
Identification and remediation of biases in
the activity of RNA ligases in small-RNA
deep sequencing
Anitha D. Jayaprakash, Omar Jabado, Brian D. Brown and Ravi Sachidanandam*

Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue,
New York, NY 10029, USA

Received April 12, 2011; Revised August 3, 2011; Accepted August 8, 2011

ABSTRACT

Deep sequencing of small RNAs (sRNA-seq) is now
the gold standard for small RNA profiling and dis-
covery. Biases in sRNA-seq have been reported, but
their etiology remains unidentified. Through a
comprehensive series of sRNA-seq experiments,
we establish that the predominant cause of the
bias is the RNA ligases. We further demonstrate
that RNA ligases have strong sequence-specific
biases which distort the small RNA profiles consid-
erably. We have devised a pooled adapter strategy
to overcome this bias, and validated the method
through data derived from microarray and qPCR.
In light of our findings, published small RNA
profiles, as well as barcoding strategies using
adapter-end modifications, may need to be re-
visited. Importantly, by providing a wide spectrum
of substrate for the ligase, the pooled-adapter
strategy developed here provides a means to
overcome issues of bias, and generate more
accurate small RNA profiles.

INTRODUCTION

The advent of deep sequencing has now made it possible
to sequence the full complement of small RNAs in a cell
(1–4).

Small RNAs (15–30 nt), such as microRNAs, piRNAs
and endogenous siRNAs, are crucial regulators of genetic
activity (5–8). Though many methods like real-time (RT)
PCR (9,10) and microarrays (11) can be used for profiling
known small RNAs, identifying differences between
closely related microRNAs and discovery of novel se-
quences can only be done through deep sequencing (12).

Deep sequencing is especially attractive for its sensitiv-
ity to low abundance transcripts (2,4). In light of this,

a persistent mystery in the field of small RNA sequencing
is the discrepancy between the results from deep
sequencing, microarrays and qPCR (13,14), with certain
miRNAs being under- or overrepresented in sRNA-seq
(15). This calls into question quantitative data from deep
sequencing, especially measurements of relative abun-
dances of isoforms and variants.
Although other profiling platforms also exhibit biases,

biases in sRNA-seq would undermine the incredible sen-
sitivity and accuracy achievable by deep sequencing. For
piRNAs, sequence features such as the T-bias at the 50-end
are inferred through profiling, and offer clues to their bio-
genesis (16). A data set that is biased by collection
methods can, therefore, lead to erroneous conclusions.
The most widely used technique of sRNA-seq involves

isolation of small RNAs (15–30 nt), ligation of 30 and 50

adapters onto the ends of the small RNAs using T4-RNA
ligases (Rnl2 and Rnl1, respectively, Figure 1), followed
by reverse transcription and amplification (7–21). Skews
have been noticed in the profiles generated by this method
of sample preparation, independent of the sequencing
platform (13–15).
Thus, we set out to systematically investigate the

presence and source of the biases in sRNA-seq. We
deep-sequenced small RNAs from 293T human kidney-
derived cells and mouse embryonic stem (mES) cells,
using strategies aimed at identifying the source of bias.
Upon careful investigation, we conclude that a reprodu-
cible discrepancy can arise only in the ligation or amplifi-
cation steps.
The biases in the activity of RNA ligases have not been

explored in the context of their use in deep sequencing
(22,23). We show that the T4-RNA ligases used in
sample preparation is the predominant cause of distor-
tions and they mediate sequence-specific ligations. We
show that this bias can be ameliorated using a pooled
adapter strategy. Our results provide new insights into
the activity of RNA ligases through deep sequencing,
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and an invaluable strategy to reduce biases and increase
the accuracy of the profiles of the small RNA transcrip-
tome generated through sRNA-seq.

MATERIALS AND METHODS

Library construction and sequencing

Total RNA was isolated from 293T cells and mouse em-
bryonic fibroblasts using Trizol extraction (Invitrogen).
Sequencing libraries enriched for micro-RNAs were con-
structed using a modified version of a small RNA protocol
detailed by Pfeffer (21). Two RNA markers were
synthesized Spike 19 (CGUACGGUUUAAACUUC
GA) and Spike 24 (CGUACGGUUUAAACUUCGAA
AUGU) (Sigma Aldrich); RNA was end-labeled using
polynucleotide kinase and radioactive ATP (P32). Ten
micrograms of total RNA was size fractionated by
denaturing poly acrylamide gel electrophoresis (PAGE,
12% gel). miRNAs were excised from the gel using
radiolabeled markers as guides. Purified miRNA was
ligated to a 17 nt 30 adapter with truncated T4 RNA
ligase 2 (Rnl2) in an ATP-free buffer (Bioo Scientific).
The ligated fragment of 36–41 nt was PAGE purified. A
second RNA adapter was ligated to the 50 side of the
product using T4 RNA ligase 1 (Rnl1) and buffer contain-
ing ATP. The 72–78 nt ligated fragment was PAGE
purified and then reverse transcribed using a specific
primer (BanI-RT; ATTGATGGTGCCTACAG). cDNA
was amplified by 22 cycles of PCR with primers that in-
corporate sequences compatible with the Illumina
platform (Sol-5-SBS, AATGATACGGCGACCACCGA
ACACTCTTTCCCTACACGACG and Sol-3-ModBan,
CAAGCAGAAGACGGCATACGATTGATGGTGCC
TACAG) (Figure 1). The library was sequenced using the
Illumina Genome Analyzer IIx at 36 nt read length.
Replicates were sequenced to verify the reproducibility
of the results (Supplementary Figures S1–S3).

Microarray

miRNA abundance was assessed in 293T and mES RNA
samples by oligonucleotide microarray using Affymetrix
GeneChip (miRNA 1.0). One microgram of total RNA
was labeled using the FlashTag Biotin 3DNA kit
(Genisphere), as follows: polyadenylation of RNA by
polymerase, ligation to a biotinylated 3DNA molecule
mediated by an oligo with 50 poly d(T) and 30 3DNA com-
plementary adapter. Labeled RNA was hybridized to the
microarray using standard Affymetrix methods.
Fluorescence intensities were extracted using the R statis-
tical package, using methods from the BioConductor
module (http://www.bioconductor.org/).

Real-time PCR

Quantitative RT PCR was carried out using the Applied
Biosystems (AB) microRNA specific reagents and a
7900HT thermocycler. Ten nanogram of total RNA was
reverse transcribed with a miRNA specific hairpin primer
using the AB micoRNA Reverse Transcription kit.
Specific forward primers and universal reverse primers

were random with cDNA and AB Universal PCR
Master Mix (no UNG) as recommended by the manufac-
turer. The following miRNAs were assayed: hsa-mir-18a,
-20a, -106b, -92a, -103-2, -10, -16, -17 and hsa-let-7.
Ct values were extracted from real-time data using the
auto threshold setting.

Computational analysis

Analysis of such datasets is well established (25), but ex-
tracting the inserts from the libraries was complicated by
three causes: (i) sequencing errors that mis-call a base, (ii)
sequencing errors that miss a base and (iii) errors in the
synthesis of the NN constructs. To mitigate problems
from sequencing errors, we only accepted sequences
where the 30 adapter sequences were matched exactly.
This eliminates most of the problematic reads, but does
not solve the issue of point (iii) above. For that, we used
the relative abundances of the various inserts in the small
RNA library (from our analysis of data from several
runs), to identify synthesis errors. Failure to synthesize a
particular N, or a skew in a particular N, causes a
mis-identification of the adapter on the sequence and its
end modifications. Each sequence was binned into the ap-
propriate NN category, as well as the appropriate version
of the miRNA sequence (the canonical mature or an
isomir, either derived from the original hairpin sequence
or a non-template modification). Most of the processing
was done using custom Perl scripts (which are available

Figure 1. The protocol for preparing samples for small RNA
sequencing. Total RNA is size fractionated by denaturing poly acryl-
amide gel electrophoresis (PAGE) and miRNAs are excised from the
gel using radiolabeled markers as guides. Purified small RNAs are
ligated, using a truncated T4 RNA ligase 2 (Rnl2) in an ATP-free
buffer, to a 17-nt modified 30 DNA adapter with dideoxy at the
30-end and activated at the 50-end by adenylation. The dideoxy
prevents self-ligation of the adapter, while the truncated ligase
prevents circularization of the small RNA inserts. The ligated
fragment of 36–41 nt is then PAGE purified, to remove the unligated
30 adapters. A 32-nt RNA adapter is ligated to the 50 side of the
product using T4 RNA ligase 1 (Rnl1). The 72–78 nt ligated fragment
is PAGE purified again to remove the unligated 50 adapters. The
product is reverse transcribed using a specific primer and the resulting
cDNA is amplified by PCR with primers that incorporate sequences
compatible with a deep-sequencing platform.
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from the authors on request). Custom R-scripts were used
to generate the graphs and statistical analyses.

RESULTS

In order to establish the sequence dependence of the
ligation of adapters to small RNAs, libraries were con-
structed for small RNA sequencing, using the standard
protocol (Figure 1) with modified adapters. The set of
samples that were sequenced are listed in the
Supplementary Table S1.

Strategies using modified adapters

To understand the exact nature of the biases, we devised
strategies using various 50 and 30 adapters with additions
to the ligating ends (30-end of the 50 adapter and the 50-end
of the 30 adapter). We devised six strategies using the
adapter pools, as listed below and in Table 2.

(1) noNN: the standard modban 50 and 30 adapters
(2) 4-mer pool: the standard modban 30 adapter, pool of

twelve 50 adapters with 4-mer additions.
(3) fNN: the standard 30 adapter and a pool of 50

adapters generated by adding random NN additions
to the 30-end of the 50 modban adapter,

(4) eNN: the standard 50 adapter with a pool of 30

adapters that are modified at the 50-end with NN
additions (eNN),

(5) fNN_eNN: a pool of 50 and 30 adapters with the NN
modifications described in (2) and (3), and

(6) fNNNN: a pool of 50 modban adapters with the
addition of random NNNN to the 30-end and the
standard 30 adapter.

50 adapter ligation efficiency is sequence dependent

In order to determine if there was sequence-dependent
ligation of the 50 adapters, we prepared small RNA
samples from 293T cells, using a pool of twelve 50

adapters, modified by the addition of 4-mers (TGAC,
GAGT, GTAT, CGTC, GGAA, AAGG, GCTT,
AACC, CCAA, AGCA, CTAG and TGTG).

The results showed big differences between data from
different adapters (Figure 2). We also established in this
experiment that the bias was not PCR-dependent, by
reducing the number of PCR cycles down from 25 to 18,
without any significant effect on the results (Figure 2D).

We prepared individual 293T cell samples using one
adapter per sample, selecting five 4-mer ends (TGAC,
CGTC, AACC, GTAT and GGAA). We found wide vari-
ations in the miRNA profiles, especially for highly ex-
pressed miRNAs such as hsa-mir-20a and hsa-mir-18.
In Table 1, we list correlations between samples
(293T-derived RNA) sequenced individually with
adapters ending in TGAC, CGTC and GGAA and the
same samples sequenced using pools of the five adapters
listed above. The sequences with individual barcodes have
poor correlation to each other, but pooling the adapters
improves the concordance between the profiles for

different replicates. This suggests that a pooled approach
might reduce the effect of biases caused by adapter
ligation on the 50-end.

Nature of sequence dependence in the efficiency of
50 adapter ligation

To identify the biases inherent in the 50 adapter ligation,
two samples from 293T and mES cells were prepared
using the fNN strategy. The results showed that the
profiles measured from the same sample can vary wildly
for different adapters (Figure 3). Figure 3A (293T) and C
(mES) depict the amount of miRNAs (y-axis) captured by
each adapter (x-axis), suggesting some adapters are more
efficient than others. If it were a simple matter of differing
efficiencies for different adapters, then the miRNA profiles
derived from each barcode should be scaled versions of
each other. In fact, as shown in Figure 3B (293T) and D
(mES), the profiles for different adapters are very dissimi-
lar. In the Figure 3B and D, the x-axis shows different
miRNAs, ranked by their overall occurence, which is the
sum over all adapters. The y-axis shows, of all the
miRNAs captured by a particular adapter, the fraction
that each miRNA occupies. It is apparent there can be
dramatic shifts in the rankings for the miRNAs (the
profiles) between adapters.
We wanted to establish how much of the sequence

proximal to the ligating end of the adapter determined
the ligation efficiency. For this, we carried out an experi-
ment using 50 adapters with four terminal random nucleo-
tides, the fNNNN strategy. Figure 4 shows that most of
the ligation efficiency can be explained by the last two
nucleotides. Only in one case, hsa-miR-106b, did we
need the NNNN strategy to detect an abundant miRNA
(see also Figures 2 and 10).

Biases in 30 adapter ligation

We investigated the bias on the 30-end independently, since
the 30 adapter ligation differs from the 50 adapter ligation,
in using a truncated RNA-ligase (rnl2) with an adenylated
30 DNA (instead of RNA) adapter.
We designed a simple gel shift-based assay to test for the

existence of a 30 adapter ligation bias. We chose two radio-
actively labeled oligomers, a 19-mer (CGUACGGUUUA
AACUUCGA) and a 24-mer that had a 5-mer (AAUGU)
addition at the 30-end of the 19-mer. Figure 5 shows that
the 24-mer does not ligate efficiently to the standard 30

adapter, in contrast to the 19-mer. On the other
hand, the adapters from the NN strategy ligate well to
both oligos. The 24-mer has good ligation only to
certain sequences in the eNN pool, indicating the
superiority of this strategy. While this may appear to be
crude, the dramatic effect seen in the gel-shift suggests
large differences in ligation efficiencies between different
pairs of sequences, indicating that both the 50 and 30

adapter biases need to be taken into account in any
sequencing experiment using T4-RNA ligases in the
sample preparation.
We pursued a strategy similar to the case of 50 adapter

ligation, using the eNN strategy for 30 adapters in order to
systematically study the biases in the ligation of the 30
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adapter. In Figure 6, we show the efficiencies of the 50 and
30 adapter ligations in the form of a fluctuation graph. The
area of the rectangles is proportional to the number of
reads that come from a particular miRNA–adapter

combination. The 30 adapters show more variability,
which is probably due to the greater diversity in the
30-ends of the miRNAs compared with the 50-ends, sug-
gesting that the 30 adapter ligation might be a bigger
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Figure 2. Choice of 50 adapter ends determines miRNA abundance/ranking, not PCR cycles. Sequencing libraries were constructed from total RNA
derived from 293-T cells, using a pooled set of twelve 50 adapters that had different 4-mer 30-ends, shown on the x-axis. There is great diversity in the
capture of individual miRNAs by different 50 adapters (A, B and C show data for miR-18a, miR-20a and miR-106b, respectively). (C) Shows an
extreme case where miR-106b is captured well by only one adapter, ending in AGCA, out of the 12 combinations. These data are consistently
reproduced in other experiments shown in Figure 4. To isolate the effect of PCR cycles, we prepared the samples twice, using 25 (y-axis) and 18
(x-axis) cycles of PCR (D). Each point represents a miRNA. The correlation between the two sets is high (coefficient of 0.95) and the best linear fit to
the points is a line of slope 1, suggesting that the data are reproducible and PCR is not responsible for the biases.

Table 1. Correlations (spearman rank) between samples, based on the abundance of miRNA sequences

293T_1 (TGAC) / pool 293T_2 (CGTC) / pool 293T_3 (GGAA) / pool

293T_1 (TGAC) / pool 1 (0.66) / 0.91 (0.68) / 0.92
293T_2 (CGTC) / pool (0.66) / 0.91 1 (0.64) / 0.97
293T_3 (GGAA) / pool (0.68) / 0.92 (0.64) / 0.97 1

The samples were prepared using either individual 50 adapters that differ only at the 30 terminus or a pooled set of 50 adapters. The first number in
each entry is correlation with the specific adapter, while the second number is for the pooled data. The relatively low correlations for individual
adapters between biological replicates of 293T cells, in contrast to the results for the pooled data, suggest that the efficiency of ligation of the
adapters to different miRNA sequences is variable. This suggests that mixed pools of adapters can help overcome the inherent biases in ligation
efficiency.
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source of biases in measurements. It is interesting to note
that the efficiency of the standard modban adapters (the
50 one ends in TC and the 30 one starts with CT) is low,
compared with some of the others, but there is no single

adapter that is uniformly efficient across the miRNAs that
we tested here. This again suggests that it is necessary to
take a pooled approach on both adapters for an unbiased
measurement.
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Figure 3. Measured miRNA abundance by the fNN strategy depends on both the adapter and the miRNA sequences. (A) and (C) show the fraction
of miRNA in each adapter type, calculated by adding the total number of miRNA sequences (irrespective of identity) captured by each adapter type
as a fraction of the total amount of miRNA captured by all the adapters combined. (B) and (D) show, for each adapter type (only 5 out of the 16 are
shown here for clarity), the fraction occupied by the top miRNAs. The rankings of the miRNAs by relative abundance are dependent on the adapter.
The A and C panels show differences in adapter efficiencies in capturing miRNAs, and the B and D panels show that these differences arise from
variations in the efficiencies that depend on the miRNA–adapter combination.

Table 2. miRNA sequencing libraries were generated with the adapter combinations shown here

Strategy 50 adapter RNA 30 adapter DNA

noNN ACACUCUUUCCCUACACGACGCUCUUCCGAUC CTGTAGGCACCATCAAT
fNN ACACUCUUUCCCUACACGACGCUCUUCCGAUCNN CTGTAGGCACCATCAAT
fNNNN ACACUCUUUCCCUACACGACGCUCUUCCGAUCNNNN CTGTAGGCACCATCAAT
eNN ACACUCUUUCCCUACACGACGCUCUUCCGAUC NNCTGTAGGCACCATCAAT
fNN_eNN ACACUCUUUCCCUACACGACGCUCUUCCGAUCNN NNCTGTAGGCACCATCAAT
4-mer pool ACACUCUUUCCCUACACGACGCUCUUCCGAUCWXYZ CTGTAGGCACCATCAAT

4-mer pool is a mixture of 12 adapters, represented as WXYZ (CTAG, GAGT, CCAA, AGCA, AACC, AAGG, TGAC, CGTC, GCTT, GTAT,
GGAA, TGTG). All 30 DNA adapters have a 50 rAPP and 30ddC modifications to prevent self-ligation and circularization.
The bold sequences in this table indicate modifications to the standard adapter sequence.
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A model for ligation efficiencies

To develop a unified picture of the ligation efficiency and
show that the experiments are consistent with each other,
we developed a model. The model assumes ligation
efficiencies based on the 256 combinations at each
ligation junction, determined by the two nucleotides
(16 possible combinations, AA, AC . . .TG, TT) on the
ligating end of the adapter and the two nucleotides
(16 possible combinations) on the ligating ends of the
miRNA. We define these as Fij (i and j each varying
from 1 through 16 where 1 stands for AA, 2 for AC
going on to 15 for TG and 16 for TT) for the 50 adapter
ligation, and Emn (m and n each varying from 1 through
16) for the 30 adapter ligation. Let Mk be the actual abun-
dance of a miRNA labeled k in the sample. Let mk

in be the
measured amount of miRNA labeled k using adapters
with ends i and n on the 50 and 30 adapter, respectively.
Then, the model suggests,

mk
in ¼ Fij �M

k � Emn ð1Þ

The various adapter combinations are in equimolar con-
centrations; so they do not enter the equation (other than
a constant that can be absorbed in F and/or E). Figure 7
depicts the matrices F and E in a fluctuation graph, high-
lighting the variability. If this model is universal, we
expect that the ratio between various F’s (and various
E’s) from the fNN and eNN data sets should agree with
the numbers derived from fNN-eNN. Since we do not
know the Mk for an miRNA labeled k, we have to elim-
inate that from any quantity we measure. To do this, we
pick the same value for eNN (CT) in the fNN_eNN set as

NN

N
N

N
N

104.5

104.5

105

105

105

105.5

105.5

105.5105.5

106

106

106

106.5

106.5 107106

TA−AT.m.106b

TT−TG.n.218

293T

NN

N
N

N
N

mES
BA

Figure 4. The two terminal 30 bases of the 50 adapter are the primary determinants of T4-RNA ligase 1 (Rnl1) ligation efficiency. Two distinct sets of
50 adapters, one consisting of adapters with mixed bases in the last four bases (fNNNN) and another consisting of adapters with mixed bases in the
last two bases (fNN), were used to generate a miRNA derived cDNA library for (A) human 293T and (B) mouse embryonic stem cell lines. miRNA
abundance in read counts (dots) were plotted; the fNNNN data were compressed to NN, by combining values for AANN through TTNN for each
NN. The high correlation between the compressed fNNNN and the fNN datasets indicates that the two terminal bases are dominant determinants of
ligation efficiency. There are exceptions shown in red, which are systematic differences (106b, 181 in 293T cell), which we detected in an independent
experiment described in Figure 2 suggesting that this is not a stochastic effect. The naming convention in all our figures is to show the beginning and
end of the sequence followed by an m (for a canonical mature) or n for a non-canonical miRNA sequence followed by the name of the miRNA. Thus
in the left we have a canonical mature hsa-miR-106-b and a non-canonical hsa-miR-218. The high abundance for hsa-miR-106b suggested by the
fNNNN strategy (in contrast to the low values suggested by fNN and other strategies) seems real, as the microarray and RT–PCR results (Figure 9)
are in concordance with the fNNNN values.

Figure 5. Synthetic RNA ligation to 30 adapter is enhanced by using a
pool of 30 adapters with random NN at the 50-end. Two RNA marker
strands, 19 and 24-nt long, were synthesized. The 19-mer ends in
UCGA, while the 24-mer has an extra 5 nt (AAUGU) on the 30-end.
The RNA markers were 50-end-labeled with P32 and then ligated in
duplicate to one of two sets adenylated 30 DNA adapters; one set
consisting of the standard adapter with a 50 CTGT and the se-
cond set consisting of a mixture of adapters that differ from the
standard adapter in having two extra mixed base positions on the 50

side, with the start now becoming 50 NNCTGT. After ligation, the
RNA-DNA products were size fractionated on a 12% polyacrylamide
gel. The 19 nt marker ligates efficiently, irrespective of the adapters used
(lanes 5–8) while the ligated 24-mer product is low in abundance when
the standard adapter is used (lanes 1–2), but is efficiently ligated
(with abundant products) when the mixed-bases adapters are used
(lanes 3–4).
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the 50-end on the 30 adapter in the fNN set. Within each
experiment,we then define,

rkia ¼ mk
ij=m

k
aj ¼ Fij=Faj: ð2Þ

rkia, which is the ratio between the number of miRNA k,
captured by adapters with ends i and a, is now independ-
ent of Mk and it should be identical for the fNN_eNN
(with eNN set at CT) and the fNN sets. We can do a
similar comparison between the fNN_eNN and the eNN
sets. These ratios, derived from independent experiments,
are shown in the fluctuation plot in Figure 7. The agree-
ment is visually striking, with high similarity between
members of a pair. The numbers agree across miRNAs
and across sample types, suggesting a level of universality
for this model. The success of the model points to the
reproducibility of the effects we have observed. Our en-
thusiasm for this model is tempered by the case of
miR-106b, which shows a bias that depends on four

nucleotides at the 30-end of the 50 adapter (Figure 2D
and Figure 4).

Strategy to overcome the ligation biases

Based on all the evidence presented above, we devised the
fNN_eNN strategy, described at the beginning of this
section, to overcome the biases. Figure 8 shows the data
for small RNA from the 293T and mES cells sequenced
using the fNN_eNN strategy. Each microRNA seems to
have a favored fNN-eNN pair that works best, once again
suggesting the need for a pooled adapter approach.
Supplementary Tables S2–S6 show the 50 most
abundant sequences for each experiment in the 293T
samples.

Validity of the fNN_eNN strategy

Our proposed strategy, fNN_eNN, is one that optimally
picks up most sequences, and can help overcome the effect
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of the biases and increase the efficiency of small RNA
sequencing. We have compared data from various
sequencing strategies to qPCR and microarray data
(Figure 9). We can see that the best concordance is for
fNN_eNN against arrays.
Using the fNN_eNN technique, we have identified

several miRNAs in mouse embryonic stem cells and

human kidney-derived 293T cells that are severely
underrepresented in the current published profiles based
on deep sequencing (Table 3 and Figure 10). Thus, we
have established the existence of a pronounced,
sequence-dependent bias in the ligation of 50 and 30

sequencing adapters to miRNAs. Our proposed strategy,
fNN_eNN, will be able to overcome the limitations of the

Figure 8. A radar plot showing the performance of different adapter termini combinations (fNN_eNN), shown outside the circle in blue. The inner
circles represent percent contribution of each adapter combination to a particular miRNA that was sequenced. This plot shows data for the top
miRNA (hsa-miR-20a) in 293T cells and two top miRNAs (mmu-miR-292-3p and mmu-miR-294) from mouse embryonic stem cells. There is large
variation in the efficiency of capture between various combinations of 50 and 30 adapter end modifications. This emphasizes the need for a pooled
strategy in sequencing.
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bias in the RNA-ligase and help make sRNA-seq more
representative of the profiles in the underlying samples.

DISCUSSION

Our experiments (and model) explain the source of biases
observed with sRNA-seq. We have identified and
quantified biases in the functioning of the T4-RNA
ligases (Rnl1, Rnl2) (26,27) through deep sequencing,
and the large numbers of ligated sequences in our

experiments provide a measure of statistical reliability to
our results.

Reasons for biases in the ligase activity

Bacteria, under viral attack, nick their tRNAs to block
translation. T4-phage uses the ligases to repair the nick
(26). Since the nicks are located at specific sequences in
the tRNAs, efficient repair probably favors ligase struc-
tures exhibiting sequence specificity.
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Figure 9. Comparison of sequencing against microarray (A and B) and RT–PCR (C and D) for mES (B and D) and 293T (A and C). There are
outliers, such as miR-106b, which are only captured by the fNNNN strategy, but overall, there is significant correlation between the fNN_eNN
strategy and the microarray data (A) and the fNN_eNN strategy and the RT–PCR data (C), while the fNN sequencing strategy does not give a good
correlation to RT–PCR and array data (B and D).

Table 3. A few examples of miRNAs that show dramatic changes in their ranking, depending on the technique used to sequence them

Rank1 Adapter1 Rank2 Adapter2 Sequence miRNA

41 noNN 10 fNNNN TAAA-AGAT hsa-miR-106b
24 noNN 110 fNN_eNN TAAG-ATAG mmu-miR-18a
4 noNN 10 fNN_eNN TAAA-ATAG hsa-miR-18a
6 noNN 2 fNN_eNN AAAG-GTGT mmu-miR-292-3p
5 noNN 21 fNN_eNN ACTC-CTTT mmu-miR-290-5p
7 noNN 20 fNN_eNN TAAA-GTAG mmu-miR-20a
9 noNN 57 fNN_eNN TAGC-GGCG mmu-miR-16
24 noNN 6 fNN_eNN AAAG-GTGC mmu-miR-291a-3p

In most cases, the qPCR and array data are in concordance with the fNN_eNN data, except in the case of miR-106b, which is more in accord with
the fNNNN data.
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Profiling studies

Our results have important implications for miRNA
profiling studies in cancer (24,28,29) and stem cells
(30–33), that attempt to identify biomarkers for diagnosis
and therapies.
Small changes in the ranking, from say 1 to 2, often

reflect big changes in numbers, which can have important
implications for the kinetics of the reactions mediated by
the miRNA (34).
Of the several mES-specific miRNAs, mmu-miR-292-3p

has two forms, a canonical form and a longer non-
canonical form with an extra A at the 50-end, which
means the two forms have different targets. Thus, it is
important to understand their relative abundances as it
might have important implications for stem cell biology.
In the normal protocol, with the standard adapters, the
canonical form is ranked second, while the non-canonical
form is about one-third as abundant (1 305 991 versus
552 573). In the fNN_eNN strategy, the two are the
highest ranked, with the canonical form ranked first and
the non-canonical form ranked second and about
two-thirds as abundant (3 085 673 versus 2 356 385). The
microarray ranks both as the most abundant miRNAs,
but it cannot reliably distinguish between the two isoforms.

The Model

The ability of a unified model to predict the outcomes of
sample preparations using different adapters suggests that
the effects are not stochastic. The model for ligation bias
seems to suggest that a single set of 50 and 30 adapters
might suffice, with corrections helping generate the ‘real’
profile. This is illusory, since, for every adapter, we see at
least one transcript that seems to be inefficiently ligated.
Such pairs would need large corrections, resulting in

excessive noise, reducing the reliability of the corrected
results. Thus, in applications where it is critical to estab-
lish accurate profiles, using pooled adapters of fNN_eNN
strategy is the best approach. We have made a pursuasive
case for this through our series of experiments.

Another possible approach to testing and deriving par-
ameters in our model is to use an equimolar distribution of
synthetic miRNAs (35). Unfortunately, the miRNA col-
lections do not have the diversity that a truly random set
would have, due to various constraints on the composition
of the miRNA (36). In addition, such libraries require
amplification from small quantities, which leads to
biases. Thus, such experiments need to be done with
truly random collections of small RNA sequences.

fNNNN strategy

The miRNAs, mir-106b and mir-20a are identical at the
first 9 nucleotides on the 50-end. Despite this, mir-106b is
efficiently captured only in the fNNNN strategy by a few
adapters (as we already discussed in Figures 2 and 4), but
the fNN strategy does not capture mir-106b very efficiently.
In contrast, mir-20a is efficiently captured by both the
fNNNN and the fNN strategies. This suggests there
might be other factors such as secondary structures that
could influence the ligation, but no obvious factor could
explain the divergent ligation efficiencies in this case. It is
certainly of biological interest to identify the distinct roles
of the two miRNAs (especially as mir-20a seems to be
abundant in many tissues) and if the inefficiencies in
capturing mir-106b has led to its role being overlooked.

miRNA clusters

It is believed that all members of a miRNA cluster
(miRNAs that are in close proximity, <1 kb apart from
each other) are processed from a single transcriptional
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are underrepresented in noNN. The hsa-miR-18a is overrepresented in the noNN case, where it is ranked 3, the array and qPCR data agree better
with the fNN_eNN results which ranks it much lower [this skew is also seen in the mES samples, but the ranking in the noNN is 22 while the
fNN_eNN is much lower (135)]. In the mES sample, mmu-miR-294 is first and a non-canonical form of mmu-mir-292-3p is second for noNN, while
they switch ranks in the fNN_eNN case, the difference is very significant, because the abundances of the first and the second ranks are about 2-fold
apart, suggesting a strong bias. mmu-miR-290-5p is very high at rank 5 in the case of noNN, it is outside the range of the graph in fNN_eNN, in
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accurate in reflecting the profiles.
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unit, in which case, differential expression patterns within
a cluster implies differential regulation. Thus, accurate
measurement of the relative numbers for members of a
cluster is biologically very relevant.

We can extract numbers for two clusters (miR-106b,
miR-93, miR-25) that we label as 106b cluster.
Depending on the strategy used, the relative amounts
within each cluster are different. For the 106b cluster,
the numbers relative to the miR-106b abundance are
noNN (1.0, 4.8, 1.6) and fNN_eNN (1.0, 9.4, 1.95), and
there is a big change in the relative abundance of miR-93.

Abundance of star sequences

The star sequences are captured only for a small set of
miRNAs, they are usually not stable products of
pre-miRNA processing. In the case of miR-17 in 293T
cells, we find two star forms, the canonical one (*) and a
form with an extra C at the 30-end (*C). The relative ratios
of the star forms (*,*C) versus the mature for different
techniques are fNN_eNN(0.176, 0.2) and noNN(0.0672,
0.23). Thus, the star sequence abundance is strongly de-
pendent on the sequencing method.

piRNA sequencing

piRNAs are small RNAs, 28–32 nt long, that are exclu-
sively expressed in animal gonads. They are involved in
transposon control and germline maintenance. A distin-
guishing feature of primary piRNAs is the bias for a T at
position 1, and a change in this bias indicates piRNA
processing defects. In one experiment, small RNA
libraries were generated from wild-type and mutant
samples using 50 adapters with same ends (TC). The re-
sultant sequence sets showed >80% T-bias. However, gen-
eration of biological replicates from additional mutant
samples, but now using 50 adapters with different
30-ends, resulted in varying T-biases: 73% (for an
adapter ending in GA), 69% (TA) and 57% (AA)
(private communication, Pillai laboratory). This suggests
that a careless choice of adapters can give rise to errone-
ous conclusions. Even comparisons between libraries
generated with the same adapters could be misleading if
different small RNAs in the two libraries have differing
ligation efficiencies, masking changes in relative
abundances.

Practical implications

The practical implications of our studies are as follows:

. Profiling by sequencing needs to be done using pools
of adapter sequences.

. Isomir profiles generated using a single adapter se-
quences need to be revisited.

. Many studies have reported end-modifications of
mature sequences, such as, uridylation (12). The modi-
fications might have been under-(or over-)reported,
because of the biases in the activity of the ligases.

. The isoforms identified as mature in mirBase (37) are
usually the dominant ones, which may reflect the
biases of the profiling methods rather than their
natural biological enrichment.

. Barcoding of samples using adapters, for multiplexing
sequencing, should be done carefully. The barcodes
could be placed either in front of the NN ends on
the 50 adapter, or after the NN on the 30 adapter,
avoiding distortions in the results due to the ligation
biases.

CONCLUSION

This study has proved that RNA ligases derived from
T4-phage exhibit significant sequence specificity in their
activity. The profiles of small RNAs are strongly depend-
ent on the adapters used for sample preparation. In light
of this, the current, popular, sRNA-seq protocols need
revision. We find that a mix of adapters, with different
sequence ends, permits a more accurate estimation of the
amounts of individual miRNA sequences and their
isoforms. The use of RNA ligases in other protocols,
such as oligoribonucleotide circularization (38), should
be reviewed for possible effects of the bias discussed in
this study.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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