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Abstract: Opioids are widely prescribed pain relievers with multiple side effects and 

potential complications. They produce analgesia via G-protein-protein coupled  

receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to 

the oligomerized opioid receptors might be the key to developing analgesics without 

undesired side effects and obtaining effective treatment for opioid addicts. In this review 

we will update the biological effects of μ-opioids on homo- or hetero-oligomerized μ-opioid 

receptor and discuss potential mechanisms through which bivalent ligands exert beneficial 

effects, including adenylate cyclase regulation and receptor-mediated signaling pathways. 
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1. Introduction 

Opioids are one of the most commonly prescribed pain relievers and have been used to treat pain 

for thousands of years. Considered as broad-spectrum analgesics acting at multiple sites in both the 

central and peripheral nervous systems, opioids also have multiple side effects and potential 

complications [1]. Concerns regarding tolerance to analgesic effects result in a reluctance to prescribe 

opioids for pain management. Adverse gastrointestinal and central nervous system events, including 
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constipation [2,3], nausea, vomiting and sedation, are responsible for a large portion of patients 

discontinuing opioid treatment, often leading to inadequate pain relief and poor quality of life [4]. 

Hyperalgesia (increased pain sensitivity), decreased libido, and other hormonal effects, and depression may 

also occur [5]. Controversially, opioids are uniquely addictive, leading to misuse and diversion [6–9]. 

Opioids produce analgesia via G-protein-coupled opioid receptors [10]. Three conventional opioid 

receptors—μ (MOR), δ (DOR) and κ (KOR) [11–14]—and a non-opioid branch of opioid  

receptors—opioid receptor-like orphan receptor (ORL1) [15]—have been characterized based on their 

pharmacological, anatomical and molecular properties, with ORL1 displaying pharmacology distinct 

from those of conventional opioid receptors [16–19]. Activation of MOR, DOR, KOR or ORL1 

produces common cellular actions by regulating the same secondary messengers, including inhibition 

of adenylate cyclase (AC) activity [20–26] and N-type [27] and L-type Ca2+ channels [28]. Activation 

of opioid receptors also increases phospholipase C activity, causes a transient increase in intracellular 

Ca2+ [29,30] and activates inwardly rectifying K+ channels [31,32] and mitogen-activated protein 

kinases (MAPK) [33,34]. 

2. Oligomerization of μ-Opioid Receptor  

2.1. The Roles of MOR in the Physiological Effects of Opioids  

Opioids, such as morphine and methadone, mediate their physiological effects by preferentially 

activating MOR in neurons. The MOR agonists display the best antinociceptive activity, but also the 

highest abuse liability [35]. Disruption of the MOR gene leads to a complete loss of the main 

biological actions of morphine, including analgesia, reward, withdrawal, respiratory depression, 

immunosuppression and constipation, demonstrating that both therapeutic and adverse effects of the 

prototypic opioid results from its interaction with MOR gene products [35–42]. For example, morphine 

conditioning (repeated low-dose injections, 3 mg/kg, subcutaneously (s.c.)) that prolonged the time 

spent in the morphine-associated compartment in wild-type mice failed to induce place preference in 

mutant mice [39]. An analgesic dose of morphine (6 mg/kg, s.c.) increased respiration time and 

decreased respiratory frequency in wild-type mice, whereas no change in respiratory parameters were 

detected in similarly treated MOR-deficient mice [36]. A single dose of morphine (15 mg/kg, s.c.) 

inhibited gastrointestinal motility in wild-type mice, but no such change was observed in mutant mice 

at doses up to 35 mg/kg [41]. 

Desensitization and internalization of MOR are potential regulatory mechanisms contributing to the 

development of tolerance to opioids [43,44]. Activation of MOR by an agonist may result in receptor 

phosphorylation mediated by G-protein receptor kinases (GRKs). Subsequently, β-arrestins bind to the 

phosphorylated MOR, making this complex unable to couple to G-proteins to activate downstream 

effectors, resulting in receptor desensitization [45]. This MOR complex is recruited to the  

clathrin-coated pit and then removed from the plasma membrane by endocytosis [46]. Besides rapidly 

reducing the number of receptors present at the cell surface, endocytosis also mediates receptor 

“resensitization”, which involves delivering MOR to an endosome-associated phosphatase and then 

returning the dephosphorylated MOR to the plasma membrane via a rapid recycling pathway [47–51]. 

The degree of desensitization of MOR signaling observed in locus coeruleus (LC) neurons correlates 
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well with that of agonist-induced MOR endocytosis assessed in HEK293 cells, further suggesting that 

desensitization and internalization are closely linked [52]. 

2.2. Pharmacological Responses of Oligomerized MOR  

Opioid receptors are members of the rhodopsin family of G-protein-coupled receptors (GPCRs), 

which associate with each other to form dimers and/or oligomers [53–55]. Human MOR form  

sodium dodecyl sulfate (SDS)-resistant homodimers, and increasing concentrations and the longer 

exposure of agonists reduce the levels of MOR dimers with a corresponding increase in that of MOR 

monomers. This antagonist-reversible effect is suggested to be related to the endocytosis of MOR, 

since monomerization proceeds internalization [56]. MOR has also been reported to hetero-oligomerize 

with various receptors, including DOR [57], KOR [58], ORL1 [59], the somatostatin subtype 2A 

(sst2A) receptor [60], the substance P receptor (NK1) [61], cannabinoid CB1 receptor (CB1R) [62] and 

metabotropic glutamate receptor 5 (mGluR5) [63]. Receptor hetero-oligomerization usually leads to 

alterations in MOR phosphorylation, internalization, desensitization, MAPK activation and coupling to 

voltage-dependent Ca2+ channels [64]. Our group also demonstrated that methadone and buprenorphine, 

MOR full and partial agonists, respectively, exert initially different (acute), yet eventually convergent 

(chronic), adaptive changes of AC activity in cells co-expressing, presumably heterodimeric, MOR and 

ORL1 receptors [65]. Hetero-oligomerization of opioid receptors generates novel ligand binding 

properties, in some cases resembling pharmacologically-defined opioid receptor subtypes, but not unique 

opioid receptor genes [57,66,67]. How oligomerized MOR affects the effects of MOR ligands is the focus 

of preclinical research and might indicate a way for developing analgesics without unwanted side effects.  

2.2.1. MOR-DOR 

Early studies have suggested that MOR and DOR cross-talk and affect each other’s properties [68]. 

Morphine binds to MOR and DOR and inhibits neurotransmitter release [69]. In transgenic animals 

lacking MOR, DOR ligand-mediated analgesia is changed [70]. In DOR knockout mice, supraspinal 

DOR-like analgesia is retained and morphine tolerance is lost [71]. DOR antagonists-treated mice 

exhibit reduced development of morphine tolerance and dependence [72]. Reduction in DOR by 

antisense oligonucleotides attenuates the development of morphine dependence [73]. Ligand binding 

assays show that MOR-selective ligands inhibit the binding of DOR-selective ligands, both 

competitively and noncompetitively [74,75]. Radioligand binding and electrophysiological studies 

suggested that MOR and DOR colocalize in the dorsal root ganglia [76–78]. Immunohistochemical 

studies revealed that MOR and DOR colocalize at the same axonal terminals of the superficial dorsal 

horn [79] and ultrastructurally in the plasmalemma of the dorsal horn neurons [80]. Additionally, 

several neuroblastomas co-express MOR and DOR [81–84]. These lines of evidence suggest the 

physical existences of MOR and DOR complexes. 

Heterodimerization of MOR and DOR have been demonstrated and may provide foundations for 

more effective therapies. Co-expression of MOR and DOR in heterologous cells followed by selective 

immunoprecipitation results in the isolation of MOR-DOR heterodimers [57]. The bioluminescence 

resonance energy transfer (BRET) assay showed that MOR and DOR conjugated in living cells [85]. A 

combination of MOR and DOR selective agonists synergistically binds and potentiates signaling  



Cells 2013, 2 692 
 

 

by activating the MOR-DOR heterodimer [57]. Signaling by clinically relevant MOR ligands,  

such as morphine, fentanyl and methadone, can be enhanced by DOR ligands [85]. Furthermore,  

morphine-mediated intrathecal analgesia is potentiated by a DOR antagonist [85]. Morphine and  

[D-Ala2-MePhe4-Glyol5]enkephalin (DAMGO), traditionally classified as MOR selective agonists, 

selectively activate MOR-DOR heteromeric opioid receptors with greater efficacy than homomeric 

opioid receptors [86]. This is consistent with studies implicating the involvement of both MOR and 

DOR in analgesia, tolerance and dependence [71–73,87–89]. 

2.2.2. MOR-KOR 

MOR-KOR can form heterodimers with a similar affinity to that of MOR-DOR, as demonstrated by 

BRET, co-immunoprecipitation, receptor binding and G-protein coupling [58]. In males, spinal 

morphine antinociception requires the exclusive activation of spinal MOR; whereas in females, spinal 

morphine antinociception requires the concomitant activation of spinal MOR and KOR [90]. 

Expression of a MOR-KOR heterodimer is more prevalent in the spinal cord of proestrus vs. diestrus 

females and males. Spinal cord MOR-KOR heterodimers, likely to be the molecular transducer for the 

female-specific dynorphin/KOR component of spinal morphine antinociception, represent a unique 

pharmacological target for female-specific pain control [91]. 

2.2.3. MOR-ORL1 

MOR and ORL1 are coexpressed in the dorsal horn of the spinal cord, the hippocampal formation, 

the caudate/putamen [92–94] and several subpopulations of central nervous system (CNS) neurons 

involved in nociception [95]. Behaviorally, mice lacking the ORL1 gene partially lose tolerance liability to 

morphine analgesia [96] and show marked attenuation of morphine-induced physical dependence, 

manifested as naloxone-precipitated withdrawal symptoms after repeated morphine treatments [97].  

Co-administration of ORL1 antagonist, J-113397, during conditioning facilitates morphine-induced 

conditioned place preference (CPP), and ORL1 knockout rats are more sensitive to the rewarding 

effect of morphine than wild-type control rats, suggesting that the ORL1 system is involved in 

attenuating the rewarding effect of μ-opioids and offers a therapeutic target for the treatment of drug 

abuse and addiction [98]. Functional interactions between MOR ligands and nociceptin, the endogenous 

ligand of ORL1, have been observed in the human neuroblastoma cell line BE(2)-C, which contains both 

MOR and ORL1 [99]. Immunoprecipitation assay demonstrated that MOR can physically associate 

with ORL1, resulting in a complex with a unique binding selectivity profile [100]. Furthermore, 

heterodimerization of MOR and ORL1 impairs the potency of MOR agonist, DAMGO, [59] and 

attenuates ORL1-mediated inhibition of N-type channels [101]. 

2.2.4. MOR- sst2A 

MOR and sst2A receptors coexist and cooperate functionally in nociception pathways [102,103], and 

there is extensive cross-talk between opioid and somatostatin-mediated analgesia responses [104,105]. 

A particularly high degree of MOR-sst2A receptor colocalization was observed in the locus  

coeruleus [60], a brain region involved in opioid withdrawal syndrome [106], and the attenuation of 
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opioid withdrawal by the sst2A receptor agonist octreotide may be due to the physical contacts of MOR 

and sst2A in the locus coeruleus [107]. Co-immunoprecipitation studies provided direct evidence for 

the heterodimerization of MOR and sst2A. MOR-sst2A heterodimerization did not substantially alter the 

ligand binding properties of the receptors, but selectively cross-modulates receptor phosphorylation, 

internalization and desensitization [60]. 

2.2.5. MOR-NK1 

MOR and NK1, the principle receptor for substance P, coexist and functionally collaborate in brain 

regions governing pain perception [108–115]. Moreover, MOR and NK1 are highly expressed in the 

nucleus accumbens, which mediates the motivational properties of drugs of abuse, including opioids. 

Interestingly, the rewarding effects of morphine are absent in NK1-deficient mice [113,114]. Using  

co-immunoprecipitation and BRET, MOR and NK1 were shown to form heterodimers [61].  

MOR-NK1 heterodimerization does not significantly change the ligand binding and signaling 

properties of MOR, but dramatically altered its trafficking and resensitization profiles [61]. Altered  

β-arrestin trafficking in cells coexpressing MOR and NK1 could thus impact on opioid resensitization 

and the long-term cellular effects of opioids [61]. 

2.2.6. MOR-CB1R 

Opioids and cannabinoids share several pharmacological effects, such as antinociception, 

hypothermia, hypotension and sedation [116,117]. The synergy of the pharmacological effects of opioids 

and cannabinoids is attributed to the cross-talk between MOR and CB1R [118,119]. Furthermore, a CB1R 

agonist, delta 9-tetrahydrocannabinol, can enhance the potency of morphine [120]. MOR and CB1R 

colocalize in dendritic spines in the caudate putamen and dorsal horn of the spinal cord [121–123]. 

Coexpression of MOR and CB1R leads to MOR-CB1R heterodimerization, as revealed by BRET [124] 

and fluorescence resonance energy transfer (FRET) [62] assays. Guanosine 5'-O-(3-thiotriphosphate) 

(GTPγS) binding and MAPK phosphorylation assays demonstrated that MOR signaling is attenuated 

by CB1R agonist, and this effect is reciprocal in both heterologous cells and endogenous tissues 

coexpressing MOR and CB1R [124]. An electrophysiological analysis has also been developed to 

determine the functional coupling of the heterodimerized MOR-CB1R [62]. 

2.2.7. MOR-mGluR5 

MOR activity can be affected by presynaptic modulation through glutamate receptors. Glutamate 

elicits and modulates responses in the CNS via two groups of receptors, ionotropic (ligand-gated ion 

channels) and G-protein-coupled metabotropic receptors (mGluRs) [125–127]. mGluR5 plays major 

roles in modulatory CNS pathways and has pharmacological implications in pain [128,129]. Moreover, 

the inhibition of mGluR5 can modulate opioid analgesia and opioid tolerance. The specific mGluR5 

antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), can block hyperalgesia and nociceptive behavior, 

and the co-administration of MPEP with morphine could suppress the loss of morphine-induced  

anti-nociception and inhibit the development of morphine-induced tolerance [130,131]. In human 

embryonic kidney (HEK) 293 cells coexpressing MOR and mGluR5, DAMGO-induced MOR 
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phosphorylation, internalization and desensitization are attenuated by MPEP treatment [63].  

Co-immunoprecipitation data further indicate MOR-mGluR5 heterodimerization [63]. Interestingly, 

the allosteric mGluR5 inhibitor MPEP is not simply acting as a blocker of glutamate signaling, but 

changes the conformation of MOR-mGluR5 heterodimer to affect MOR phosphorylation and 

desensitization [63]. 

3. Bivalent Ligands of Oligomerized μ-Opioid Receptor 

Bivalent ligands are compounds that contain two recognition sites, or pharmacophores, joined 

through a connecting spacer. Pharmacophores are ensembles of steric and electronic features necessary 

for optimal supramolecular interactions with a specific biological target to exert its biological 

response. When talking about ligand-receptor interactions, pharmacophores are the molecular moieties 

of the ligands required for recognition by their corresponding receptors.  

The endogenous opioid peptide family is characterized by a common tetrapeptide sequence  

(Tyr-Gly-Gly-Phe) and comprises over a dozen ligands [132–134], including β-endorphin [135,136], 

enkephalins [137] and dynorphins [138]. Two additional endogenous ligands, endomorphin-1 and -2, 

with a tetrapeptide sequence (Tyr-Pro-X-Phe-NH2 X = Trp or Phe) different from that of classical 

opioid peptides have also been reported [137]. Increasing the distance between enkephalin 

pharmacophores results in DOR-selective compounds, while reducing the distance makes it more  

MOR-selective [139,140]. Synthesis of bivalent ligands has been one of the most promising ways of 

developing new opioid analogues since the 1980s [139–146]. 

Ligand-induced clustering of opioid receptors was observed on the surface of neuroblastoma  

cells [147]. This observation prompted scientists to design double pharmacophore ligands—bivalent 

ligands—as probes for bridging hypothetical dimeric opioid receptors [148]. Convincing evidence for 

homo- and hetero-dimers among opioid receptors has been presented since the late 1990s [149]. 

Portoghese’s group envisioned that a bivalent ligand with a spacer of optimal length would exhibit 

greater potency than that derived from the sum of its two monovalent pharmacophores [144,150]. 

Based on molecular modeling of interlocking transmembrane (TM) helices in a homodimeric  

MOR-MOR, it was proposed a decade ago that interlocking dimers with a TM5,6-interface between 

the 7TM domains may be the dominant form of dimers [151]. 

The recognition sites of opioid agonists and antagonists on dimeric receptors are believed to be 

separate. The MOR protection experiment was performed using MOR-selective agonists (morphine) 

and antagonists (naloxone) to determine their effectiveness in blocking irreversible MOR antagonism 

by β-funaltrexamine (β-FNA) in the guinea pig ileum preparation. Relatively high concentrations  

(0.5–1 μM) of MOR agonists were needed to protect MOR against inactivation, while antagonists in 

the low nM range were effective in blocking the irreversible effect of β-FNA. It was suggested that 

MOR activation and antagonism are mediated through separate negative allosterically coupled 

recognition sites in a dimer [152]. According to their theory, an opioid could modulate its own effects 

on opioid receptors via regulating its own concentration. At low concentration, single occupancy of the 

dimer would occur; at higher concentration, occupation of the second site would dampen the overall 

binding and activation of the opioid receptor through negative cooperativity. The frequently-seen  

bell-shaped concentration-response curve is consistent with this proposal, and exogenous antagonists 
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were envisioned to have greater affinity for this second site [148]. Site-directed mutagenesis, combined 

with the classical structure-activity relationship approach, led to the identification of amino acid 

residues on opioid receptors and chemical groups on ligands participating in molecular 

recognition [148,153]. 

Several lines of evidence support the homo-oligomerization of MORs. The human MORs form 

SDS-resistant homodimers, and increasing concentrations and longer exposure of both peptide 

(DAMGO) and alkaloid (ohmefentanyl, etorphine and morphine) agonists reduce the levels of dimers 

with a corresponding increase in those of monomers [56]. Complementation of function after 

coexpression of pairs of nonfunctional MORs that contain distinct inactivating G-protein mutations 

linked to the C-terminal tails suggests that MORs exist as dimers [154]. This receptor 

homodimerization is facilitated by a cholesterol-palmitoyl interaction in the MOR complex [155].  

The synthesis of homo-bivalent ligands of mixed KOR/MOR agonists/antagonists has been  

achieved [156–161]. However, none of the homo-bivalent ligands have been applied to study the 

homo-oligomerization of MORs. 

Heterodimeric opioid receptors raised the issue of pharmacological selectivity. The transition from 

MOR to DOR agonism upon chronic exposure of mice to MOR agonists (methadone and heroin) 

might reflect changes in the distribution of MOR-DOR heterodimers [162]. If there is an increase of 

the MOR-DOR density, MOR agonists that bind to MOR-selective sites of the dimmers could be 

antagonized by the interaction of a DOR antagonist at the DOR-selective site in the heterodimer. The 

presence of heterodimeric receptors has important influence on the interpretation of experimental data 

and in the screening strategy using homogeneous populations of cloned receptors. Additionally, 

dimeric receptors may activate transduction pathways different from those elicited by monomers [148]. 

Bivalent ligands are not necessary bi-functional ligands, and vice versa. Bivalent ligands are 

compounds that have two pharmacophores with a long linker. Earlier studies on GPCR bivalent 

ligands did not aim to target dimeric complexes, and many such ligands have relatively short linking 

groups between the pharmacophores. This suggests that these bivalent compounds may be interacting 

with neighboring binding sites on a single receptor rather than bridging sites across a receptor dimer. 

In contrast, bi-functional ligands serve as agonists and/or antagonists for different monomer receptors 

because of their multiple functional groups within the molecule. Considering their activities of 

recognizing heterodimeric receptors and the pharmacological potential of being a new-generation 

analgesic, we also provided an example in this review. 

3.1. MOR-DOR Bivalent Ligands  

The cross-talk between MOR and DOR and its possible significance in morphine tolerance and 

physical dependence have been suggested [71,73,88,163–167]. The chronic effects of morphine can be 

blocked by DOR antagonists without significantly compromising its antinociceptive action [72,167–169]. 

Following the aforementioned findings, mixed MOR agonist/DOR antagonist ligands have been 

designed to develop analgesics devoid of the side effects of traditional opioids [170–172]. Bivalent 

ligands of opioid alkaloids [143–145,150,173–176] and peptide agonists [139,140,177,178] derived 

from enkephalins have been shown to have increased opioid receptor selectively and potency 

compared to corresponding monovalent counterparts. 
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Considering the evidence for MOR-DOR heterodimers in cultured cells [57,67,85], similar 

interactions may also occur in vivo to mediate the synergy of MOR and DOR agonists. Bivalent 

ligands containing MOR agonist and DOR antagonist pharmacophores, μ-δ agonist-antagonist 

(MDAN) series, have been designed to address the MOR-DOR interaction through which MOR 

agonist-induced tolerance and dependence are attenuated [87]. The pharmacophores were derived from 

the MOR agonist, oxymorphone, and DOR antagonist, NTI. A transition in the behavioral 

pharmacology is believed to be a function of the spacer length of the bivalent ligand that reflects the 

bridging of the MOR-DOR heterodimer. According to this theory, if the MOR-DOR heterodimers 

mediate tolerance and dependence at the molecular level, changes in tolerance and dependence as a 

function of spacer length could be a manifestation of bridging. Indeed, the bivalent ligand with the 

shortest length, MDAN-16, developed a certain degree of dependence, whereas the remaining 

members of the series with longer spacers were essentially without dependence development. When 

the spacer length was longer than 22 Å (MDAN-19 to -21), neither tolerance nor dependence was 

observed. It appears that bridging MOR-DOR heterodimers by MDAN ligands negatively modulates 

putative signal transducers, thereby reducing tolerance and dependence [87]. In HEK293 cells, 

MDAN-21 prevents endocytosis, while MDAN-16 gives rise to robust internalization, of MOR-DOR 

heterodimers [179]. This dramatically divergent internalization of MOR-DOR heterodimer elicited by 

MDAN bivalent ligands of different spacer lengths is relevant to the role of receptor internalization in 

tolerance [179]. 

3.2. MOR-KOR Bivalent Ligands  

The bivalent approach was applied to synthesize mixed MOR-KOR ligands as potential analgesics 

with decreased side effect [180]. Compared to MOR agonists, KOR agonists lack respiratory 

depressant, constipating and strong addictive (euphoria and physical dependence) properties. However, 

clinical trials with KOR agonists have been aborted, because of the occurrence of unacceptable 

sedative and dysphoric side effects. It is now recognized that KOR agonists with some MOR activity 

produce fewer adverse side effects than highly selective KOR agonists, so the mixed MOR-KOR 

ligands might act as clinically useful analgesics [181]. 

A series of bivalent ligands containing a KOR antagonist pharmacophore, 5’-guanidinonaltrindole 

(5’-GNTI), and a MOR antagonist pharmacophore, β-naltrexamine (β-NTX), linked through a spacer 

of varying length have been synthesized and characterized in vitro [182]. The design rationale is based 

on the desire to maintain a favorable hydrophilic and lipophilic balance coupled with flexibility. This 

includes a spacer that contains (1) glycine units that maintain a favorable hydrophilic-lipophilic 

balance, (2) a succinyl unit that contributes to the flexibility for favorable interaction with 

heterodimers and (3) an alkylamine moiety attached to 5’-GNTI that permits variation of the spacer 

length by one atom increments. The antagonist activities of the bivalent ligands were evaluated by 

measuring the inhibition of Ca2+ release in HEK293 cells stably expressing KOR and MOR singly or 

simultaneously. The selective agonists used to evaluate the antagonism selectivity of the target 

compounds were U69593 (KOR) [183] and DAMGO (MOR) [184]. One bivalent ligand, KMN-21 

(with a spacer length of 21 atoms), significantly antagonized both U69593- and DAMGO-induced 

Ca2+ release in cells containing coexpressed MOR and KOR [182]. It is noteworthy that the  
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KOR-DOR bivalent ligand antagonist, KDN-21, also contains a 21-atom spacer, suggesting common 

bridging modes for MOR-KOR and DOR-KOR heterodimeric receptors [185]. 

Another monovalent bi-functional ligand, N-naphthoyl-β-naltrexamine (NNTA), which selectively 

activates heterodimeric MOR-KOR in HEK293 cells and induces potent antinociception in mice, has 

been synthesized [186]. In the mouse tail-flick assay, intrathecal (i.t.) NNTA produced antinociception 

that was ~100-fold greater that intracerebroventricular (i.c.v.) administration. No tolerance was 

induced by i.t. administration, but marginal (three-fold) tolerance was observed by i.c.v. 

administration. Neither significant physical dependence nor place preference was produced in the ED50 

dose range. These results suggest an approach to potent analgesics with fewer deleterious  

side effects [186]. 

3.3. MOR-ORL1 Bivalent Ligands 

Bifunctional MOR-ORL1 agonists are hypothesized to be useful as non-addictive analgesics or 

medication for drug addicts [187]. The concept of using mixed-action opioids for pain management 

and drug abuse treatment is clinically validated [188–190]. Buprenorphine, a MOR partial agonist and 

KOR antagonist, also has low efficacy at ORL1 [191,192]. Its ORL1 agonist activity is responsible for 

the attenuation of its antinociceptive activity at high doses [193] and the reduction of cocaine use in 

dually addicted cocaine-opioid addicts [194]. If ORL1 agonist-MOR agonist activities are present in 

the same molecule, the ORL1 activity may modulate the rewarding effects of the MOR activity, 

thereby producing opioid analgesics that have a reduced addiction liability. MOR-ORL1 agonists may 

also be used as drug abuse medications with diminished dependence and withdrawal tendencies. 

SR16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a nonselective ORL1 and 

MOR partial agonist, has potent antinociceptive activity in acute thermal pain, as well as CPP, an 

effect mediated by its MOR activity [195]. It is speculated that the partial agonist efficacy of SR16435 

at ORL1 is not sufficient to attenuate the rewarding effect of its MOR activity. The in vivo 

pharmacological profile of three other ORL1 agonists, SR14150, SR16507 and SR16835, with 

different selectivity and efficacy for ORL1 and MOR, have been determined in a model of acute 

nociception (the tail-flick assay) and a model of reward (place conditioning paradigm) in mice [187]. 

SR14150 is a high-affinity ORL1 partial agonist that has 20-fold selectivity over MOR. It has 

antinociceptive activity by acting as a MOR partial agonist, but is not rewarding in the  

place-conditioning paradigm, due to its ORL1 agonist activity that attenuates MOR-mediated reward. 

SR16507 has high binding affinity for both ORL1 and MOR, acting as a full ORL1 agonist and partial 

MOR agonist. It has potent antinociceptive activity, but produces CPP. SR16835 is a modestly  

(seven-fold) selective ORL1 full agonist, with very low efficacy at MOR. It does not produce  

MOR-mediated antinociception and CPP. The overall antinociceptive and antirewarding profiles of 

these ligands depend on their selectivity between MOR and ORL1, as well as intrinsic activity at these 

receptors. Notably, the ORL1-selective ORL1-MOR partial agonist, SR14150, has antinociceptive 

activity without rewarding effects and may lead to clinically useful treatments for pain and  

drug addiction [187]. 

The structure-activity relationship (SAR) for discovering bifunctional MOR-ORL1 ligands, starting 

from ORL1-selective scaffolds, has been explored [196]. Based on the 2-indolinone class of ORL1 
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ligands [197], a 2-D pharmacophore model (comprised of three pharmacophoric features common to 

most ORL1 ligands) was developed to determine SAR leading to (1) selectivity versus the classical 

opioid receptors and (2) functional efficacy, i.e., agonist or antagonist activity [198]. Most ORL1 

ligands contain the piperidine ring, so the piperidine 4-position heterocyclic ring and the piperidine  

N-substituent were systematically analyzed. The compounds were tested for binding affinity at human 

ORL1, MOR, DOR and KOR transfected into Chinese hamster ovary (CHO) cells. Binding to the 

opioid receptors utilized the selective agonists, [3H]nociceptin, [3H]DAMGO, [3H]Cl-DPDPE (d-

penicillamine(2,5)-enkephalin) and [3H]U69593, for ORL1, MOR, DOR and KOR, respectively. 

Functional activity was determined by stimulation of [35S]GTPγS binding to cell 

membranes [192,199,200]. Data from these 17 compounds indicate that modulation of the ORL1 

agonist versus MOR agonist potency using SAR approaches will be useful for developing bivalent 

ORL1-MOR ligands for medication development [196]. 

3.4. MOR-mGluR5 Bivalent Ligands 

The selective mGluR5 antagonist, MPEP, acts allosterically by binding to the 7TM domain of the 

receptor [201]. Co-administration of MPEP and morphine could enhance morphine antinociception 

and suppress morphine-induced tolerance and dependence, suggesting a design strategy for developing 

potent analgesics targeting both MOR and mGluR5 [130,202,203]. The bivalent ligands being 

synthesized [204] contain pharmacophores derived from the MOR agonist, oxymorphone, and the 

mGLuR5 antagonist, m-methoxy-MPEP (M-MPEP) [201], linked through spacers of varying lengths 

(10–24 atoms). The series of compounds was evaluated for antinociception using the tail flick and von 

Frey assays in mice pretreated with lipopolysaccharide (LPS). MMG22 (22-atom spacer) is the most 

potent member of the series (intrathecal ED50 (effective dose in 50% of the population) ~9 fmol). Since 

other members with shorter or longer spacers have ≥500-fold higher ED50s, the exceptional potency of 

MMG22 may result from the optimal bridging of the MOR-mGluR5 heteromer. MMG22 possesses a 

>106 therapeutic ratio, suggesting that it might be an excellent candidate for the management of 

chronic, intractable inflammatory pain via spinal administration [204]. 

4. Conclusions  

Bivalent ligands of the opioid receptors have been prepared to improve the pharmacological 

properties of opioid ligands, because ligand-induced clustering of opioid receptors occurs on the cell 

surface [142,147,148,205]. These efforts have been validated with the characterization of homo- and 

hetero-oligomers of the opioid receptors [55,57,67,85,206,207]. Hetero-oligomers of MOR with other 

receptors display altered ligand-binding profiles and novel signaling properties relative to receptor 

monomers [55,206]. Bivalent opioid ligands capable of interacting simultaneously with different 

recognition sites in the hetero-oligomerized MOR complexes exhibit increased efficacy in signal 

amplification [205,206], thereby with (1) enhanced agonist or antagonist activity, (2) improved 

metabolic stability, (3) improved membrane permeability, (4) reduced opioid-induced tolerance,  

(5) diminished physical dependence and (6) a raised potential for the treatment of drug addiction [205]. 

The oligomerization of GPCRs is dynamic and regulated. Microscopically, bivalent ligands bind to 

and thereby stabilize or de-stabilize pre-existing dimers. Specific ligands may promote ligand-induced 
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dimerization or inhibit further dimerization, depending on the intrinsic properties of the ligands. The 

pharmacological difference between bivalent ligand binding and co-application of two monovalent 

ligands is that the former interact with two adjacent receptors simultaneously, but the latter bind to two 

distant receptors sequentially. The downstream signaling process of these two events could be different 

spatially and temporally. The advantages of using bivalent ligands as therapeutic tools are less 

undesired side effects, whereas the disadvantages are non-specific and unexpected effects where the 

targeted heterodimers do not colocalize. Whether both ligand binding sites are equal in a dimer or have 

a certain degree of cooperativity depends on the structures of heterodimers and the orientation of the 

linked pharmacophores on the bivalent ligands. We speculate that most of the binding sites are not 

equal in the heterodimers and are somewhat cooperative when interacting with the bivalent ligands. 

There are caveats that one should be aware of when evaluating the data of the oligomerized opioid 

receptors. Most studies for oligomerization employ in vitro methods of overexpression receptors in cell 

lines. The overexpression system apparently will have artificial results by forcing receptors together. 

Co-immunoprecipitation methods contain detergent, which could disrupt protein-protein interactions, 

thus disrupting receptor oligomerization. Moreover, the in vivo data are not solid for receptor 

oligomerization, and most of the studies are based on a heterologous expression system. The observed 

pharmacological profiles of the bivalent ligands linking a relatively non-selective agonist and an 

antagonist in vivo might not always reflect the effects of the heterodimers. In areas where the 

distributions of the two receptors are non-overlapping, the effects of the ligands observed may be 

owing to the agonistic or antagonistic effects on one of the receptors alone. For example, Pickel and 

her co-workers reported that mu-receptors were located in 21% of the dendritic profiles and 3% of the 

axon terminals containing CB1 receptors in the rat nucleus accumbens shell [123], a rather low 

percentage of neurons that express both receptors in question. Although their findings provide 

ultrastructural evidence that cannabinoid-opioid interactions may be mediated by activation of CB1 

and MOR within the same neurons in the nucleus accumbens, for ligands that are not selective for 

heterodimers, their pharmacological effects actually reflect the activities of heterodimers and the 

homodimers or monomers in combination in vivo. 

The high-resolution crystal structures of MOR, DOR, KOR and ORL1 in ligand-bound 

conformations have been resolved [208–211]. The MOR structure shows tightly coupled pairs of 

receptor molecules, held together predominantly by complementary interactions involving TM5 and 

TM6. This pairing might regulate MOR signaling [211,212]. In contrast, the KOR structure shows a 

dimeric arrangement involving interactions of TM1, TM2 and helix 8 (H8), similar to the alternative, 

less compact packing in the MOR structure [209,212]. The proposed roles of the TM5-TM6 and  

TM1-TM2-H8 interfaces in functionally relevant receptor-receptor interactions need to be addressed to 

reveal the role of oligomerization in the signaling of opioid receptors [212]. The mission of identifying 

the functionally relevant oligomerization interfaces continues and will provide further insight into the 

SAR of the bivalent ligands and the oligomerized opioid receptors. 
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