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Up to half of all patients do not respond to pharmacological treatment as intended.

A substantial fraction of these inter-individual differences is due to heritable factors

and a growing number of associations between genetic variations and drug response

phenotypes have been identified. Importantly, the rapid progress in Next Generation

Sequencing technologies in recent years unveiled the true complexity of the genetic

landscape in pharmacogenes with tens of thousands of rare genetic variants. As each

individual was found to harbor numerous such rare variants they are anticipated to

be important contributors to the genetically encoded inter-individual variability in drug

effects. The fundamental challenge however is their functional interpretation due to the

sheer scale of the problem that renders systematic experimental characterization of

these variants currently unfeasible. Here, we review concepts and important progress

in the development of computational prediction methods that allow to evaluate the effect

of amino acid sequence alterations in drug metabolizing enzymes and transporters.

In addition, we discuss recent advances in the interpretation of functional effects of

non-coding variants, such as variations in splice sites, regulatory regions and miRNA

binding sites. We anticipate that these methodologies will provide a useful toolkit to

facilitate the integration of the vast extent of rare genetic variability into drug response

predictions in a precision medicine framework.

Keywords: precision medicine, personalizedmedicine, variant effect prediction, ADME, NGS, rare variant analysis,

noncoding variation, pharmacogenomics

INTRODUCTION

Inter-individual differences in drug response are clinically important phenomena that result in
reduced efficacy or adverse reactions in 25–50% of all patients and genetic factors have been
estimated to account for around 20–30% of these (Spear et al., 2001; Sim et al., 2013). Fueled
by technological advances in Next-Generation Sequencing (NGS) technologies, the application of
comprehensive sequencing approaches is on the rise for various applications, including studies of
biodiversity, population genetics and biomedical research (Levy and Myers, 2016). Furthermore,
plummeting costs to <1,000 USD per human genome and increasing worldwide sequencing
capacities that we estimate to exceed 100 petabases per year (1015 bases corresponding to the size of
around 100,000 human genomes) open tremendous possibilities for NGS to revolutionize precision
medicine.
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Strikingly, these massive NGS data sets revealed that
individuals harbored on average more than 3.7 million single
nucleotide variants (SNVs) and more than 350,000 insertions
and deletions across different populations, emphasizing the
substantial variability of the human genome (The 1000 Genomes
Project Consortium, 2012). Particularly genes involved in drug
absorption, distribution, metabolism and excretion (ADME)
proved to be highly diverse and genetically complex (Fujikura
et al., 2015; Bush et al., 2016; Kozyra et al., 2017). Across 208
ADME genes more than 69,000 SNVs have been described, 98.5%
of these being rare with minor allele frequencies (MAF) <1%
(Ingelman-Sundberg et al., 2018). The overall pharmacogenetic
variability was highly population specific, particularly for isolated
populations, such as Ashkenazi Jews (Ahn and Park, 2017;
Kozyra et al., 2017; Zhou and Lauschke, 2018). Given this
enormous pharmacogenetic variability, one of the key frontiers
of contemporary pharmacogenomics is the translation of these
comprehensive genomic data into clinically actionable treatment
recommendations (Lauschke and Ingelman-Sundberg, 2016a,
2018).

Heterologous expression in cell lines followed by quantitative
determination of gene product functionality using appropriate
end points is considered as the gold standard strategy to
characterize the functional impact of pharmacogenetic variants.
Furthermore, epidemiological association studies can provide
additional indications about the consequences of genetic variants
on drug metabolism related phenotypes in vivo. However, for the
functional interpretation of rare variants these approaches suffer
from multiple shortcomings:

i) These methods are generally low throughput and are not
compatible with the interrogation of tens of thousands of
variants.

ii) Experimental characterizations are time consuming,
expensive and require specially trained technical staff,
which renders them unsuitable for the rapid functional
interpretation of the pharmacogenotype of an individual
patient at the point of care.

iii) Epidemiological analyses require a sufficient number of
patients who carry the allele, which drastically limits their
feasibility for rare genetic variant studies.

Thus, in the absence of viable experimental strategies,
computational prediction methodologies are routinely used
to predict the functional impact of genetic variants. Most of these
algorithms focus on predicting the functional consequences
of variants that result in amino acid substitutions. However,
recently much progress has also been made regarding the
interpretation of non-coding variants that affect splice sites,
promoters, enhancers or miRNA binding sites (Figure 1).

Prediction algorithms are generally trained on pathogenic
variant sets and most tools base their conclusions, at least in part,
on the evolutionary conservation of the respective sequence.
Importantly however, pharmacogenes are hallmarked by low
evolutionary conservation and are generally not associated with
human disease. These peculiarities result is specific problems
for the interpretation of pharmacogenetic variants. Here, we
provide an updated overview of computational approaches

for the functional interpretation of genetic variants, specifically
focusing on their suitability for pharmacogenetic predictions.We
describe the underlying statistical frameworks and discuss their
different bases for decision-making. Furthermore, we highlight
important progress particularly in the interpretation of non-
coding genetic variability. We conclude that computational tools
are essential for the functional interpretation of an individual’s
pharmacogenotype and that their further improvement
constitutes one of the most important frontiers for the clinical
implementation of NGS-based genotyping.

INTERPRETATION OF VARIANTS
RESULTING IN AMINO ACID EXCHANGES

Genetic variants that result in amino acid substitution,
henceforth termed missense variants, can impact the
functionality of the respective protein by various mechanisms,
including alterations in active sites, structural destabilization due
to protein misfolding, perturbations in solvent accessibility or
modification of post-translational processing. Each individual
harbors 10,000–12,000 missense variants, many of which are
rare (The 1000 Genomes Project Consortium, 2015). These
rare variants have been suggested as important modulators of
complex disease risk (Kryukov et al., 2007) and inter-individual
differences in drug response (Kozyra et al., 2017). Among
all variant classes, missense variants are the most extensively
studied and a plethora of computational methods is available for
their functional interpretation. Conceptually, these algorithms
predict the functional impact of missense variants based on
sequence information, primarily evolutionary conservation of
the respective residues, and/or structural information of the
corresponding gene product. In the following, we highlight
recent progress, provide an overview of available tools and
discuss their utility for pharmacogenetic predictions. For
methodological details we refer the interested reader to excellent
recent reviews (Ng and Henikoff, 2006; Peterson et al., 2013;
Tang and Thomas, 2016).

Predictions Based on Sequence
Information
Evolutionary conservation scores are calculated by analyzing
the evolutionary variation dynamics of DNA or amino acid
sequences among homologs with the hypothesis that the extent
of conservation is a strong predictor of the importance of
the respective sequence for structure and function of the
corresponding gene product. Thus, positions with a high
evolutionary rate are thought to be dispensable, whereas slowly
evolving, i.e., conserved sequences indicate a selective pressure
against variation in these regions and thus deleterious effects if
mutated.

Evolutionary conservation as a metric to distinguish
deleterious from neutral variants is considered by most
computational prediction algorithms. The majority of
approaches that focus on the functional interpretation of
missense variants utilize amino acid sequence alignment, whereas
others utilize nucleotide sequence alignments or a combination
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FIGURE 1 | Overview of features that can be assessed by current computational prediction methods. Different parameters and features are assessed for genetic

variants depending on whether they are localized in putatively regulatory sequences, untranslated regions (UTR) of the gene, its coding sequences (CDS) or within

introns. ESE/ESS, exonic splicing enhancer/silencer; ISE/ISS, intronic splicing enhancer/silencer; NMD, nonsense-mediated decay; RBP, RNA binding protein.

of both methods (Table 1). While alignment of amino acid
sequence proved to be effective for the analysis of missense
variants, genomic sequence alignments provide additional
versatility and allow to extend functional interpretations to
variant classes that do not alter the amino acid sequence, such as
synonymous and regulatory variants. Notably, commonly used
conservation-based functionality predictors do not consider
sequence interdependencies. Explicit integration of residue
dependency information obtained from multiple sequence
alignments was however recently shown to improve predictive
performance (Hopf et al., 2017), emphasizing the added value
of complementing conservation based functionality predictions
with variant interaction data.

On the basis of multiple sequence alignments, algorithms
derive their functionality predictions either based on direct
theoretical models, or by various machine-learning approaches.
The former methods predict the functional impact of variants
based on phenomenological scores derived from theoretical
models that are known a priori. In contrast, machine learning
methods search for patterns in multi-dimensional training data
sets consisting of labeled deleterious and benign variations, which
will then be used as the basis to generate predictions on new
unlabeled data. Machine learning approaches include support
vector machines, random forests, artificial neural networks,
naive Bayes approaches, gradient tree boosting and regression
models. With increasing wealth of large-scale data sets to learn
from, machine learning methods become increasingly popular
as versatile tools to generate predictive models in many areas of
biomedicine (Camacho et al., 2018).

Commonly used algorithms are generally designed to flag
deleterious variants, which are mostly assumed to result in a
reduced gene product function, and their performance of gain-
of-function variants is substantially worse (Flanagan et al., 2010).

Notably, the algorithm B-SIFT, a modified version of the widely
used SIFT tool (Ng and Henikoff, 2001), was developed to
overcome this limitation (Lee et al., 2009). Conceptually, B-
SIFT identifies increased functionality variants based on protein
sequence alignments by scoring whether a given mutation results
in a change commonly present in protein homologs and the tool
successfully identified experimentally validated gain-of-function
variants in cancer.

While computational missense variant predictors are
generally reported to achieve high predictive accuracies with
areas under the receiver operating characteristic curve (AUCROC)
that often pivot around 0.9, drastic drops in performance to
AUCROC of 0.5–0.75 have been reported on independent,
functionally determined human variant datasets (Mahmood
et al., 2017). These findings were corroborated by a recent
cross-comparison of 23 methods based on three independent
pathogenicity datasets in which the authors found that REVEL
and VEST3 performed overall best, whereas the most commonly
used methods SIFT and PolyPhen-2 performed only medially
(Li et al., 2018). Furthermore, no functional consequences could
be detected using various in vitro or in vivo tools for 40% of
variants predicted to be deleterious by common functionality
prediction tools (Miosge et al., 2015). Thus, while current
tools have proven powerful in clinical diagnostics to prioritize
potentially causative mutations in genetic diseases for further
analyses (Boycott et al., 2013), their predictive power is not yet
sufficient to predict functional variant effects without substantial
subsequent validations.

Importantly, the quality of prediction models critically
relies on accurate training data sets. For instance, models are
commonly generated using training sets of pathogenic variants
as positive controls and polymorphisms identified to be common
in large-scale sequencing projects as negative, i.e., functionally
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TABLE 1 | Methods to predict the functional effect of missense variants based on sequence information.

Algorithm Model Basis of decision Model training or evaluation References

SIFT Direct Prediction of functionality based on sequence

conservation metrics that make use of Dirichlet

priors

Variants from protein specific studies (LacI,

HIV-1 Protease and Bacteriophage T4

Lysozyme)

Ng and

Henikoff,

2001

PANTHER HMM Sequence conservation analysis using HMM Variants from HGMD and dbSNP as

deleterious and functionally neutral

variants, respectively

Thomas et al.,

2003

MAPP Direct Quantification of the physicochemical

characteristics at each position of the amino acid

sequence based on observed evolutionary variation

Protein specific studies (LacI, HIV-1

Protease, HIV reverse transcriptase and

Bacteriophage T4 Lysozyme)

Stone and

Sidow, 2005

PhastCons HMM Identification of conserved elements using a

two-state phylogenetic HMM

Calibration on genomes from four model

species (human, D. melanogaster, C.

elegans, and S. cerevisiae)

Siepel et al.,

2005

SNPs3D SVM Variant effect prediction based on amino acid

sequence conservation metrics and folded state

stability of protein structure

Variants from HGMD and dbSNP as

deleterious and functionally neutral

variants, respectively

Yue et al.,

2006

PhD-SNP SVM Prediction of variant pathogenicity based on

sequence profiles

Variants from HumVar and HumVarProf

datasets

Capriotti

et al., 2006

SiPhy HMM Sequence conservation analysis using HMM ENCODE Phase I regions Garber et al.,

2009

LRT Direct Evolutionary conservation model across 32

vertebrates

Variants in three sequenced human

genomes

Chun and

Fay, 2009

SNPs&GO SVM Variant effect prediction based on sequence

information, evolutionary conservation and defined

gene ontology score

Variants from SwissProt Calabrese

et al., 2009

B-SIFT Direct Sequence conservation metrics that calculate the

difference between wild-type and mutant allele

Variants from SwissProt database and

protein specific study (Dnase I)

Lee et al.,

2009

PolyPhen-2 NB Considering sequence conservation, Structure

parameters such as hydrophobic propensity and B

factor

Variants fromn HumDiv and HumVar from

UniProt Database

Adzhubei

et al., 2010

MutationTaster NB Prediction of mutation pathogenicity based on

evolutionary conservation, splice-site changes, loss

of protein features and changes that affect

expression levels

Variants from OMIM database, HGMD and

the literature as pathogenic set and neutral

variants from dbSNP as controls

Schwarz

et al., 2014

MutationAssessor Direct Evolutionary conservation patterns within protein

families and across species using combinatorial

entropy

Variants from UniProt database

(HumSaVar)

Reva et al.,

2011

Condel Direct Integration of five algorithms (SIFT, PolyPhen-2

MAPP, MutationAssessor, and Log R Pfam E-value)

into single output score

Variants from HumVar, HumDiv, Cosmic

database, IARC TP53 database

González-

Pérez and

López-Bigas,

2011

PROVEAN Direct Alignment-based score that can also assess

in-frame insertions, deletions, and multiple amino

acid substitutions

Missense variants and indels,

replacements from UniProt database

Choi et al.,

2012

FATHMM HMM Identification of pathogenic variants based on

sequence conservation, protein domain-based

information and species-specific pathogenicity

weights. Also suitable for prediction of non-coding

variations.

Variants from the HGMD and Uniprot

databases

Shihab et al.,

2013, 2015;

Rogers et al.,

2018

VEST RF Prioritization of variants underlying Mendelian

diseases

Rare variants from HGMD database as

pathogenic set and variants from ESP

Carter et al.,

2013

Evolutionary

Action

Direct Prediction of variant effects on evolutionary fitness

using a formal genotype-phenotype perturbation

equation

Variants from 1000 Genomes Project Katsonis and

Lichtarge,

2014

MetaSVM SVM Ensemble score integrating nine functionality

predictors (SIFT, PolyPhen-2, GERP++,

MutationTaster, MutationAssessor, FATHMM, LRT,

SiPhy and PhyloP)

Variants causing Mendelian diseases as

pathogenic set and variants that are not

associated with any phenotypes as

controls, all from Uniprot database

Dong et al.,

2015

MetaLR RM Same as MetaSVM but using logistic regression instead of SVM . Dong et al.,

2015

(Continued)
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TABLE 1 | Continued

Algorithm Model Basis of decision Model training or evaluation References

SuSPect SVM Sequence conservation metrics, structure features

and additional network information

Variants from Humsavar database Yates et al.,

2014

PredictSNP EL Ensemble score integrating six functionality

predictors (MAPP, PhD-SNP, PolyPhen-1,

PolyPhen-2, SIFT and SNAP)

Variants mainly from SwissProt, HGMD,

dbSNP and Humsavar database

Bendl et al.,

2014

SNAP2 NN Prediction of amino acid variations based on amino

acid properties, predicted binding residues,

predicted disordered and low-complexity regions,

proximity to N- and C-terminus, statistical contact

potentials, co-evolving positions, secondary

structure and solvent accessibility

Variants from PMD, Swiss-Prot, OMIM,

HumVar and protein specific data sets

(LacI)

Hecht et al.,

2015

REVEL RF Ensemble method tailored specifically for the

prediction of rare genetic variant effects integrating

MutPred, FATHMM, VEST, PolyPhen, SIFT,

PROVEAN, MutationAssessor, MutationTaster, LRT,

GERP, SiPhy, phyloP, and phastCons

Variants from HGMD as pathogenic set

and neutral variants from ESP as controls

Ioannidis

et al., 2016

ConSurf Empirical Bayesian

method and

maximum

likelihood

estimation

Mapping of evolutionarily conserved residues on

protein surfaces by estimating the evolutionary rates

of each nucleic acid and amino acid sequence

position using multiple sequence alignments. Also

offers RNA secondary structure predictions.

Protein with at least five known 3D

structure homologs and precise

annotation of their functional sites (with

different nature)

Ashkenazy

et al., 2016

VIPUR RM Combination of sequence- and structure-based

features to identify and functionally interpret

deleterious variants

Variants from HumDiv and UniProt with

clear evidence of protein disruption

Baugh et al.,

2016

Envision GTB Decision tree ensemble-based tool using a

stochastic gradient boosting learning algorithm

Variants from nine large-scale experimental

mutagenesis datasets in eight proteins

Gray et al.,

2018

EVmutation Direct Unsupervised method exploiting sequence

conservation by incorporating interaction

information between all pairs of residues in protein

34 data sets from 21 proteins and a tRNA

gene extracted from 27 publications

Hopf et al.,

2017

PredSAV GTB Identification of pathogenic variants based on

sequence, structure, residue-contact networks as

well as structural neighborhood features

Human variants from Uniprot and OMIM

as pathogenic set and Ensemble variants

as neutral controls

Pan et al.,

2017

SNPMuSiC NN Structure stability based, implement PoPMuSiC and

HoTMuSiC on the basis of 13 statistical potentials

(distence potentials, solvent accessibility potentials

and torsion potentials) and 2 biophysical

characteristics (solvent accessibility of mutated

residue and difference in volume)

Variants from dbSNP, SwissVar and

HumSaVar datasets

Ancien et al.,

2018

DEOGEN2 RF Integration of 11 scores and metrices into one

meta-score, considering evolutionary features,

folding predictions, domain information as well as

gene features to identify deleterious variants

Training and test on variants from the

UniProt Humsavar16 dataset

Raimondi

et al., 2017

ADME prediction

framework

Direct Integration of prediction scores from five orthogonal

algorithms (LRT, MutationAssessor, PROVEAN,

VEST3 and CADD) using parameters optimized for

pharmacogenes

Training and validation specifically on

experimentally characterized

pharmacogenetic data sets from 43

ADME genes

Zhou et al.,

2018

HMM, hidden Markov model; SVM, support vector machine; NB, naïve Bayes classifier; EL, ensemble learning; RF, random forest; RM, regression model; NN, neural networks; GTB,

gradient tree boosting; HGMD, Human Gene Mutation Database; OMIM, Online Mendelian Inheritance in Man; ESP, Exome Sequencing Project; PMD, Protein Mutant Database.

neutral variants. For pharmacogenetic predictions such a strategy
is associated with multiple problems: Firstly, training on disease-
associated data sets will, in the best case, result in prediction
models that accurately predict the pathogenicity of variants.
However, only very few ADME genes are directly associated
with disease, suggesting that pathogenicity is not the right
endpoint to inform about variant effects in the pharmacogenetic
arena. Secondly, while evolutionary conservation constitutes a
useful metric to predict functional consequences in genes under

purifying selection, evolutionary conservation in pharmacogenes
is generally much lower (Fujikura, 2016), indicating that
conservation cannot reliably inform about functional impacts
of variations in pharmacogenes. Finally, the choice of common
polymorphisms as neutral training sets is problematic. Genetic
variants that occur with high frequencies are not necessarily
functionally neutral, particularly in pharmacogenetic loci, as
evidenced by a multitude of high-frequency loss of function
variants in CYP genes, such as CYP3A5∗3 (MAF = 95% in
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Europeans), CYP2C19∗2 (MAF = 34% in South Asians) and
CYP2D6∗4 (MAF= 16% in Latinos) (Zhou et al., 2017).

The indicated problems incentivized us to develop
a prediction framework tailored specifically toward
pharmacogenetic functionality assessment (Zhou et al.,
2018). Specifically, the model was devised using a two-step
procedure: Firstly, functionality classification threshold of
18 commonly used functional prediction algorithms were
optimized by leveraging a dataset of 337 experimentally
characterized pharmacogenetic variants using 5-fold cross
validations. In a second step, we integrated the best performing
orthogonal algorithms following a strategy that had been shown
to further improve predictive accuracy (Martelotto et al., 2014).
The resulting method achieved 93% for both sensitivity and
specificity for both loss-of-function and functionally neutral
variants. Moreover, the returned score can provide quantitative
estimates of the effect of the variant in question on gene function,
thus facilitating the functional and personalized interpretation of
an individual’s NGS-based pharmacogenome.

Recent progress in large-scale experimental mutagenesis
screens provides a promising approach to further expand the
development of powerful training resources for missense variant
effect predictors. While such a strategy has already been used to
develop a prediction method based on 10 proteins from different
species with disparate structures (Gray et al., 2018), we propose
that deepmutational scanning data fromADME proteins is likely
to substantially refine the resulting model for pharmacogenetic
predictions. For such an endeavor, we recommend to use
multiple substrates for each protein, as correlations between
prediction and experiments improved with more comprehensive
interrogation of protein function (Gallion et al., 2017). Combined
with ADME-optimized prediction models, we envision that such
an approach can further enhance the predictive accuracy of in
silico methods and yield sufficiently accurate tools to allow for
the clinical implementation of computational pharmacogenetic
predictions.

Utilization of Structural Data
While evolutionary conservation scores can provide useful
metrics to assess the pathogenicity of missense variants, they have
limitations when applied to the less conserved genes, such as
most ADME genes, which prompted the search for additional
orthogonal in silico methods. To this end, the analysis of
predicted or experimental structural data provides an appealing
concept, as the correct folding of polypeptide chains into three-
dimensional tertiary structures is of paramount importance for
their biological functions. Structure-based approaches either
directly use known crystal or NMR structures, preferably at high
resolution <2–3 Å (Wlodawer et al., 2008) or, should such data
not be available, leverage knowledge of the experimental 3D
structures of homologous sequences (Table 2).

The effect of variants is predicted by how the folding
free energy difference between the unfolded and folded states
(1G◦) is modified upon point mutations (11G◦) with negative
and positive values of 11G◦ indicating destabilizing and
stabilizingmutations, respectively. In recent years a large number
of mechanistically diverse approaches have been presented,

with machine learning-based strategies being most prevalent.
SDM constitutes a statistical potential energy function that
can estimate variant effects on protein stability (Topham
et al., 1997). This approach pioneered the knowledge-based
prediction of mutation effects on protein stability and has also
been successfully used in combination with machine learning
techniques (Pires et al., 2014a). An updated version of the
tool, SDM2 (Pandurangan et al., 2017), with a 5-fold increase
in underlying structural information as well as extensions for
interaction modeling can be accessed through a free, publically
available web server interface. Similarly, the algorithm HOPE
(Venselaar et al., 2010) can calculate structural and functional
effects of amino acid exchanges based on homology modeling.
It should be however noted that most of the current tools
are strongly biased toward the detection of destabilizing effects
(Pucci et al., 2018).

Approximately 70% of the human proteome can be
structurally modeled by homology (Somody et al., 2017).
Yet, the number of resolved 3D structures for genes involved
in drug ADME remains relatively low, at least in part due
to the membrane bound nature of many of these proteins.
Furthermore, as many metabolic enzymes, such as cytochrome
p450s (CYPs) exhibit marked active-site flexibility, which often
results in ligand-induced conformational changes, prediction of
variant effects based on direct structural data is difficult for these
proteins and substrate-specific effects have to be considered.
Thus, while the prediction of amino acid exchanges on substrate
metabolism remain difficult, folding stability of variant proteins
of interest can be estimated using existing computational tools
based on sequence homology modeling (Kulshreshtha et al.,
2016).

EVALUATION OF TRUNCATION VARIANTS

Drug metabolizing enzymes and transporters have been found
to harbor a multitude of truncation variants, such as micro-
insertions andmicro-deletions (indels) causing frameshifts, stop-
gain and start-lost variants. Some of these variants are clinically
relevant and occur with high frequencies in specific populations,
including the stop-gain variant CYP2C19∗3 in East Asians and
the frameshift variants CYP2D6∗3 and CYP2D6∗6 in Europeans
(Zhou et al., 2017). As most pharmacogenes have only minor
endogenous functions, they are under low evolutionary pressure
and, consequently, such loss-of-function variants are often not
selected against (Lauschke et al., 2017). Moreover, it has been
speculated that pharmacogenetic loss-of-function alleles can even
be selected for in modern humans, possibly due to reduced
bioactivation of dietary toxicants (Fujikura, 2016). Truncation
variants are commonly assumed to have deleterious effects and
only few studies have been presented that provide approaches
to quantitatively assess the functional consequences of such
mutations (Cline and Karchin, 2011).

Early bioinformatic tools, such as LOFTEE, prioritize
truncation variants based on a set of empirical rules, including
whether the variant of interest occurs in the last 5% of
transcript or whether the truncating allele is the ancestral
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TABLE 2 | Methods to predict the functional effect of missense variants based primarily on structural features.

Algorithm Model Basis of decision Model training or evaluation References

SDM Direct Predicts variant effects on thermal protein stability

using conformationally constrained

environment-specific substitution tables derived

from 2,054 protein family sequence and structure

alignments from the TOCCATA database

Validated on 2,690 SNVs from 132

different protein structures.

Topham et al.,

1997;

Pandurangan

et al., 2017

I-Mutant SVM Protein structure or sequence-based prediction of

point mutation effects on protein stability

Training and testing on thermodynamic

experimental data of free energy changes

of protein stability upon mutation from the

ProTherm database

Capriotti

et al., 2005

HOPE Direct Analyzes the structural and functional effects of

point mutations based on available crystal

structures, homology modeling and sequence

information.

Evaluated using case studies. Venselaar

et al., 2010

mCSM RM Translation of distance patterns between atoms into

graph-based signatures providing data that is

complementary to potential energy based

approaches

Prediction of protein stability changes,

protein-protein and protein-nucleic acid

interactions and pathogenicity based on

an array of preexisting experimental data

sets

Pires et al.,

2014b

DUET SVM SVM predictor that integrates mCSM and SDM in a

consensus prediction

Benchmarking again mCSM and SDM

alone on p53 data set.

Pires et al.,

2014a

STRUM GTB Predicts variant effects on protein stability based on

3D models constructed by iterative threading

assembly refinement simulations

Evaluated on 3,421 experimentally

determined mutations distributed across

150 proteins.

Quan et al.,

2016

ELASPIC GTB Predicts effects of mutations on protein folding and

protein–protein interactions using homology

modeling of domains and domain–domain

interactions

Performance analysis via case study using

EP300 mutations found in COSMIC

Witvliet et al.,

2016

SAAFEC RM Prediction of effects of amino acid changes on

folding free energy using a Molecular Mechanics

Poisson-Boltzmann approach

Training and testing on thermodynamic

experimental data of free energy changes

of protein stability upon mutation from the

ProTherm database

Getov et al.,

2016

SVM, support vector machine; RM, regression model; GTB, gradient tree boosting.

state (MacArthur et al., 2012). Other approaches, such as
Likelihood-ratio scoring (Zia and Moses, 2011), SIFT Indel (Hu
and Ng, 2012) and NutVar (Rausell et al., 2014), primarily
utilize the evolutionary conservation of amino acid residues.
However, predictive performance of these tools for loss-of-
function mutations is limited when trained on only missense
mutations. Moreover, these methods are trained on genes that
have high-quality annotations, which poses problems for the
functional interpretation of truncation variants in genes for
which such annotations are not readily available.

To overcome these shortcomings, CADD was developed by
integrating many diverse functional genomics annotations into
a single score for each variant, which allows to estimate the
impact of all classes of genetic variation, including truncating
variants (Kircher et al., 2014). Newer approaches, such as DDIG-
in (Folkman et al., 2015) and VEST-Indel (Douville et al.,
2016) supplement conservation-based features with information
about sequence and structural properties at nucleotide and
protein levels as well as intrinsic disorder predictions from the
region affected by stop gain and frameshift variants. Notably,
the recently developed tool ALoFT (Annotation of Loss-of-
Function Transcripts) can categorize the pathogenic importance
of putative loss-of-function mutations by integrating variant

information with redundancy and haplosufficiency data of the
corresponding gene (Balasubramanian et al., 2017). However,
aforementionedmethods are primarily focused on distinguishing
benign and disease-causing mutations. Thus, future studies are
needed to evaluate whether this emphasis on the pathogenicity of
variants might affect the performance of these methods regarding
the functionality prediction of truncating variants in genes not
associated with disease, such as many ADME genes.

In addition to impacts on functional and structural properties
of proteins, truncating variants can affect nonsense-mediated
mRNA decay (NMD). NMD is a conserved translation-
dependent mechanism that is responsible for recognizing
and eliminating aberrant mRNA transcripts to prevent the
production of truncated peptides, thereby playing a critical
role in preventing the accumulation of misfolded protein and
subsequent initiation of the unfolded protein response (UPR)
(Kervestin and Jacobson, 2012; Schoenberg and Maquat, 2012).
Recently, Hsu et al. presented NMD Classifier, a tool for the
systematic classification of NMD events, which was reported
to correctly identify 99.3% of the NMD-causing transcript
structural changes (Hsu et al., 2017). The incorporation of this
information alongside functional estimates is expected to not
only increase discriminative power but also to suggest the nature
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of the functional impact of a given variant. Interestingly, there
is evidence that NMD efficiency varies between individuals and
that these differences correlate with response to NMD inhibitors
in cystic fibrosis patients (Linde et al., 2007; Kerem et al., 2008).
While this phenomenon has to the best of our knowledge not
been explicitly tested in the context of pharmacogenomics, inter-
individual differences in NMD magnitude could, at least in part,
explain the large differences in drug response between patients
with loss-of-function genotypes (Jukić et al., 2018) and thus have
important implications for therapy.

In summary, much progress has been made regarding the
functional interpretation of variants causing truncations of the
corresponding gene product and current computational tools are
able to incorporate a variety of features into their predictions,
including evolutionary conservation, sequence and structural
information as well as putative effects on NMD. However, it
remains to be demonstrated whether these available tools will also
be suitable for the prediction of effects of truncation variants in
poorly conserved pharmacogenetic loci.

PREDICTION OF ABERRANT SPLICING
EVENTS

Splicing of pre-mRNA is a critical step during mRNAmaturation
in which introns are excised and exons are ligated. This process
necessitates the presence of 5

′

and 3
′

splicing signals and branch
point sequence and is further regulated by exonic and intronic
splicing enhancer/silencer (ESE/ESS and ISE/ISS, respectively)
(Lee and Rio, 2015; Shi, 2017). Mutations in these regions can
disrupt the splicing process and result in aberrantly processed
transcripts, which can trigger NMD or result in the production
of dysfunctional proteins. The functional importance of genetic
variants in splice sites is emphasized by estimates that around
15% of human pathogenic mutations cause dysregulation of
splicing (Baralle et al., 2009).

Variants located in canonical splice sites are considered having
the largest effect on splicing events. Therefore, a multitude
of computational algorithms were developed to handle the
prediction of 5

′

and 3
′

splice site, such as NNSplice (Reese
et al., 1997), MaxEntScan (Yeo and Burge, 2004), GeneSplicer
(Pertea et al., 2001), and SplicePort (Dogan et al., 2007; Table 3).
Moreover, variants outside splice sites can have substantial
effects on splicing (Soukarieh et al., 2016) and a variety of
computational methods have been developed to predict the
effect of such regulatory sequences. Examples are sequence the
conservation-based algorithm Skippy (Woolfe et al., 2010) and
the machine learning tools MutPred Splice (Mort et al., 2014),
scSNVEL (Jian et al., 2014b), SPANR (Xiong et al., 2015), and
CryptSplice (Lee et al., 2017). Further tools are available for the
identification of branch point sequences (Corvelo et al., 2010;
Zhang et al., 2017). Lastly, the secondary structure of pre-mRNAs
can interfere with splice-site recognition, modulate spliceosome
binding or can facilitate splicing efficiency by bringing splice
donors and acceptors into close proximity (Warf and Berglund,
2010). Consequently, genetic variants that alter pre-mRNA
structure were found to promote alternative splicing (Wan et al.,

2014), incentivizing the incorporation of structural information
provided by tools, such as TurboFold (Harmanci et al., 2011) or
CentroidFold (Sato et al., 2009), into variant effect predictions.
For a more detailed description of structural RNA analyses we
refer the interested reader to excellent recent reviews (Jian et al.,
2014a; Lorenz et al., 2016; Ohno et al., 2018).

In ADME genes, dysregulation of splicing has long been
recognized as a cause for inter-individual variability drug
metabolism (Hanioka et al., 1990) and toxicity (Raida et al., 2001)
and the liver was found to be is among the tissues with highest
levels of alternative splicing activity (Yeo et al., 2004). As splicing
is highly tissue specific, these data indicate that algorithms for the
prediction of variant splice effects in pharmacogenetics should
ideally be trained on positive control sets for which aberrant
splicing is confirmed in the tissue of interest, i.e., primarily liver.
To this end, the GTEx project (GTExConsortium, 2017) provides
a rich resource that has already been successfully utilized for the
identification of tissue-specific splice events in pharmacogenes
(Chhibber et al., 2017).

In summary, the toolkit of available computational algorithms
for the prediction of variant effects on splicing has rapidly grown
and by now allows not only to evaluate direct impact on splice
sites, but also to assess mutations in regulatory splice enhancers
and silencers, as well as branch points. For the application of these
methods for pharmacogenomics there is a need to benchmark
available tools on splice variants in ADME genes. Moreover, we
anticipate that the utilization of tissue-specific expression data
will further refine splice site predictions.

FUNCTIONAL IMPACT OF VARIANTS IN
UNTRANSLATED REGIONS

miRNAs play important roles in the regulation of mRNA
stability and translation. miRNA-mRNA interaction occurs
through conserved miRNA binding sites in the 3

′

-UTRs and
at least 10% of all SNPs are located in 3

′

-UTRs and might
affect complementary miRNA-mRNA pairing (Xiao et al., 2009).
Furthermore, miRNAs have been shown to be important
modulators of ADME gene expression profiles (Rieger et al.,
2013). Therefore, functional interpretation of genetic variations
within miRNA target sites constitutes an important factor for
the prediction of the fate of corresponding transcript. Thus, to
evaluate the potential relevance of genetic polymorphisms in
UTRs various databases, such as the polymiRTS Database 3.0
(Bhattacharya et al., 2014) or MirSNP (Liu et al., 2012), provide
useful resources that contains a collection of experimentally
confirmed SNPs and indels not only in miRNA target sites but
also in miRNA seed regions responsible for mRNA binding.
Furthermore, a variety of other SNP effect prediction servers are
publically available (Fehlmann et al., 2017).

In case no experimental data is available, various
computational tools can be used to predict possible disruption
of the miRNA-mRNA pairing for a given variant (Table 3).
MicroSNiPer (Barenboim et al., 2010) and ImiRP (Ryan et al.,
2016) identify and predict such disruptions by comparing
the mutant 3

′

-UTR sequences with major variant databases.
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TABLE 3 | Tools for the prediction of variant effects on splicing, transcript levels or translation.

Algorithm Application Basis of decision Model training or evaluation References

NMD Classifier NMD Prediction of NMD for a given transcript based on

comparison to most similar coding transcript

Simulation-based evaluation based on

screening artificial transcript

structure-altering events

Hsu et al.,

2017

NNSplice Splicing (splice

sites)

Sequence splice site analysis using HMM Distinguish splice site sequences from

sequences in the neighborhood of real

splice sites

Reese et al.,

1997

MaxEntScan Splicing (splice

sites)

Splice site analysis by modeling short sequence

motifs using the maximum entropy principle with

constraints estimated from available data.

1,821 transcripts unambiguously aligned

across the entire coding region, spanning

a total of 12,715 introns

Yeo and

Burge, 2004

GeneSplicer Splicing (splice

sites)

Splice site prediction using maximal dependence

decomposition with the addition of markov model to

capture dependencies among neighboring bases

Annotated genes from the Exon-Intron

Database

Pertea et al.,

2001

SplicePort Splicing (splice

sites)

Splice site prediction using C-modified least

squares learning based on positional and

compositional sequence features

Training on 4,000 pre-mRNA human

RefSeq sequences and test on B2Hum

data set

Dogan et al.,

2007

Skippy Splicing (regulatory

sequences)

Prediction of variants causing exon skipping, exon

inclusion or ectopic splice site activation based on

sequence information, proximity to splice junctions

and evolutionary constraint of the peri-variant region

Multiple exonic splicing regulatory

elements datasets as positive data and

HapMap variants as splicing-neutral

variants

Woolfe et al.,

2010

MutPred Splice Splicing (regulatory

sequences)

Prediction of auxiliary splice sequences using

multiple variant-, flanking exon- and gene-based

features

Splicing variants from HGMD as

pathogenic set and non-splicing variants

from both HGMD and 1000G as neutral

controls

Mort et al.,

2014

scSNVEL Splicing (splice

sites)

Ensemble prediction using 8 algorithms using

random forest learning

Splice variants from HGMD, SpliceDisease

database and DBASS as pathogenic set

and variants not implicated in splicing from

both HGMD and 1000G as controls

Jian et al.,

2014b

SPANR Splicing (splice

sites and splice

regulatory

sequences)

Integrating 1,393 sequence features from each

exon and its neighboring introns and exons to

identify splice sites as well as intronic and exonic

splice regulators

10,689 exons that displayed evidence of

alternative splicing

Xiong et al.,

2015

CryptSplice Splicing (splice

sites)

Prediction of cryptic splice-site activation using an

SVM model

Sequences from the annotated NN269

and HS3D splice datasets with positive

sequence in splice sites and control

sequence outside splice sites

Lee et al.,

2017

Corvelo et al. Splicing (branch

points)

Analysis of splice site sequence conservation and

position bias using SVM

A set of 8,156 conserved putative branch

point sequences from 7 mammalian

species

Corvelo et al.,

2010

BPP Splicing (branch

points)

Identification of branch point motifs by integrating

information on the branch point sequence and the

polypyrimidine tract

Intron sequences longer than 300

nucleotides

Zhang et al.,

2017

TurboFold Splicing

(pre-mRNA

structure)

Probabilistic method that integrates comparative

sequence analyses with thermodynamic folding

models

Thorough benchmarking against three

methods that estimate base pairing

probabilities and eight tools for structural

predictions based on known RNA

structures

Harmanci

et al., 2011

CentroidFold Splicing

(pre-mRNA

structure)

RNA secondary structure prediction using the

γ-centroid estimator

Validation based on 151 RNA

experimentally determined RNA structures

Sato et al.,

2009

mrSNP miRNA binding miRNA binding energy calculations for reference

and variant containing sequence and report of

binding difference

Evaluation based on variants that map to

miRNA targets predicted by TargetScan

Deveci et al.,

2014

PinPor RBP binding Bayesian network approach that incorporates

information about sequence features, stabilization of

RNA secondary structure and evolutionary

conservation

Inframe indels from HGMD as pathogenic

and common indels from 1000G as

neutral controls

Zhang et al.,

2014

HGMD, Human Gene Mutation Database; 1000G=1000 Genomes Project; DBASS, Database for Aberrant Splice Sites; NMD, nonsense-mediated decay; HMM, hidden Markov model;

RBP, RNA binding protein.
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Similarly, mrSNP can predict the effect of any variant identified
in NGS-based projects on miRNA-target transcript interaction
(Deveci et al., 2014). However, it is important to note that
miRNA target predictions seem to have a high false-positive rate
(Pinzón et al., 2017), suggesting that these problems might be
lingering for studies utilizing miRNA-target databases without
stringent experimental validations. Besides predicting the effect
of genetic variants in putative miRNA target sites, multiple
online tools are available for inverse approaches, analyzing
variants in miRNAs or pre-miRNAs for possible deleterious
effects. For more comprehensive collection of miRNA related
variant interpretation tools the reader is referred to the recent
reviews and online resources (Akhtar et al., 2016; Moszynska
et al., 2017).

In addition, recent approaches expanded the methodological
portfolio beyond miRNA binding site prediction to include
effects of UTR variants on binding of RNA-binding proteins
(RBPs), translational efficacy and ribosomal loading. Effects
of indels on RBP binding can be evaluated using PinPor,
which has been demonstrated to have some success in
distinguishing disease-causing and neutral indels (Zhang et al.,
2014). Furthermore, Sample et al. presented the preprint of a deep
learning approach based on experimental polysome profiling to
predict the impact of UTR sequence on translation (Sample et al.,
2018). These developments nicely indicate the diversification of
parameters that can incorporated into variant effect predictions,
thus further refining biological interpretation of NGS data sets.

ANALYSIS OF REGULATORY VARIANTS

Non-coding regions account for more than 99% of the human
genome and, consequently, their consideration substantially
expands the analysis space of computational predictions. Variants
in non-coding regions can affect regulatory elements, such as
promoters, enhancers, silencers, and insulators, which, in turn,
may alter their affinity to transcription factor or remodel the
local chromatin structure (Zhang and Lupski, 2015; Deplancke
et al., 2016). Accurate prediction of the functional consequences
of such variants constitutes one of the major challenges in human
genetics.

To interpret noncoding variants, a variety of different
strategies have been presented. The first approaches, such as
SiPhy (Garber et al., 2009), PhyloP (Pollard et al., 2010),
PhastCons (Siepel et al., 2005), GERP++ (Davydov et al.,
2010), or SCONE (Asthana et al., 2007), were based on
evolutionary constraint using sequence alignments. However,
the observation that no enhanced constraints were identified
in regulatory elements at the level of DNA sequence despite
conserved transcription factor binding led to the realization
that conservation of regulatory regions can only be a weak
indicator of the functional effects of SNVs in regulatory regions
(Schmidt et al., 2010; Arbiza et al., 2013). Consequently,
conservation metrics were complemented with additional
functional genomics features, such as the sequence and genic
context, transcription factor binding profiles (Johnson et al.,
2007), histone modification data (Zhang et al., 2010) and DNase

I hypersensitive sites (Boyle et al., 2008) in an attempt to
improve prediction quality. Based on these rich data sets, a
variety of ensemble classifiers were developed using various
machine learning approaches that aim to distinguish neutral
from pathogenic variants, including GWAVA (Ritchie et al.,
2014), CADD (Kircher et al., 2014), FATHMM (Shihab et al.,
2013, 2015; Rogers et al., 2018), DANN (Quang et al., 2015),
DIVAN (Chen et al., 2016), and Genomiser (Smedley et al., 2016)
(Table 4).

In contrast, other methods, such as gkm-SVM (Lee et al.,
2015) and DeepSEA (Zhou and Troyanskaya, 2015) have been
developed to predict regulatory elements based on primary
sequence alone. Trained on publically available cell type-specific
chromatin data provided by ENCODE (The ENCODE Project
Consortium, 2012) and the Roadmap Epigenomics Project
(Roadmap Epigenomics Consortium et al., 2015) as well as
transcription factor binding patterns accessible via JASPAR
(Khan et al., 2018), these algorithms predict to what extent a
genetic variant will cause changes to the local chromatin profiles
and how these effects translate into functional consequences.
The resulting data demonstrate that inferring consequences
from functional genomics data is highly cell type and context
specific and relies on biologically appropriate training sets. These
convincing findings incentivize the generation of functional
genomics data from carefully phenotyped human tissues
involved in drug ADME to derive tissue-specific regulatory lexica
and we envision that training machine learning approaches on
these data sets will substantially increase the power of regulatory
pharmacogenetic prediction classifiers.

As with coding variants, the use of potentially biased training
sets and multi-dimensional circularity between training and
test data constitutes an inherent problem for current variant
prediction tools (Grimm et al., 2015). For instance, a variety of
algorithms consider common variants from the 1000 Genomes
project as functionally neutral control sets for model training.
However, while these variants are likely to be depleted of
pathogenic variants in haploinsufficient genes, many common
variants entail functional consequences in their respective gene
product, particularly if the gene is rapidly evolving, such as
many CYP genes. Similar problems arise when the model is
trained using phenotype associated GWAS polymorphisms as
functional variant sets, as only 5.5% of GWAS index SNPs are
estimated to be causal whereas the remainder is only in linkage
disequilibrium with the true functional variant in the locus (Farh
et al., 2015).

To overcome these problems, unsupervised approaches
have been developed that do not rely on the labeling of
training data, thereby reducing the dependence on preexisting
variant classifications and existing models of mutation. These
unsupervised models, such as GenoCanyon (Lu et al., 2015)
and Eigen (Ionita-Laza et al., 2016), represent powerful tools
for the genome-wide interpretation of variants. However, as
they are calibrated on genome-wide data, it remains to be
determined whether gene class-specific peculiarities, such as low
evolutionary conservation in ADME genes, might affect the
predictive accuracy of these approaches for pharmacogenetic
applications.
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TABLE 4 | Algorithms for the functional interpretation of regulatory variants.

Algorithm Model Application Model training Features References

FATHMM HMM Pathogenic

variants

HGMD regulatory variants as pathogenic

set and common 1000G variants as

controls

Evolutionary conservation data (PhastCons and

PhyloP), chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data, genome segmentation, frequency

data (1000G and ESP) and information about genic

and sequence context

Shihab et al.,

2013, 2015;

Rogers et al., 2018

GWAVA RF Pathogenic

variants

HGMD regulatory variants as pathogenic

set and common 1000G variants as

controls

Evolutionary conservation data (GERP), chromatin

accessibility (DNase-HSS and FAIRE-Seq), TF

binding and histone modification ChIP-Seq data,

genome segmentation, frequency data (1000G) and

information about genic and sequence context

Ritchie et al., 2014

CADD SVM Deleterious

variants

Sites with MAF<5% where for which the

human genome differed from the inferred

human-chimp ancestral genome and

equal number of simulated variants

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS and FAIRE-Seq), TF binding and

histone modification ChIP-Seq data, genome

segmentation, frequency data (1000G and ESP)

and information about genic and sequence context

Kircher et al., 2014

DANN NN Deleterious

variants

Same as CADD but using deep neural networks instead of linear SVM. Quang et al., 2015

DeepSEA NN Variants that affect

gene expression

HGMD regulatory variants, eQTLs and

NHGRI GWAS phenotype-associated

SNPs

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS and FAIRE-Seq), TF binding and

histone modification ChIP-Seq data

Zhou and

Troyanskaya, 2015

gkm-SVM SVM Variants that affect

gene expression

Tissue-specific enhancer sequences

marked by H3K4me1 from length-, GC

content- and repeat-matched random

control

Definition of tissue-specific regulatory dictionary

based on chromatin accessibility (DNase-HSS) and

H3K4me1 ChIP-Seq data

Lee et al., 2015

fitCons INSIGHT Prediction of

cis-regulatory

elements

Unsupervised classifier that clusters

genomic regions on the basis of functional

genomic data and then estimates a

probability of fitness consequences for

each group from associated patterns of

genetic polymorphism and divergence.

Evolutionary conservation data (GERP, PhastCons

and PhyloP), chromatin accessibility (DNase-HSS),

TF binding and histone modification ChIP-Seq data,

genome segmentation and RNA-Seq data

Gulko et al., 2015

GenoCanyon US Identification of

functional regions

Unsupervised classifier based on the

estimated proportion of functional regions

in the human genome.

Evolutionary conservation data (GERP and PhyloP),

chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data

Lu et al., 2015

DIVAN EL Disease-specific

risk variants

Disease-specific regulatory NHGRI GWAS

SNPs and common 1000G variants or

benign GWAS SNPs as controls

Chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data

Chen et al., 2016

Genomiser RF Mendelian disease Sites with MAF<5% where for which the

human genome differed from the inferred

human-chimp ancestral genome as

functionally neutral variation and 453

positive variants based on literature review

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS), TF binding and histone modification

ChIP-Seq data, frequency data (1000G and ESP)

and information about enhancer context from

FANTOM5

Smedley et al.,

2016

Eigen US Effect of variants

on gene

expression and

disease risk

Unsupervised classifier based on the

blockwise conditional independence

between annotations given the functional

impact of the variant.

Evolutionary conservation data (GERP, PhastCons

and PhyloP), chromatin accessibility (DNase-HSS

and FAIRE-Seq), TF binding and histone

modification ChIP-Seq data and frequency data

(1000G)

Ionita-Laza et al.,

2016

RF, random forest; SVM, support vector machine; HMM, hidden Markov model; EL, ensemble learning; NN, neural networks; INSIGHT, Inference of Natural Selection from Interspersed

Genomically Coherent Elements Gronau et al., 2011; US, unsupervised; HGMD, Human Gene Mutation Database; 1000G, 1000 Genomes Project; ESP, Exome Sequencing Project; TF,

transcription factor; HSS, hypersensitive site; FAIRE, Formaldehyde-Assisted Isolation of Regulatory Elements Giresi et al., 2007; NHGRI, National Human Genome Research Institute.

CONCLUSIONS

Technical progress in NGS technology has resulted in
its routine application in medical genetics and clinical
diagnostics. In contrast, clinical implementation of NGS-based

pharmacogenomics is largely lagging behind (Lauschke and
Ingelman-Sundberg, 2016b; Ji et al., 2018). Most importantly, in
order to utilize the major advantage of NGS-based genotyping,
which is the discovery of the entire panorama of the individual’s
genetic portfolio, tools have to be in place, which allow to
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translate these variability data into functional consequences
and clinical recommendations. Whereas, the identification of
rare putatively deleterious mutations in congenital diseases is
aided by clear phenotypic alterations of the affected patient
and the possibility to perform comparative genomic analyses of
unaffected family members, pharmacogenomic phenotypes are
generally more difficult to detect as they only present in a given
context, such as exposure to specific medications. In the absence
of drug response associations or experimental characterizations
that support the functional interpretation of rare variants, there
is thus an urgent need for reliable computational prediction tools
to fill this space.

Importantly, recent developments in computational variant
effect prediction methods promise to narrow the gap to
meet the exacting demands on genomics applications in the
clinics. Machine learning constitutes an important tool kit to
fully harness the power of large data sets provided by NGS.
However, these approaches rely on accurate labeling of input
variants, i.e., training data need to be correctly classified into
deleterious and functionally neutral variants. Thus, we advocate

for approaches that leverage smaller data sets of variants
for which comprehensive experimental or functional genomic
data is available instead of training algorithms on large but
functionally poorly annotated data, such as treating all common
polymorphisms identified in the 1000 Genomes Project as
functionally neutral. In addition, we endorse previous appeals for
the sharing of codes and data sets, which will enable comparative
benchmarking of newly developed tools and algorithms and will
accelerate research progress within the area of computational
pharmacogenomics and beyond (Kalinin et al., 2018).

The functional consequences of missense variants have
been most extensively studied. Respective methods base
their predictions on evolutionary conservation and structural
information of the polypeptide encoded by the respective gene.
Importantly, while evolutionary conservation is a suitable
measure to inform about the deleteriousness of a variant, i.e., its
effect on organismal fitness, it is not suitable for the prediction
of variant effects in genes under low selective pressure, such as
most pharmacogenes. Recognition of these conceptual problems
resulted in the development of computational predictors trained

FIGURE 2 | The past, present and future of pharmacogenetic phenotype predictions. (A) Conventionally, pharmacogenetic predictions were based on the

interrogation of few common candidate SNPs, whose functional effects were predicted based on extensive literature evidence, resulting in high predictive accuracy

but only few considered variations. (B) With increasing prevalence of whole exome sequencing (WES), a multitude of pharmacogenetic variants with unknown

functional relevance are identified. These variants can be interpreted using computational methods. However, current algorithms are generally trained to detect the

pathogenicity rather than the functionality of queried variants, resulting in overall relatively low predictive accuracy. Furthermore, only effects of missense and nonsense

variants are evaluated. (C) In the near future, whole genome sequencing (WGS) will become the predominant genotyping methodology, revealing not only coding

variants but also variants in regulatory regions and introns. To facilitate interpretation of this data, we envision that pharmacogenetic predictors will be directly trained

on functionally annotated ADME data sets. Emerging technologies, such as deep mutational scanning for the systematic interrogation of missense variants or

mutagenesis screens in microphysiological systems (MPS) for the characterization of variants in regulatory regions, provide powerful tools to generate these data,

boosting the predictive performance of data hungry machine learning tools. These advances allow to go beyond the interpretation of missense and nonsense variants

and to include also non-coding and regulatory variations into pharmacogenetic assessments.
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specifically on ADME missense variants (Zhou et al., 2018). We
envision that these approaches will become more powerful with
increasing functionally annotated pharmacogenetic variant data.

Furthermore, multiple strategies have been developed to
analyze the functional impact of variants in non-coding regions
of the genome, which are increasingly recognized as a substantial
contributor to inter-individual variability. An increasing number
of algorithms is by now available that base their predictions
on a multitude of different parameters, including effects on
miRNA binding or translational efficiency, modulation of
splicing and impacts on transcriptional events by disruption
of transcription factor binding sites or polymerase loading
(Figure 1). While these developments provide a methodological
arsenal to comprehensively characterize all different classes
of genetic variants, these methods are generally trained on
pathogenic variant sets and have not been benchmarked
on independent data sets. Thus, their predictive power for
pharmacogenetic assessments remains to be evaluated.

The prediction of drug metabolism phenotypes based on the
genotype of the individual has made tremendous progress over
the last decades (Figure 2). Conventional approaches use data
from few candidate variants for which substantial in vitro or in
vivo characterization data was available to predict drug response.
While this strategy has been successful in incorporating common
pharmacogenetic variability into clinical decision-making, they
fail to address functional effects of the vast extent of rare
genetic variants. To also include rare variants, pilot programs
were initiated in which WES was used to comprehensively
interrogate the genetic landscape of pharmacogenomic loci
(Bielinski et al., 2014). However, analyses were restricted to
pharmacogenetic missense variants and the effects of SNVs
with unknown functional relevance were interpreted using
computational models trained on pathogenic data sets with
negative impacts on the accuracy of phenotype predictions,
as discussed above. Thus, while these strategies constitute an
important step toward the further personalization of genotype-
guided treatment decisions their predictive accuracy is rather
low.

We expect that technological, methodological and analytical
progress will contribute to a further refinement of NGS-
guided drug treatment in the near future. Firstly, technological
advances will result in an increasing dissemination of WGS,
which facilitates the incorporation of the entire profile of an
individual’s genetic variability, including regulatory variants,
into pharmacogenetic predictions. Secondly, we envision
that novel high-throughput methodologies for functional
characterizations, such as deep mutational scanning, will provide
powerful approaches to generate large functionally annotated
pharmacogenetic variant data sets. In addition, recent advances
in the development of microphysiological systems (MPS) that

allow tomodel key target tissues associated with drugmetabolism
or safety provide (Ewart et al., 2018) provide promising tools
to generate tissue-specific and human-relevant data sets for
studies of gene-drug interactions (Ingelman-Sundberg and
Lauschke, 2018). Using this integrated wealth of functional
pharmacogenetic data to train machine learning models aspires
to provide high-accuracy predictions based on the entire genetic
variability landscape of the respective patient.

Importantly, leveraging this information as guidance for
clinical decision-making promises to increase treatment
efficacy and reduce the risks of adverse events in carriers
of pharmacogenetic variants whose effects have not been
experimentally evaluated. Current market analysis estimates
suggests that implementation of artificial intelligence into the
clinical decision support toolbox might increase average life
expectancy in the Western World by 0.2–1.3 years and reduce
total health care expenditures by 5–9%, corresponding to 2
trillion to 10 trillion USD globally per year (Bughin et al.,
2017). However, in order to realize these exciting prospects,
there is a need for prospective, randomized controlled trials
that evaluate patient outcomes and cost-effectiveness of
such preemptive advice across genes, drugs and health care
systems.

In summary, computational prediction methods are essential
for the implementation of NGS into clinical decision-making.
While much progress has been made and a plethora of
conceptually diverse tools is already available, there is a need
to develop specialized methods that are optimized for the
prediction of variant functionality rather than pathogenicity and
are calibrated specifically on pharmacogenetic data. We envision
that technological, methodological and analytical advances will
soon allow to comprehensively predict variant effects with
sufficient accuracy to justify the design of trials in which the
clinical value of NGS-guided treatment decisions can be tested
in a prospective setting.
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