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Abstract

Motivation: Accurate prediction of binding between a major histocompatibility complex (MHC) allele and a peptide
plays a major role in the synthesis of personalized cancer vaccines. The immune system struggles to distinguish be-
tween a cancerous and a healthy cell. In a patient suffering from cancer who has a particular MHC allele, only those
peptides that bind with the MHC allele with high affinity, help the immune system recognize the cancerous cells.

Results: MHCAttnNet is a deep neural model that uses an attention mechanism to capture the relevant subsequen-
ces of the amino acid sequences of peptides and MHC alleles. It then uses this to accurately predict the MHC-peptide
binding. MHCAttnNet achieves an AUC-PRC score of 94.18% with 161 class I MHC alleles, which outperforms the
state-of-the-art models for this task. MHCAttnNet also achieves a better F1-score in comparison to the state-of-the-
art models while covering a larger number of class II MHC alleles. The attention mechanism used by MHCAttnNet
provides a heatmap over the amino acids thus indicating the important subsequences present in the amino acid se-
quence. This approach also allows us to focus on a much smaller number of relevant trigrams corresponding to the
amino acid sequence of an MHC allele, from 9251 possible trigrams to about 258. This significantly reduces the num-
ber of amino acid subsequences that need to be clinically tested.

Availability and implementation: The data and source code are available at https://github.com/gopuvenkat/
MHCAttnNet.

Contact: Gopalakrishnan.V@iiitb.org or Aayush.Grover@iiitb.org

1 Introduction

Major histocompatibility complex (MHC) classes I and II play a signifi-
cant role in identifying the cancerous cells in one’s body. These sets of
genes, when bonded with peptides, help the immune system by bringing
the bonded complex to the surface of a cancerous cell, making it visible
to T-cells which eventually destroy it. This antigen presentation to the
T-cells is a crucial part of the training and development of the adaptive
immune response. The formation of a peptide–MHC allele complex
depends on several factors, including proteasome cleavage preference of
a peptide and the MHC-peptide binding affinity, thereby making it a
difficult task (Zeng and Gifford, 2019a).

There have been several works in the past that use computational
methods to estimate the binding affinity between an MHC allele and
a peptide. MHCflurry (O’Donnell et al., 2018) is considered to be
one of the state-of-the-art methods for this task. MHCflurry is
trained on 130 MHC alleles and works well only on MHC alleles on
which it is trained. MHCflurry also limits the length of a peptide to
8–15 amino acids. Other widely used state-of-the-art models are
NetMHC (Andreatta and Nielsen, 2016; Nielsen et al., 2003) and
NetMHCpan (Hoof et al., 2009; Jurtz et al., 2017; Nielsen and

Andreatta, 2016). NetMHC is allele-specific and thereby has a dif-
ferent predictive model for each allele. NetMHC-4.0 is trained on
118 MHC alleles. NetMHCpan is pan-specific and makes binding
affinity prediction even for unseen alleles, as long as the allele’s
amino acid sequence is known. NetMHCpan-4.0, on the other
hand, is trained on 169 MHC alleles. NetMHC and NetMHCpan
tools are not open-sourced and hence, the workflow of training their
models are not clear. In convolutional neural network-based mod-
els, like PUFFIN (Zeng and Gifford, 2019b), the architecture needs
to work with a fixed-length input amino acid sequence. In these
models, the variable-length sequences have to be made equal length
by padding. The PUFFIN model predicts the expected affinity of an
MHC-peptide binding, for both classes I and II alleles, as well as the
uncertainty of its prediction. The MHCSeqNet (Phloyphisut et al.,
2019) model considers the input as an equally-weighted linear
amino acid chain and can handle 92 alleles of class I. It looks at all
amino acid subsequences equally which is not necessary, as only cer-
tain subsequences contribute to determining the binding affinity. An
artificial neural network, NN-Align (Nielsen and Lund, 2009),
focuses on class II alleles. It, however, handles only 14 class II
alleles. A newer tool from NetMHCpan series, NetMHCII and
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NetMHCIIpan (Jensen et al., 2018), computes binding affinities on
36 different HLA-DR alleles.

Despite the progress made so far, there is still a need for a more
robust method for predicting binding affinity. There is a need to gen-
eralize the confidence of the predicted interactions between peptides
and MHC alleles without having a significant drop in precision.
MHCAttnNet overcomes the shortcomings of earlier methods by: (i)
releasing the source code as an open-source package; (ii) enabling
prediction even for variable-length peptides; (iii) focusing only on
relevant subsequences of amino acids; and (iv) training and testing
on a larger number of alleles.

MHCAttnNet uses a bidirectional long short-term memory
(Bi-LSTM) styled encoder to deal with variable-length peptide
sequences. This permits the model to handle a large variety of pepti-
des, and hence makes it more general. MHCAttnNet is trained and
tested on the Immune Epitope Database (IEDB) (Sahin et al., 2017)
(as of 2019) and is capable of working well with both class I and
class II MHC alleles separately. This has been made possible with
the help of the attention mechanism used in the neural network. The
attention mechanism is used to identify relevant subsequences re-
sponsible for determining the binding affinity and thereby increase
the weights of these relevant subsequences. This permits the model
to focus on these important subsequences of the amino acid se-
quence, making it more targeted and informative. MHCAttnNet is
trained on 161 different class I MHC alleles and 49 different class II
alleles as only these many MHC alleles are presently available in the
dataset. MHCAttnNet can compute binding predictions on other
MHC alleles as well as long as their amino acid sequences are avail-
able. Even while handling a large variety of MHC alleles, our model
outperforms the current state-of-the-art models for predicting bind-
ing between peptide and class I MHC alleles while at the same time,
is competitive in case of class II MHC alleles.

The structure of rest of this article is as follows: Section 2
presents the background about what personalized cancer vaccines
are and how they work. The dataset, pre-processing steps, and the
MHCAttnNet model are explained in Section 3. Section 4 describes
the analysis of our results with respect to the state-of-the-art models.
We summarize our approach and discuss some relevant aspects in
Section 5.

2 Background

Personalized cancer vaccines have shown promising results in their
early stages. To synthesize a personalized cancer vaccine, first the
genomes of cancerous cells are collected, which helps in the identifi-
cation of tumor-specific peptides called neoepitopes. Neoepitopes,
when combined with adjuvants or other immune-stimulatory agents
and injected into the patient, helps the immune system identify can-
cerous cells and kill them using the body’s own T-cells. This way,
the human body learns to kill the cancerous cells on its own, without
having the risk of autoimmune diseases (Hu et al., 2018b; Ott et al.,
2017; Reddy et al., 2006; Sahin et al., 2017).

For the identification of neoepitopes, next-generation sequencing
data from tumor and healthy cells are compared with that of the
human reference genome. RNA sequencing narrows the focus to
mutations of expressed genes. The potential sequences are validated
by using computational models that predict the binding affinity of
neoepitopes with the individual’s MHC proteins that would present
the neoepitopes to the surface. This filters the candidate neoepitopes
for personalized vaccines, as shown in Figure 1.

The MHC allele is referred to as HLA complex in humans.
There are three types of MHC genes in humans, classes I, II and III.
We only focus on class I and class II MHC alleles (there is no public-
ly available data for class III alleles). Class I MHC alleles present en-
dogenous antigens that originate from the cytoplasm to cytotoxic T-
cells (CD8þ T-cells). Class II MHC alleles present exogenous anti-
gens that originate extra-cellularly from foreign bodies, such as bac-
teria to helper T-cells (CD4þ T-cells) (Abbas et al., 2014; Delves
et al., 2017). Previous research (Comber and Philip, 2014; Garrido
et al., 1993) has shown that class I MHC alleles play a major role in
identification of cancerous cells. Recent work (Pyke et al., 2018)

however suggests that patient-specific variations in class II MHC
alleles have as significant an effect on the mutations that arise in
tumors, as that of class I MHC alleles.

3 Implementation

In this section, we discuss the dataset used and explain the
MHCAttnNet model in detail.

3.1 Dataset
We use the IEDB (Sahin et al., 2017) (as of 2019) to prepare our
training and testing data as done in previous works (Hu et al.,
2018a; Jurtz et al., 2017; Nielsen and Lund, 2009; Phloyphisut
et al., 2019; Zeng and Gifford, 2019b). We filter the data-points
that correspond to ‘human’ or ‘homo-sapiens’ and the data-points
that have MHC alleles belonging to classes I or II. We take into con-
sideration the qualitative affinity measurements, which are labeled
in the IEDB as ‘Positive’, ‘Positive High’, ‘Positive Intermediate’,
‘Positive Low’ and ‘Negative’. Based on Zhao and Sher (2018) and
our analysis of quantitative affinity measurements, the classes
‘Positive’, ‘Positive High’ and ‘Positive Intermediate’ have IC50 val-
ues of <500 nM for class I and 1000 nM for class II alleles. Hence,
all the data-points with these three classes are labeled as binding and
the remaining two classes are labeled as non-binding.

Our final dataset comprises of 491 018 class I MHC-allele data-
points covering 161 different HLAs and 64 954 class II MHC-allele
data-points covering 49 different HLAs. The peptide lengths range
from 3 to 43 for both classes, while the lengths of amino acid
sequences of HLAs range from 180 to 347 for class I and from 85 to
232 for class II.

We get 451 484 HLA-A*, 39 424 HLA-B* and 110 HLA-C*
class I alleles, out of which 379 783 are binding and 111 235 are
non-binding. Similarly, we get 64 926 HLA-DRB1*, 22 HLA-
DRB3*, 4 HLA-DRB4* and 2 HLA-DRB5* class II alleles out of
which 36 035 are binding and 28 919 are non-binding.

3.2 Model
As shown in Figure 2, the embedding layers are used to encode the
input amino acids into a low-dimensional vector. The Bi-LSTM en-
coder is used to extract abstract token-level features from these
embeddings. The attention mechanism produces a weight vector,
which is multiplied with the token-level features to build a sentence-

Fig. 1. Steps to synthesize personalized cancer vaccine
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level feature vector. The obtained weighted sentence-level feature
vector is passed through the fully connected layers to perform the
classification task.

This architecture is capable of handling both class I and class II
MHC alleles. The model weights are shared across all MHC alleles
as opposed to building one model per MHC allele [as done else-
where (O’Donnell et al., 2018)]. The Adam optimization algorithm
(Kingma and Ba, 2015) is used for the training with binary cross-
entropy loss function. Our model accepts both the peptide and the
MHC allele in the form of a sequence of amino acids.

3.2.1 Embedding

The inputs to the model are peptides and MHC alleles, which are
represented as sequences of amino acids. To encode these amino
acid sequences, we use a continuous vector representation called
embedding (Collobert et al., 2011). Embeddings, when used as the
underlying input representations, have been shown to boost the per-
formance of various Natural Language Processing (NLP) tasks as
they capture the semantic meanings of words in sentences. The in-
put, a sequence of amino acids, can be treated as a sentence where
the individual words are the amino acids. The embedding represen-
tation for the tokens can be learned from a large corpus in an un-
supervised manner, and can be later fine-tuned for the required
upstream task. Given a sentence consisting of T words
S ¼ fe1; e2; . . . ; eTg, every word ei is converted into a real-valued
vector xi. The sentence S, represented through the real-valued vec-
tors of words, is passed to the Bi-LSTM Encoder (Section 3.2.2).

To pre-train the continuous vector embedding for the tokens, 1
or 3 consecutive amino acids (non-overlapping 1-g or 3-g) in an
amino acid sequence, we use the Skip-Gram model (Mikolov et al.,
2013). The lengths of amino acid sequences of peptides are much
shorter than those of MHC alleles. Therefore, we train a 1-gram
embedding for peptides, but use a 3-gram model called ProtVec for
MHC alleles as suggested by an earlier study (Asgari and Mofrad,
2015). We fix the embedding dimension at 100, which was reported
as the optimal parameter (Asgari and Mofrad, 2015).

3.2.2 Bi-LSTM encoder

A Bi-LSTM (Schuster and Paliwal, 1997) was chosen to encode the
sequence of amino acids as it is capable of processing sequences
with variable lengths, unlike the fixed n-mer peptides, and generaliz-
ing the relationship in the amino acid sequence.

The following notations and equations have been borrowed
from Zhou et al. (2016). An LSTM cell consists of four components:
one input gate it with the trainable weight matrices Wxi, Whi, Wci

and bias bi; one forget gate ft with the trainable weight matrices

Wxf, Whf, Wcf and bias bf and one output gate ot with the trainable
weight matrices Wxo, Who, Wco and bias bo. The current cell state,
ct, is generated by calculating the weighted sum using both the previ-
ous cell state and the current information generated by the cell.

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ (1)

ft ¼ rðWxf xt þWhf ht�1 þWcf ct�1 þ bf Þ (2)

gt ¼ tanhðWxcxt þWhcht�1 þWccct�1 þ bcÞ (3)

ct ¼ itgt þ ftct�1 (4)

ot ¼ rðWxoxt þWhoht�1 þWcoct þ boÞ (5)

ht ¼ ottanhðctÞ: (6)

To learn the relationship within the amino acids sequences, it
would be beneficial to have access to future as well as past context.
Bidirectional LSTM (1997) networks permit this by extending the
unidirectional LSTM networks by introducing a second layer. In this
second layer, the hidden connections are aligned in the opposite dir-
ection. The model is therefore able to exploit information from both
the past and the future context. The output of the every word is the
concatenation of the forward and backward hidden states (6) for
that word.

3.2.3 Attention

Attentive neural networks (Vaswani et al., 2017) have recently dem-
onstrated success over a wide range of fields ranging from NLP
(Bahdanau et al., 2015) to Computer Vision (Xu et al., 2015). Here,
we discuss the attention mechanism used for our classification task.

ut ¼ tanhðWht þ bÞ (7)

vt ¼ expðu � utÞ (8)

at ¼
vt

XT

i¼1

ðvti
Þ

(9)

at ¼
XT

i¼1

atht: (10)

The u vector is randomly initialized, which is learned during the
training process, to weight the amino acid subsequences. ut can be
thought of as a non-linearity applied over the Bi-LSTM hidden state
output, as in (6). vt is the exponential of the dot-product of ut with
the u vector. Intuitively, the value of vt is high if u and ut are similar.
We compute the weight of each token, at, by normalizing over the vt

vectors and thereby compute the final sentence pair-representation
used for classification by taking the weighted sum of the Bi-LSTM
hidden vectors ht (6).

3.2.4 Fully connected layers

The neurons are fully pairwise connected across adjacent linear
layers, but the neurons within a single layer do not share connec-
tions. In the MHCAttnNet model, a non-linear activation function
is applied in every fully connected layer. The Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) activation function is used which
computes the function f ðxÞ ¼ maxð0; xÞ. This forces the activation
to be thresholded at zero.

The attended vectors, (10), from the peptide and MHC-allele
branch of the network are concatenated before being passed onto
another fully connected layer. The output of the model is the prob-
ability of the input being in a particular class which is obtained from
the softmax function (Goodfellow et al., 2016), defined as in (11).

Fig. 2. An overview of the MHCAttnNet architecture
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rðzÞj ¼
ezj

XK

k¼1

ezk

: (11)

The softmax function squeezes the outputs for each class be-
tween 0 and 1, by dividing each class output by the sum of the out-
puts of all classes.

4 Results

MHCAttnNet produces competitive results in terms of predicting
MHC-peptide bindings for both MHC classes I and II. The metrics
used to compare the models are described in Section 4.1.
Comparison with the state-of-the-art models is done in Sections 4.2
and 4.3. Attention in MHCAttnNet provides some interesting
insights into which subsequences of amino acids of peptides and
MHC alleles play major roles in determining the MHC-peptide
bindings. These insights are explained in detail in Section 4.4. In
Section 4.5, we define sequence reduction, a list of trigrams of
amino acid sequences of MHC alleles, which captures all the infor-
mation, relevant for predicting binding, corresponding to a particu-
lar amino acid. This list consists of just about 2.8% of the total
possible trigrams, and would greatly reduce the number of possible
clinical trials needed for vaccine development without major loss of
information. This means that only 2.8% of the total trigrams have
any significance in predicting the binding between a peptide amino
acid and an MHC allele.

4.1 Model performance
To test the performance of MHCAttnNet, we look at the following
metrics:

• Precision or positive predictive value (PPV) (Alpaydin, 2014),

which denotes the fraction of results which are relevant (12).
• Recall or sensitivity (Trevethan, 2017), which denotes the frac-

tion of relevant instances that the model was able to retrieve

(13).
• Accuracy (Alpaydin, 2014) is the percentage of correctly classi-

fied instances (14).
• F1-score (Alpaydin, 2014), which gives a good balance between

precision and recall (15).
• Area under receiver operating characteristics (AUC-ROC)

(Fawcett, 2006), which is the area under the curve plotted when

true positive rate is plotted against false positive rate.
• Area under precision-recall curve (AUC-PRC) (Saito and

Rehmsmeier, 2015), which is defined as the area under the curve

plotted when Precision is plotted against Sensitivity.
• Pearson correlation coefficient (PCC) (Kirch, 2008), which is a

linear correlation between two normally distributed continuous

variables.

AUC-PRC is an appropriate metric to compare the results of
models as there is a large class imbalance in the dataset, especially
for class I MHC alleles. Precision-recall plots provide a good esti-
mate of future classification performance as they evaluate the frac-
tion of true positives among the positive predictions (Saito and
Rehmsmeier, 2015).

In the following expressions, TP, TN, FP and FN denote true
positive, true negative, false positive and false negative, respectively.

PPV ¼ TP

TPþ FP
(12)

Sensitivity ¼ TP

TPþ FN
(13)

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
(14)

F1 ¼ 2� PPV� Sensitivity

PPVþ Sensitivity
: (15)

The performance of MHCAttnNet in class I MHC alleles is
measured using AUC-ROC, AUC-PRC, PCC, PPV, F1-score and
Sensitivity. In class II alleles, the class imbalance is not significant,
and hence to evaluate the performance of MHCAttnNet on class II
MHC alleles, accuracy, AUC-ROC, PCC, Sensitivity, PPV and F1-
score are used.

These metrics are computed by us on a 5-fold cross-validation
data (Refaeilzadeh et al., 2009), which is derived from IEDB (Vita
et al., 2015) and processed as mentioned in Section 3.1. The 5-fold
cross-validation data are different for class I and class II MHC
alleles. All experiments are run on these 5-fold cross-validation
data. Each of the 5 test files for class I MHC alleles consists of
97 000 data-points, while for class II MHC alleles, there are around
13 000 data-points each.

4.2 Performance on class I MHC alleles
MHCAttnNet is the first model that takes into consideration 161
different class I MHC alleles and yet achieves a 5-fold cross-
validation AUC-PRC score of 94.18%. The model also attains a
high cross-validation F1-score of 94.22%. Four different hyper-
parameter configurations score higher than 94% for AUC-PRC, as
seen in Table 1. MHCAttnNet, therefore, has high accuracy with
low variance. The scores for the best model configuration are shown
in bold in Table 1. This best model configuration was used for all
the experiments.

MHCAttnNet is compared with the widely used state-of-the-art
models, MHCflurry (O’Donnell et al., 2018), NetMHC-4.0
(Andreatta and Nielsen, 2016) and PUFFIN (Zeng and Gifford,
2019b).

We tested MHCflurry on our 5-fold cross-validation data using
mhctools (https://github.com/openvax/mhctools). MHCflurry takes
into consideration 130 class I MHC alleles as compared to 161 for
MHCAttnNet. The predictions were computed for all the data-
points in the test data, except for those data-points that had MHC
alleles, which are not supported by MHCflurry. The performance of
MHCflurry is computed without those data-points. MHCflurry out-
performs MHCAttnNet on (PPV) by only 0.1% while
MHCAttnNet achieves better results on the remaining metrics as
seen in Table 2. MHCAttnNet achieves AUC-ROC score of 88.93%
as compared to 82.34% of MHCflurry, which is an improvement of
about 6.5%. The AUC-PRC score of MHCAttnNet is 94.18% while
it is 90.74% for MHCflurry, an improvement of 3.5%. Moreover,
MHCAttnNet shows a significant improvement in terms of
Sensitivity (around 21.5%), PCC (around 19.5%) and F1-score
(around 12%).

We tested NetMHC-4.0 using the publicly available prediction
software (2016). NetMHC-4.0 is trained on 118 class I MHC alleles
and hence, there are some class I MHC alleles in our test data, which
are not covered by NetMHC-4.0. Those data-points were removed
from the test data on which the performance of NetMHC-4.0 is
computed. Table 2 shows that MHCAttnNet outperforms
NetMHC-4.0 on all the metrics. MHCAttnNet achieves an AUC-
ROC score of 88.93% and shows a gain of more than 6% over
NetMHC-4.0. Similarly MHCAttnNet is able to achieve AUC-PRC
and PPV scores of 94.18 and 96.83%, respectively, while
NetMHC4.0 achieves 90.48 and 94.86%, respectively.
MHCAttnNet shows a significant gain of around 15% in both,
Sensitivity and PCC.

We tested the pre-trained PUFFIN model using the provided offi-
cial implementation (2019) on our test data. Table 2 also shows that
MHCAttnNet scores better than PUFFIN on all the metrics for class
I MHC alleles. MHCAttnNet outperforms PUFFIN by about 7% on
AUC-ROC metric and about 3% on AUC-PRC metric. PUFFIN
achieves the PPV score of 96.68%, which is just about 0.15% shy of
MHCAttnNet’s score. MHCAttnNet shows improved performances
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on PCC, F1-score and Sensitivity than PUFFIN by about 22, 11.5
and 21%, respectively.

We also tested the performance of MHCAttnNet without the
Attention Module to show the importance of attention. The com-
parison of performances with and without attention is shown in
Table 2. It is clear that having attention produces better results. The
obtained attention weights are also useful to understand how the
model is weighting the amino acids while predicting.

4.3 Performance on class II MHC alleles
For class II MHC alleles, MHCAttnNet reaches as high as 75.79%
on the AUC-ROC metric with 5-fold cross-validation on 49 differ-
ent class II MHC alleles. NN-Align (Nielsen and Lund, 2009) is con-
sidered as one of the state-of-the-art methods to compute binding
predictions between peptides and class II MHC alleles. NN-Align
handles only 14 alleles as compared to 49 alleles for MHCAttnNet.
NN-Align is also allele-specific and hence, has different predictive
models for each allele. On the contrary, MHCAttnNet is pan-allele
and hence, has only one model for the task of peptide and class II
MHC-allele binding. We were unable to do a class-wise analysis on
the benchmark Wang et al. (2008) dataset, which is used for analysis
of the NN-Align model, as the number of data–points, there are too
low for our model to learn. We however compared MHCAttnNet to
a newer model for class II, NetMHCIIpan-3.2 (Jensen et al., 2018).
We tested NetMHCIIpan using the software that has been made
publicly available. The performance is computed on our 5-fold
cross-validation data after removing the data-points that correspond
to MHC alleles which are not handled by NetMHCIIpan. The
results are compared on different metrics in Table 3. MHCAttnNet
outperforms NetMHCIIpan on all metrics by around 7%–9%.

We also compare MHCAttnNet’s performance with PUFFIN.
We run the pre-trained PUFFIN model, as given by Zeng and
Gifford (2019b), on our test data for class II MHC alleles. PUFFIN
scores better than MHCAttnNet on three metrics–AUC-ROC,
Accuracy and PCC by �1.5, 1 and 4%, respectively. On the other
hand, MHCAttnNet scores better on Sensitivity, PPV and F1-score.
It achieves 72.98% on Sensitivity, 87.69% on PPV and 76.75% on
F1–score, which is more than PUFFIN by �4.5, 1.3 and 0.3%, re-
spectively. Overall, MHCAttnNet’s performance on class II MHC
alleles is comparable to the PUFFIN model as seen in Table 3.
Although the task of prediction is difficult on class II MHC alleles
(Dimitrov et al., 2010), MHCAttnNet outperforms or does as well
as the state-of-the-art models for class II MHC alleles.

This shows that the overall performance of MHCAttnNet is bet-
ter than the previous state-of-the-art methods. It may be noted that
MHCAttnNet has a single architecture that works for both class I
and class II MHC alleles, and that even without making any changes
to the layers (Fig. 2) of MHCAttnNet, it predicts the binding of pep-
tides with both class I and class II MHC alleles accurately.

4.4 Analysis of attention weights
Attention mechanisms play a crucial role in NLP (Bahdanau et al.,
2015), where they focus on the sensitive parts of the input during
output generation. Such mechanisms are most important in long
sentences as it is not required to encode the full source sentence into
a fixed-length vector. The encoded vector, produced by the attention
layer, depends on the weighted combination of all the hidden states
of the Bi-LSTM layer and not just the last state. Hence, such mecha-
nisms can boost the contributions of the key features. The placed at-
tention mechanism is effective as it results in higher scores, over the
model without attention, as seen in Tables 2 and 3.

Table 1. The 5-fold cross-validation performance of MHCAttnNet with different hyper-parameters on class I MHC alleles

Bi-LSTM Number of layers Number of layers Context AUC-PRC AUC-ROC F1-

hidden dimension in peptide Bi-LSTM in MHC Bi-LSTM dimension score

64 3 3 16 0.9418 0.8893 0.9422

64 3 1 16 0.9418 0.8893 0.9416

64 3 3 32 0.9409 0.8874 0.9398

64 3 1 32 0.9416 0.8887 0.9404

Note: The best performance is indicated in bold. The hyper-parameter setting, corresponding to this, was used to run all the experiments.

Table 2. Comparison of performance of MHCAttnNet with the state-of-the-art methods for class I MHC alleles

Model AUC- AUC- PCC PPV F1- Sensitivity

ROC PRC score

NetMHC4.0 0.8237 0.9048 0.5738 0.9486 0.8531 0.7757

MHCflurry 0.8234 0.9074 0.5624 0.9695 0.8230 0.7149

PUFFIN 0.8185 0.9129 0.5398 0.9668 0.8264 0.7215

MHCAttnNet (no attention) 0.8822 0.9380 0.7463 0.9643 0.9402 0.9303

MHCAttnNet 0.8893 0.9418 0.7570 0.9683 0.9422 0.9304

Note: The best performances are indicated in bold.

Table 3. Comparison of performance of MHCAttnNet with the state-of-the-art methods for class II MHC alleles

Model Accuracy AUC-ROC PCC Sensitivity PPV F1-score

NetMHCIIpan 0.6822 0.6751 0.4297 0.3888 0.9039 0.5435

PUFFIN 0.7657 0.7756 0.5520 0.6853 0.8644 0.7645

MHCAttnNet (no attention) 0.7503 0.7530 0.5032 0.7275 0.8732 0.7636

MHCAttnNet 0.7549 0.7579 0.5130 0.7298 0.8769 0.7675

Note: The best performances are indicated in bold.
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One of the most widely used approaches is interpretation by vis-
ualizing the weights of the model. In long sequence domains, like
amino acid sequences, attention is visualized using text heatmaps
(Yang and Zhang, 2018). A heatmap is an efficient representation
that uses a system of color codes to graphically show the importance
of different values of the input. As shown in Figures 3 and 4, the 1D
heatmaps are superimposed on input text, showing the aggregate at-
tention, which provides an overview of consequential portions of in-
put. The input MHC allele and peptide, as sequences of amino
acids, are tokenized as indicated in Section 3. The intensity of the
background color is the magnitude of the attention weight placed at
that token.

A big advantage of attention mechanism is that it gives us the
ability to reason and visualize what the model is doing. The atten-
tion mechanism makes it easier to interpret the results by giving us
better insights about which subsequences of the amino acid sequence
are more relevant (for the upstream classification task)—the visual-
ized attention weights give insights into how the model made the
prediction. The understanding of actual binding process between an
MHC allele and a peptide is still not very clear (Rajapakse et al.,
2007) and hence, the attention weights can help the researchers to
focus their studies on the particular subsequences of amino acids to
get a better understanding of the binding mechanism. The significant
amino acids, based on the attention values placed over them, may
serve as a good starting point for the clinicians but the reliability of
this is subject to clinical validation.

4.5 Sequence reduction
We analyze the cumulative information coverage obtained by going
through the important trigrams corresponding to a particular amino
acid, with attention weights as given by (10) being >0.001, from
most important to least. Out of the 9261 possible trigrams of amino
acid sequences of MHC alleles, we find that only about 258 of these
trigrams contain all the information about a particular amino acid
present in a peptide, as seen in Figure 5. This reduced list of trigrams
we call sequence reduction.

The threshold of 0.001 was chosen because we found it to be the
most appropriate value without any significant loss of information.
We ran the experiments for different thresholds. We noticed that
when we selected a higher threshold value (say 0.01), our reduced

Fig. 3. Attention weights (2018) are highlighted on class I MHC allele (HLA-

A*02:01) and peptide. respectively

Fig. 4. Attention weights (2018) are highlighted on class II MHC allele (HLA-

DRB1*04:01) and peptide, respectively

Fig. 5. Number of trigrams needed to collectively convey 100% of information. The

average number of trigrams needed to convey the complete information is 258 and

is indicated with the dotted line

Fig. 6. Relevance of particular trigrams of MHC alleles for some amino acids in peptides
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list had around 211 trigrams, hence lost on some significantly in-
formative trigrams whereas when we selected a lower threshold
value (say 0.0001), our sequence reduction list had 301 trigrams,
which contained a large number of low-contributing trigrams. In
Figure 6, which has been plotted with a threshold of 0.001, we can
see that for almost all the amino acids, the number of trigrams that
cover most of the information is around 220. A similar curve profile
is noticed for other thresholds. The biological significance of this
threshold can be empirically tested by conducting clinical trials. The
sequence reduction gives us a correlation between an amino acid of
a peptide with a trigram of an MHC allele, while helping in signifi-
cantly reducing the number of amino acid sequences that need to be
clinically tested.

The Pareto Principle (Lipovetsky, 2009) suggests that a small
fraction (typically given as 20%) of items in a set has a dispropor-
tionate impact (typically given as 80%). While analyzing sequence
reduction values, we found that the Pareto Principle holds for the
amino acid E. As shown in Figure 6, 20% of the top relevant tri-
grams contribute to 77.27% of the information provided by all the
important trigrams for the amino acid E. On the other hand, for
other amino acids, the top 20% of the attended trigrams contribute
for an average 60% of the relevant information, with a standard de-
viation of <10% of the mean. This shows that even in the sequence
reduction list, it is only a small percentage of trigrams that play a
significant role in the prediction of binding. While conducting clinic-
al trials, this reduced list can help determine which peptides are like-
ly to have a higher impact on a particular allele.

5 Conclusion

MHCAttnNet shows improved results on a larger variety of peptides
and MHC alleles, including both class I and class II MHC alleles.
The model handles variable-length peptides because of the use of Bi-
LSTMs. It is important to note that unlike many of the previous
approaches, MHCAttnNet is a pan-allele method. MHCAttnNet
has only one model architecture that works well with both class I
and class II MHC alleles. The model weights are different for class I
and class II MHC alleles but the architecture remains the same. The
improvement in results for MHCAttnNet is mainly due to the use of
the ProtVec Embedding (Asgari and Mofrad, 2015) and the use of
Bi-LSTMs to encode the amino acid information. The attention
layers help improve the results marginally, but the most important
benefit of the attention layers is to help illustrate the importance
given to any subsequence of the amino acid sequence (either peptide
or MHC allele). The use of an attention mechanism helps
MHCAttnNet produce more focused and insightful results.

The bio-medicine community can gain from such a deep learning
model that can not only predict with higher precision, but also gives
an insight into relevant subsequences of amino acids of MHC alleles
and their correlations with particular amino acids of peptides.
Therefore, MHCAttnNet can contribute to improved processes for
the design and manufacture of personalized cancer vaccines.

In MHCAttnNet, the input sequence of amino acids is encoded
using the ProtVec embedding [trained using the Skip-Gram ap-
proach of the Word2Vec (Mikolov et al., 2013) algorithm]. Further
work could be to use a contextualized word embedding, like ELMo
(Peters et al., 2018), Flair (Akbik et al., 2018) or BERT (Devlin
et al., 2019), to encode the input sequence. Such a contextualized
word embedding could capture the structural aspects of amino acid
sequences by looking into their contexts and hence, would further
improve the binding predictions. It would also be interesting to see
if the contextualized embedding can lead us to look at the amino
acid sequences differently. The focused subsequences (as seen in
Section 4.4) can lead to a better understanding of the mechanism of
binding between alleles and peptides.

Our use of sequence reduction, a reduced relevant list of trigrams
of amino acids obtained using the attention mechanism, opens the
door to further research in this area. Sequence reduction reduces the
search space significantly, making clinical trials easier.
Understanding where the binding takes place in peptides and MHC

alleles is an interesting and important problem. Further work on se-
quence reduction can lead to better development of cancer vaccines.
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