates the
motility of osteosarcoma cell lines (Matsumoto et al, 2001). Thus,
we assessed the effects of RhoA on bFGF-induced cell motility
using a selective Rho inhibitor, C3 transferase. As shown in
Figure 7D, C3 did not significantly inhibit the bFGF-induced
motility of RD-ES cells, whereas the locomotion of MG63 cells, an
osteosarcoma cell line, was significantly inhibited by C3 treatment.
Similar results were observed in SK-ES-1 cells (Supplementary
Figure 7C). Taken together, these results suggested that Rac1, but

Figure 3 Expression of tyrosine-phosphorylated FGFR1 in clinical ESFT samples. (A) A histological section obtained from an ESFT patient was stained
with haematoxylin and eosin. (B) There was no background staining when a serial section from the same patient as in panel A was stained with the control
anti-IgG antibody. (C and D) An anti-tyrosine-phosphorylated FGFR1 antibody induced strong positive staining on the plasma membrane of tumour cells in
a serial section from the same patient as in panel A. (Panel D) Magnification of the inset in panel C. (E) Normal bone tissue was immunostained with the
anti-tyrosine-phosphorylated FGFR1 antibody. Tyrosine-phosphorylated FGFR1 was only observed in endothelial cells (arrowheads) and in a subset of
stromal cells (arrows). Scale bars; 50mm in panels A–C and 20mm in panels D and E.
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not AKT/mTOR or Rho, is a downstream modulator of PI3K and
an essential factor in the bFGF-induced motility of ESFT cells.

DISCUSSION

Ewing’s sarcoma family of tumours is a bone tumour that is
characterised by a distinct metastatic pattern that involves the lung
and bone. In addition, ESFT cell lines metastasize to the bone at a
high frequency in immunodeficient mice (Scotlandi et al, 2000;
Vormoor et al, 2001), showing that the bone microenvironment is
supportive for ESFT growth and metastasis. In this study, we
identified the factor that enhances the motility of ESFT cells in the
bone microenvironment. Our results showed that bFGF, a growth
factor that is abundant in the bone microenvironment (Brunner
et al, 1993), strongly induced the motility of ESFT cells. Although
bFGF has been shown to promote the in vitro motility of
tumour cells, such as prostate cancer cells and melanoma cells
(Kwabi-Addo et al, 2004; Chalkiadaki et al, 2009), this is the first
report that describes the effects of bFGF on the motility of ESFT
cells. Furthermore, the effects of bFGF were specific because bFGF
did not stimulate another highly motile osteosarcoma or synovial
sarcoma cells.

Cell motility can be further distinguished as chemotaxis or
chemokinesis based on the cellular response to soluble factors
(Kohn et al, 1990). Chemotaxis is cell motility that is directed
towards diffusible factors and has an important role in homing
mechanisms (Muller et al, 2001). On the other hand, chemokinesis
is stochastic movement in response to soluble factors in the
absence of a gradient. Chemokinesis may have a role in initiating
the random migration of tumour cells out of the primary tumour
site (Tchou-Wong et al, 2006). In this study, we determined that
ESFT cells exhibited a certain degree of chemokinesis and
chemotaxis in response to bFGF. As discussed in the previous
paragraph, the bone marrow is surrounded by BMSCs and
continuously bathed in bFGF secreted by BMSCs. Therefore, bFGF
concentration gradients are not likely to be established in this
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Figure 5 Effects of pharmacological inactivation of the PI3K, MAPK, and
PLC-g pathways on bFGF-induced chemotaxis of ESFT cells. LY294002
(PI3K inhibitor), PD98059 (MAPK inhibitor), and U-73122 (PLC-g inhibitor)
were used. The effects of each inhibitor on bFGF-induced chemotaxis of
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(10 ng ml�1). LY294002 significantly inhibited bFGF-induced chemotaxis,
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the same time. Experiments were performed in triplicate and repeated at
least three times. Data are shown as mean±s.d. **Po0.01 vs bFGF with
DMSO, #, not significant.
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(5mg ml�1) and SU5402 (20 mM) impaired the chemotaxis of RD-ES cells
towards CM/BMSC. Data are depicted as mean±s.d. of at least three
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environment. Therefore, the migration of ESFT cells within the
bone marrow may be due to chemokinesis, rather than chemotaxis.
In contrast, after entrance into blood vessels, the chemotactic
properties of bFGF may have a significant role in the bone

metastasis of ESFT cells. Therefore, under isotropic conditions,
bFGF may enhance the chemokinesis of ESFT cells, but in the
presence of a strong gradient, bFGF may act as a potent chemo-
attractant. These properties of bFGF may be equally important in
the invasive and metastatic processes of ESFT.

To date, few studies have investigated the role of growth factor
pathways in ESFT and most studies have focused on IGFs and
IGFRs (Scotlandi et al, 1998; Herrero-Martin et al, 2009). Thus, the
biological and clinical impact of FGFR expression in ESFT remains
obscure. Among the four different types of FGFRs, FGFR1 and
FGFR2 have been specifically linked to tumour cells (Klint and
Claesson-Welsh, 1999; Korc and Friesel, 2009), and bFGF binds to
FGFR1 (Ornitz et al, 1996). In this study, we detected FGFR1 in
ESFT cell lines, as reported previously (Girnita et al, 2000). The
expression of other FGFRs was also detected in several cell lines.
We also showed that FGFR1 is expressed in all of the examined
ESFT clinical samples. Moreover, we detected the tyrosine-
phosphorylated, active forms of FGFRs in clinical samples of
ESFT, which provided evidence that intact and functional FGFR
signalling occurs in ESFT. Taken together, our data suggest that
the expression and activation of FGFR are common features of
ESFT. In particular, FGFR1 may have a dominant role in inducing
bFGF signalling and stimulating the motility of ESFT cells.
However, the roles of other FGFRs in ESFT should also be further
investigated.

The importance of the interaction between tumour cells and
their microenvironment is increasingly emphasised (Liotta and
Kohn, 2001; Joyce and Pollard, 2009). The monolayers of BMSCs
have been shown to secrete bFGF into the conditioned medium
(Hotfilder et al, 2005). Hence, the interplay between ESFT cells
and BMSCs is an interesting issue that should be examined further.
As expected, the conditioned medium of BMSC (CM/BMSC)
remarkably enhanced the motility of ESFT cells. This effect
could be partially attributed to bFGF in CM/BMSC because
CM/BMSC induced the activation of FGFR1 in ESFT cells, and
the addition of a neutralising antibody or SU5402 to the CM/BMSC
reduced this CM/BMSC-induced motility of ESFT cells. Mean-
while, ESFT cell lines expressed bFGF2 at both the mRNA and the
protein levels (Westwood et al, 2002). However, it was reported
that bFGF could not be detected in the conditioned medium
of ESFT cell lines (Hotfilder et al, 2005). Consistent with this
finding, we also could not detect FGFR activation under standard
culture conditions, indicating that autocrine bFGF/FGFR1
signalling is not constant in ESFT cells. Taken together, these
data suggest that bFGF is secreted into the bone microenvironment
by BMSCs where it exerts effects upon ESFT cells through a
paracrine mechanism.

Further clarification of the downstream effectors in bFGF/FGFR
signal transduction may give important clues that will expand our
understanding of the mechanisms that promote the metastasis of
ESFT cells. Although bFGF/FGFR-stimulated cell proliferation has
been well investigated (Yoshida et al, 1996), the signalling
pathways that promote cell motility downstream of bFGF/FGFR1
are not as well defined. In corneal epithelial cells, bFGF induces a
change in cell morphology from a polygonal to fibroblastic shape
and a reorganisation of the actin cytoskeleton through PI3K (Lee
and Kay, 2003). Consistent with these findings, we showed that
bFGF activates the PI3K pathway in ESFT cells, which reorganises
the actin cytoskeleton and alters the morphology of ESFT cells
from a polygonal to an elongated shape. In addition, our data
suggest that these processes are responsible for the bFGF-induced
motility of ESFT cells. Recently, a direct and/or indirect link of the
activation of PI3K and Rho GTPases, including Rac1, has been shown
(Welch et al, 2003), and we indicated that PI3K enhanced Rac1
activation in response to bFGF. Our data also suggested that the
integrated signalling downstream of bFGF/FGFR1 that increases the
motility of ESFT cells was independent of the cellular pathways that
induce proliferation (MAPK) and survival (Akt/mTOR), which are
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Figure 6 bFGF-mediated morphological alterations of RD-ES cells.
(A) After RD-ES cells were seeded to 35 mm dishes and incubated for
12 h, bFGF (10 ng ml�1) was added to the medium. Representative
photographs of phase-contrast microscopy (� 10) were taken at 0 h (left
panel) and 12 h (right panel) after bFGF stimulation. The cell morphology
changed from a round shape to a polarised and elongated shape upon
bFGF treatment (arrowheads in right panel) Scale bar: 100 mm. (B) The
percentage of cells with an elongated shape among the total cell population
was quantified. Cells were counted in five fields per dish and assayed in
triplicate for each condition. Data are depicted as mean±s.d. ***Po0.001.
(C) RD-ES cells were seeded and incubated with bFGF (10 ng ml�1) for
12 h. The cells were fixed and stained with TRITC-conjugated phalloidin.
Non-treated, control RD-ES cells had a polygonal shape and organised
stress fibres (arrows in left panel). In contrast, bFGF treatment induced the
organisation of cortical actin with a remarkable degree of lamellipodia
formation (arrowheads in right panel). Scale bar: 50 mm.
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also stimulated by bFGF/FGFR in certain cell lines, including ESFT
(Mateo-Lozano et al, 2003; Williamson et al, 2004; Hotfilder et al,
2005).

Cell motility requires tight coordination and organisation of the
actin cytoskeleton, which is controlled by members of the Rho
family of small GTPases, including Rho, Rac, and Cdc42
(Raftopoulou and Hall, 2004). Recently, the cross-talk among
members of the Rho GTPase family has been investigated. For
instance, several studies have shown that Rac and Rho have
antagonistic activities (Sander et al, 1999) and that Rac and Cdc42
can be coincidentally activated (Kurokawa et al, 2004). In corneal

epithelial cells, simultaneous Rac activation and Rho inhibition
are necessary to alter the cytoskeleton and induce subsequent
cell motility upon bFGF treatment (Lee and Kay, 2003). Meanwhile,
C3, a specific Rho inhibitor, suppresses bFGF-stimulated
cell motility in fibroblasts (Abe et al, 2007). Nonetheless, in this
study, we showed that Rac1 mediated the bFGF-induced motility
of ESFT cells. In contrast, C3 did not attenuate bFGF-induced
cell motility, indicating that Rho, unlike Rac, is dispensable for
the bFGF-induced motility of ESFT cells. In addition, we found
that non-treated Ewing’s sarcoma cell lines showed almost no
activation of cdc42 and cdc42 was not activated upon bFGF
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Rac activity. (B and C) The effects of a Rac1 inhibitor and rapamycin on the bFGF-induced motility of RD-ES cells were investigated in a wound-healing assay
(panel B) and chemotaxis assay (panel C). The bFGF-induced motility of RD-ES cells was inhibited by the Rac1 inhibitor (20 mM) but not by rapamycin
(20 ng ml�1). Data are depicted as mean±s.d. of at least three independent experiments. ***Po0.001, #, not significant. (D) Effects of a specific Rho
inhibitor, C3, on bFGF-induced chemotaxis. bFGF-induced chemotaxis of RD-ES cells was not reduced by C3 (7.5mg ml�1). In contrast, chemotaxis of a
human osteosarcoma cell line, MG-63, in response to serum was inhibited by C3. In chemotaxis assay, 2� 105 cells were plated onto the upper chamber.
Data are depicted as mean±s.d. of at least three independent experiments. ***Po0.001 vs control. #, not significant.
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stimulation (data not shown). These findings imply that the
effects of bFGF on the cross-talk between the Rho GTPase family
members may depend on the context of the cells.

In conclusion, we showed that bFGF-induced FGFR1/PI3K/Rac1
activation was essential for bFGF-induced motility of ESFT cells.
We also showed that bFGF/FGFR1 signalling was active in clinical
ESFT samples and that BMSCs may be a source of bFGF. These
findings also indicate that this signalling pathway may help
identify molecular targets that can be used as potential thera-
peutics to prevent metastases and to improve the survival of ES
patients.
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