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ABSTRACT

Accurate prediction of transcription factor binding
sites (TFBSs) is a prerequisite for identifying cis-
regulatory modules that underlie transcriptional
regulatory circuits encoded in the genome. Here,
we present a computational framework for detect-
ing TFBSs, when multiple position weight matrices
(PWMs) for a transcription factor are available.
Grouping multiple PWMs of a transcription factor
(TF) based on their sequence similarity improves
the specificity of TFBS prediction, which was eva-
luated using multiple genome-wide ChIP-Seq data
sets from 26 TFs. The Z-scores of the area under a
receiver operating characteristic curve (AUC) values
of 368 TFs were calculated and used to statistically
identify co-occurring regulatory motifs in the TF
bound ChIP loci. Motifs that are co-occurring
along with the empirical bindings of E2F, JUN or
MYC have been evaluated, in the basal or stimulated
condition. Results prove our method can be useful
to systematically identify the co-occurring motifs of
the TF for the given conditions.

INTRODUCTION

The ability of every living cell to properly respond to
diverse stimuli depends on the genetic information encoded
in its genome and signaling cascades that activate ap-
propriate transcription factors (TFs) for gene regulation

(1–3). To understand the global network of transcription
for controlling diverse cellular responses, it is important to
identify the regulatory modules that are responsible for
spatial or temporal gene regulation. For this purpose,
diverse integrative tools for genomic analysis of DNA se-
quences, accompanied by information on the transcrip-
tome and interactome, have been actively developed (4).
High-throughput technologies, such as ChIP-chip,

ChIP-PET and ChIP-Seq, allow genome-scale mapping
of epigenetic modification and protein–DNA interactions
in particular genomes (5,6). Integration of accumulated
genome-wide experimental data with DNA sequence in-
formation allows the construction of a map of the tran-
scriptional regulatory circuits encoded in a genome that
can eventually lead to the identification of the regulatory
modules for gene regulation. However, annotating the
functional transcription factor binding sites (TFBS) in
the regulatory modules remains a challenging task (7).
The problem derives mainly from the nature of the
DNA sequences that are recognized by transcription
factors; they are relatively short and degenerate. Further-
more, transcription factors are known to recognize more
than one consensus sequence (8), and similar DNA se-
quences can be recognized by different groups of tran-
scription factors (9).
Because accurate prediction of the putative binding sites

of transcription factors is a valuable tool for understand-
ing transcriptional regulatory networks and mechanisms
of transcriptional control, numerous computational
tools have been generated. The most common method
is the pattern matching approach that uses a position
weight matrix (PWM) (10–13) or Hidden Markov
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Models (HMMs) (14). However, prediction of the putative
TFBS using the predefined PWM suffers from a high rate
of false positive discovery (15). To alleviate this problem,
integration of the heterogeneous information (16), such as
the DNA sequence conservation score (17,18) DNase-I
hypersensitive score (19,20), or nucleosome occupancy
(21) and modification information (22,23), has been suc-
cessfully applied with enhanced prediction performance.
In parallel, approaches using PWM clustering based on

the sequence similarity were proposed. In this method, a
familial binding profile (FBP) is constructed from the
multiple PWMs for each family of transcription factors,
improving the sensitivity of de novo motif discovery algo-
rithms (24,25). However, a FBP ignores the flanking pos-
itions of PWMs that are not aligned but which may be
important for discriminating false positives; hence, this
method can have low specificity in predicting functional
binding sites. An alternative approach is to combine
overlapping TFBSs predicted by the original PWMs be-
longing to the same cluster (15). This program can
increase specificity by removing redundant TFBSs, but
because it is based on the heuristic scoring system, it is
not suitable for comparing scores of overlapping TFBSs.
To overcome these problems, we have recently developed
a motif-based scanning program (26). It searches STAT
TFBS of high affinity scores, using the combined predicted
TFBSs from PWMs that show similar binding specificity
to STAT family members.
In an attempt to construct an efficient computational

tool for predicting TFBSs, we applied the motif-based
scanning program to other transcription factors with
multiple PWMs. A total of 368 transcription factors and
565 PWMs were considered in this study. Finally, TFBS-
scanner was applied to identify the co-occurring cis-motifs
that might function coordinately. The source code of
TFBS-Scanner program is freely available from the sup-
porting webpage, https://sourceforge.net/p/tfbsscanner.

MATERIALS AND METHODS

Analysis of the TF-PWM network

To construct linkages between PWM and its cognate TF,
we manually extracted 368 vertebrate TFs and 565 verte-
brate PWMs information from the ‘Matrix’ and ‘Factor’
database of TRANSFAC professional version 9.4
(Supplementary Table S1A) (11). To map mouse or rat
gene to the human gene identifier, Entrez Gene ID (27)
(from FTP: Gene), ‘HomoloGene’ information (28) (from
FTP: HomoloGene, build63) of the NCBI were used.
Cytoscape 2.7.0 (29) was then used to visualize the TF–
PWM interactions (Supplementary Table S1A); each node
indicates TF or PWM, and edges for pairwise interaction.
A total of 474 PWMs and 368 TFs made up the final
graph, which contains multiple connected components
(CCs) (Supplementary Table S1B). See the ‘TF-PWM net-
work.cys’ or PDF files for each CC in the supporting
webpage for detail view. For protein interactions
between TFs within each CC, a total of 51 837 annotated
PPI information has been extracted from the ‘interactions’

information (27) (from FTP: Gene) of the NCBI.
For detail view, see the ‘PPI in TF-PWM network.cys’
or PDF files for each CC in the supporting webpage.
The number of possible PPI is given by N� (N–1)/2,
where N is the number of TFs in each CC. To compute
the distance between two PWMs, we used the distance
measure proposed by Harbison et al. (30). Given two
PWMs �1,�2 that are already aligned, the distance
measure is defined by:

dð�1,�2Þ ¼
1

W

XW
w¼1

1ffiffiffi
2
p

X4
l¼1

�1,wl ��2,wl

� �2
,

where W is the length of aligned positions. For the
optimal alignment between the two PWMs, we used the
procedure described by Narlikar et al. (21).

Affinity score of a subsequence

To improve the generalization performance of the
observed position count matrices, we transformed each
position count matrix into a position frequency matrix
(PFM) by adding position-dependent pseudo-counts.
We used the statistical method of Rahmann et al. (31)
for position-dependent regularization. For highly con-
served positions, we add very small pseudo-counts
in order to maintain the strong signal. In contrast, we
add relatively large pseudo-counts at poorly conserved
positions, preserving the overall composition of nucleo-
tides of the position count matrix. Given a regularized
PFM �1 2 RW�4, we represent a sequence si as a set
of overlapping subsequences sWij ¼ ðsij, � � � , siðj+W�1ÞÞ of
length W to scan TFBSs by sliding a window of
length W. We assume that a subsequence can be
generated from either the PFM or a background model
�0 ¼ ½�

T
0 , � � � ,�T0 �

T
2 RW�4, where �0 is defined by a

zero-order Markov chain. We used six different back-
ground models from our previous study (26) to capture
the compositional bias of GC content in genomic se-
quences. Then, we converted the regularized PFM into a
PWM � by computing the log-odds scores between the
PFM and a background model, which is given by:

�wl ¼ log
�1,wl

�0,wl

� �
:

We decide whether a given subsequence is generated from
the PFM or the background model based on the sum of
log-odds score:

�ðsWij Þ ¼
XW
w¼1

X4
l¼1

�
�ðl,siðj+w�1ÞÞ

wl :

Following the statistical method of Rahmann et al. (31),
we computed the exact distribution of the sum of log-odds
scores to measure the statistical significance of the
log-odds scores of the subsequences. The exact distribu-
tion can be efficiently computed using the positional inde-
pendence of PWMs and then applying convolution. From
the exact distribution P�0

given the assumption that the
subsequence is generated from the background model, we

e38 Nucleic Acids Research, 2012, Vol. 40, No. 5 PAGE 2 OF 12

https://sourceforge.net/p/tfbsscanner
http://nar.oxfordjournals.org/cgi/content/full/gkr1252/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1252/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1252/DC1


computed the type I sequence error probability �nðs
W
ij Þ of

the log-odds score �ðsWij Þ, which is given by:

�nðs
W
ij Þ � 1� expð�nP�0

ðx � �ðsWij ÞÞÞ:

This error quantifies the probability that at least one
TFBS occurs within a background sequence of length n
[we set n=500 as proposed by Rahmann et al. (31)].
Finally, the affinity score �ðsWij Þ of the subsequence is
defined as �ðsWij Þ ¼ 1� �nðs

W
ij Þ. Note that the affinity

score is not dependent on the length of the PWM.
Therefore, we can directly compare the affinity scores of
different PWMs.

Clustering PWMs

We constructed three different kinds of PWM clusters for
each TF. PWM cluster type 1 is constructed from all
PWMs within the CC to which a query TF belongs.
PWM cluster type 2 consists of all PWMs that are
directly linked to the TF of interest. PWM cluster type 3
consists of high-quality PWMs, which were selected based
on the following procedures. First, each PWM was
assigned a quality score that quantifies how well a given
PWM detects true binding sites over noisy sequences (see
‘Quality score of PWMs’ below). PWMs with low quality
scores (�0.7) were discarded as described previously (26).
Second, the PWM with the highest quality score among
PWMs of PWM cluster type 2 was selected as the ‘repre-
sentative PWM’. Finally, the inter-motif distance between
the representative PWM and the PWMs within the CC
was calculated. PWMs with a distance above the cut-off
value (�0.1653) were removed; the value of the distance
cutoff was chosen as described previously (26). For the
comparison of distance measurements between STAMP
(32) and our used method (26), we tested the significance
of overlap between two sets of top 9 ranked PWMs
excluding the top ranked self PWMs in all 565 PWMs,
from the default setting of STAMP and our PWM
distance measure. The statistical significance was
evaluated by calculating the enrichment P-value based
on the hypergeometric distribution.

Quality score of PWMs

The quality score Qð�1j�0Þ of a PWM �1 quantifies how
well the PWM is separated from a background model �0

(31). We first define the type II error probability of the
log-odds score at the given threshold t, given by:

�ðtÞ ¼ P�1
ðx < tÞ:

The quality score is then defined by:

Qð�1j�0Þ ¼ 1� �nðt
	Þ,

where the threshold t* is such that �nðtÞ ¼ �ðtÞ. The
quality scores of all the PWMs used in this study are avail-
able in Supplementary Table S1A.

Construction of TFBS-Scanner

We reconstructed PWMs from TRANSFAC 9.4 (11) to
evaluate the statistical significance of the predicted TFBS.
Given a PWM cluster for a query TF, the TFBS-Scanner

takes a DNA sequence as input to search for putative
TFBSs of the TF. It then chooses a PWM cluster of the
TF from the pre-compiled library of PWM clusters and
searches all TFBSs of the chosen PWMs at the specified
cutoff value of the affinity scores. Finally, all overlapping
TFBSs of the PWMs are combined into one with the
maximum affinity score.

Z-score of the AUC values

To account for the compositional bias of GC content
within the regulatory regions, we defined the Z-score of
the AUC value as:

zij ¼
AUCij � �i

	i

where AUCij is the AUC value of the ith TF at the jth
ChIP-Seq data set. Here, �i and 	i are the mean and
standard deviation of AUC values of the ith TF among
the 51 ChIP-Seq data sets.

ChIP-Seq data sets used in this study

We compiled 51 ChIP-Seq data sets from the ‘Table
Browser’ of the UCSC genome browser (33) or from
other studies (34–36) (Supplementary Table S2D). To
evaluate the classification performance of the TFBS-
Scanner, we constructed 51 test sets consisting of
positive and negative sets. For a positive set, we used
the binding regions for each ChIP-Seq data set. We
used, as suggested by Whitington et al. (23), the binding
regions defined by the authors if the length of the binding
region is larger than 500 bp. Otherwise, we expanded the
binding regions to 500 bp. A negative set was also con-
structed by randomly sampling nine sequences for each
binding region, following the method of Ernst et al. (16).
The nine negative sequences were sampled from the
non-gapped regions of the same chromosome as the
binding region, excluding any overlapping sequences in
the positive set.

A binary classifier for ChIP-Seq data sets

Given an input sequence si and a PWM cluster �kf g, the
binary classifier for plotting the ROC curve is given by:

fðsij �kf gÞ ¼ meank max j�ðs
Wk

ij Þ,

where Wk is the length of a PWM �k and �ðsWk

ij Þ is the
affinity score of subsequences of the input sequence.

Finding overrepresented motifs by MEME

To find the overrepresented motifs from ChIP-Seq data,
we used the program MEME (37), which is one of the
most popular motif discovery algorithms. We selected
input sequences (500 bp) from the top 100 binding
regions for each ChIP-Seq data set. Among a total of 51
ChIP-Seq data sets, we only considered 36 data sets
released by ENCODE Yale TFBS because they provide
P-values for each binding region. We used MEME with
the following parameters: the distribution of motif occur-
rences: ZOOPS; the number of different motifs: 10;
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the minimum motif width: 10; and the maximum motif
width: 20. From the 10 learned motifs, we chose the one
that was most similar to the representative PWM of
TRANSFAC by visual inspection.

RESULTS

TFBS-Scanner: predicting TFBSs by clustered PWMs

To apply a motif-based scanning program to every TF
with multiple position weight matrices (PWMs), we first
collected the available information of PWMs and their
interactions with cognate TFs. A total of 368 TFs and
565 vertebrate PWMs from the TRANSFAC database
were considered; each PWM was linked to its associated
TFs when the interaction was supported (see ‘Materials
and Methods’ section). The resulting TF-PWM network is
a bipartite graph whose nodes (368 TFs and 474 PWMs)
are linked to each other (Supplementary Table S1A). The
average number of TFs connected to a single PWM was
1.53, and a total of 61 (10.8%) PWMs had only one TF
linkage (PWM:TF=1:1). The V$EBOX_Q6_01 had the
largest connection, with 30 different TFs (Figure 1A).
Multiple PWMs were also found to be connected to

single TFs; the average number of linked PWMs per TF
was 2.35 (Figure 1B).

The TF-PWM network consists of 134 multiple con-
nected components (CCs), defined by the TF-PWM
subgraphs in which any two nodes within the same CC
are connected to each other through one or more edges
(Supplementary Table S1B, ‘TF-PWM network.cys’ in the
supporting webpage). The largest CC, CC-3, is con-
structed with 69 nodes (36 TFs and 33 PWMs) and 98
edges, whereas the smallest one contains 2 nodes (1 TF
and 1 PWM) and 1 edge (Figure 1C). Each CC elicits
distinct connectivity between PWM and TF; the average
number of PWMs linked to TFs and the average number
of TFs connected to PWMs within each CC varies
(Figure 1D).

Using 51 837 annotated protein–protein interactions
(PPI) from the ‘Interaction’ information of the NCBI,
physical interactions between TFs (Supplementary Table
S1C) within each CC have been investigated (See
‘Materials and Methods’ section). We also checked that
80% of these TF–TF interactions overlapped with the
human protein–protein interactions (Supplementary
Table S1D), which were physically identified by the

Figure 1. Properties of the TF-PWM network. Histograms of the number of TFs connected to a PWM (NTF-PWM) (A) and the number of PWMs for
each TF (NPWM-TF) (B) in the TF-PWM network derived from TRANSFAC (11). (C) Average number of the NTF-PWM and NPWM-TF for each
connected component (CC) in the TF-PWM network. Subgraphs of the representative CC (denoted as CC-#) are visualized by Cytoscape (29).
(D) The total number of PWMs and TFs that form each CC are shown. (E) Degree of physical interaction among TFs belonging to each CC. TF–TF
interaction (%) was calculated by dividing the number of the annotated interactions by the total number of possible interactions for each CC.
(F) PWM dissimilarity, the mean value of the pairwise PWM–PWM dissimilarity for each CC.
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Mammalian Two-Hybrid Assay (38). Multiple TFs found
in the same CC are likely to interact with each other when
the total number of TFs in the CC is relatively small
(Figure 1E). In contrast, as the number of TFs in the
CC increases, their physical interactions become weaker.
In the case of CC-1, which consists of 20 TFs, including
the PPAR and NR family members, only 42 protein–
protein interactions have been annotated out of 190
possible interactions (Supplementary Figure S1, ‘PPI in
TF-PWM.cys’ in the supporting webpage). The sequence
similarity among multiple PWMs in the same CC was then
measured. Interestingly, DNA sequences of the PWM
within each CC were quite similar, which was not signifi-
cantly affected by physical interactions between TFs in the
same CC (Figure 1F). These data indicate that the TFs in
the same CC might be able to recognize similar DNA
sequences.

Analysis of the TF-PWM network clearly shows that
most of the TFs are connected to multiple PWMs.
Therefore, to examine the effect of PWM clustering on
the efficiency of TFBS prediction, we compared three dif-
ferent types of PWM clusters (Figure 2A, Supplementary
Table S2A-C; see ‘Materials and Methods’ section). The
TFBS-Scanner takes a DNA sequence as input to search
putative TFBSs of any given TFs (Figure 2B). For each

query TF, TFBS-Scanner searches a pre-compiled library
of the TF-PWM network and loads multiple PWMs for
each cluster type. Using the selected set of PWMs,
TFBS-Scanner screens the query DNA sequence for
TFBSs with affinity scores higher than a pre-defined
cut-off value. In the end, overlapping sites among pre-
dicted TFBSs are combined to calculate the maximum
affinity score.

Validation

To examine the efficacy of TFBS-Scanner, we used 51
genome-wide ChIP-Seq data sets analyzing 26 vertebrate
TFs (Supplementary Table S2D). For each ChIP-Seq data
set, the positive (derived from the peak regions) and the
negative (background) set of DNA sequences were
prepared (see ‘Materials and Methods’ section). The per-
formance of TFBS-Scanner was evaluated based on the
standard receiver operating characteristic (ROC)
analysis, which plots a ROC curve by varying the thresh-
old of the output of a binary classifier. We designed a
binary classifier to score each input sequence by averaging
the maximum affinity scores of subsequences among the
given PWM cluster (see ‘Materials and Methods’ section).
To quantify the performance, the area under the ROC
curve (AUC) was computed to range from 0 to 1 (for

Figure 2. An overview of TFBS-Scanner. (A) Diagram of the PWM cluster types used in this analysis. For each query TF, PWM cluster type 1 (left)
uses all PWMs that are connected in CC, PWM cluster type 2 (middle) uses PWMs that are directly linked to the query TF, and PWM cluster type 3
(right) uses PWMs that have a quality score and a similarity value higher than a threshold level. Selected PWMs for each PWM cluster type are
marked by a gray filled circle. (B) Work-flow of TFBS-Scanner. It searches for the putative TFBSs of the query TF (i.e. TFAP2A) in a given DNA
sequence. The input DNA sequence is searched to mark putative TFBSs using the selected PWMs, which depends on the chosen PWM cluster type.
The predicted TFBSs are combined and accumulated affinity scores are calculated.
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Figure 3. Comparison of the TFBS prediction tools. (A–F) Performance comparison between PWM cluster type 2 and PWM cluster type 1 (A),
PWM cluster type 3 (B), single representative PWM (C), single de novo motif (D), regulatory motif from SwissRegulon (E) and FAM from JASPAR
(F). To directly compare the prediction performance between methods, the AUC (Area under curve of an ROC curve) was calculated using the 51
ChIP-Seq data sets (Supplementary Table S2D). (G) Performance comparison of TFBS-Scanner to other conventional prediction tools. A box plot
shows the AUC values from each tool for the tested ChIP-Seq data sets. P-values were calculated using paired t-test. (H) AUC scores of PWM
cluster type 2 were compared to randomly generated PWM cluster, and the empirical P-values were shown as a scatter plot. (I) Performance
comparison between GBP and PWM cluster type 2. (J) Performance of the integrated analysis (PWM cluster type 2 plus GBP) was compared to
GBP alone or representative PWM plus GBP.
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perfect classification). Because a classifier randomly
guessing the class label of an input has an AUC value of
0.5, AUC values less than 0.5 have no practical meaning.

Of the 26 TFs tested, PWM cluster type 2 performed
better than types 1 and 3 (Figure 3A and B). In addition,
prediction efficiency of PWM cluster type 2 was higher
than that of single representative PWM (Supplementary
Table S2A–C, Figure 3C). Since PWMs were originally
built using a limited number of experimentally verified
TFBSs, the number of the real TFBSs used to create
each PWM is usually biased. It raises the concern that
not every PWM might be able to represent real binding
in vivo. Therefore, we built the single PWMs from the
ChIP-Seq data set using the de novo motif discovery algo-
rithm MEME (37), and compared the AUC values of the
derived PWMs with that of PWM cluster type 2
(Figure 3D). It is noteworthy to mention that the dissimi-
larity value of the clustered PWMs of TFs used in our
analysis was significantly lower than all PWM clusters,
which might contribute to enhanced TFBS prediction
(Supplementary Figure S2A). To evaluate the distance
measure which we used for PWM similarity calculation,
we compared results from STAMP (32) and our used
method by calculating the enrichment P-value based on
the hypergeometric distribution (Supplementary Figure
S2B, See ‘Materials and Methods’ section). We observed
little differences between the two distance measures.

To evaluate the performance of our PWM clustering
methods, we then compared the efficiency of PWM
cluster type 2 to other PWM clusters provided by
SwissRegulon (39) (Figure 3E), or by the JASPAR
FAM database (40) (Figure 3F). The PWM cluster type
2 showed significantly improved performance compared
to the SwissRegulon (P< 0.0001) or to the JASPAR
FAM database, which provides 11 FBPs based on the
structural classification of TFs (P< 0.0063; Figure 3G).
To test the significance of clustering PWMs, we then
generated random clusters for each ChIP-Seq data set
by selecting the same number of PWMs at random
(simulated by 20 000 times), and computed empirical
P-values of AUC scores. The PWM cluster type 2
showed significant AUC scores for most of the tested
ChIP-Seq data sets except for data sets with low AUC
scores (Figure 3H). These results indicate that the PWM
clustering is useful to improve the efficiency of TFBS
prediction.

Both experimental and computational analysis (16)
recently reported that TFBSs are preferentially located
in the genomic regions scored by general binding prefer-
ence (GBP). It uses integrated heterogeneous data of epi-
genetic (22,23), DNase-I hypersensitivity (19,20), and
sequence conservation among species. Peak loci for most
of the tested ChIP-Seq data sets were largely located in the
GBP scored regions with higher AUC score (Figure 3I).
By combining the affinity score of TFBS-Scanner with the
GBP score, prediction performance was significantly
improved (Figure 3J), indicating that integration of the
PWM clustering method along with heterogeneous
motif-independent data set will be more powerful for
TFBS prediction.

Searching co-occurring cis-motifs using TFBS-Scanner

Because it is of great interest to understand the TF
complexes that cooperatively act in the promoter or
enhancer regions (5,41), numerous computational tools
have been generated to model representative multiple
motifs or regulatory modules that present in the
promoter sequences that elicit correlation with their gene
expression (42–47). Therefore, we asked whether
TFBS-Scanner could be used to determine co-occurring
motifs of TFs using ChIP-Seq information, without inte-
gration of the gene expression data. For this purpose, we
developed a simple but effective computational tool based
on clustered PWMs.
If TF-Y binding to DNA is sequence specific and it

cooperatively acts with TF-X, then a statistically signifi-
cant portion of the binding sites for TF-Y will appear in
the binding regions of the TF-X. Based on this assump-
tion, we searched for binding sites that frequently
co-occurred in the ChIP-Seq data set of TF-X. For this
purpose, the AUC values for 368 TFs in the TF-PWM
library were first computed using 51 ChIP-Seq data sets.
However, due to the compositional bias of GC contents in
the regulatory regions (48), the higher mean percentage of
GC in each PWM cluster arbitrarily shows higher AUC
values (Figure 4A). As a result, PWMs with high GC
content were found to be highly enriched for most of the
ChIP-Seq data sets (Figure 4B). To solve this problem,
the AUC values were converted to a Z-score, where the
sample mean and standard deviation of the AUC values
are computed for each TF among a total of 51 ChIP-Seq
data sets. The Z-score was not affected by the GC contents
of the PWM clusters (Figure 4C and D).

Modeling co-occurring cis-motifs that are conserved in the
diverse cell type: a case of E2F family

Family members of the E2 factor (E2F) family play
diverse roles in the transcriptional regulation of cellular
proliferation and differentiation. Because E2F family
members share a high degree of structural and biochem-
ical similarity and recognize similar E2F DNA sequences
(49), it was of interest to identify the co-occurring motifs
in the E2F occupied genomic loci. For this purpose, four
ChIP-Seq data sets were analyzed in the diverse cellular
system using either E2F1 or E2F4 (Supplementary Table
S2D). In every assay, binding sequences specific for E2F
were highly enriched at the peak loci, as determined by
TFBS-Scanner using PWM cluster type 2 (Figure 5A). To
identify the co-occurring DNA motifs in the E2F binding
regions, Z-scores of the 368 TFs were then calculated
(Figure 5B and Supplementary Table S3). As expected,
TFBSs of the E2F1, E2F2, E2F3, E2F4, E2F5 and
E2F7 exhibited the highest Z-score and the distribution
of the normalized cumulative affinity score of these sites
in the binding loci overlapped (Supplementary Figure S3).
Along with E2F, PWMs of distinct TFs, such as AHR,
ARNT, ETF, HIC1, EGR, NRF1, SP1 or TEAD, were
calculated to have higher Z-scores than the cut-off value.
Although binding sequences for these TFs were quite dis-
similar to that of E2Fs (Supplementary Figure S4), distri-
bution patterns of the normalized cumulative affinity
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Figure 5. Co-occurring motifs of E2F1 and E2F4. (A) The AUC (Area under curve of an ROC curve) for the E2F1 and E2F4 ChIP-Seq data sets
using different PWMs or PWM clusters are shown. (B) StarGlyph Z-score distribution of the binding sites for 368 TFs in the E2F ChIP peak loci,
where the TFs are listed in alphabetical order.+1Z-score is indicated in the outer circle, and zero Z-score in the inner circle. The query TF is marked
by bold characters and an asterisks. (C) Using the E2F4 ChIP-Seq data set, the occurrence of the predicted TFBSs with high Z-scores are shown
along with E2F4 TFBS in the E2F4 binding region. The affinity scores of the predicted TFBSs were normalized by dividing the sum of the affinity
scores along the defined region (–1000 bp to approximately +1000 bp).

Figure 4. Conversion of AUC to Z-scores. (A) Scatter plot showing the positive correlation between the mean AUC values and the mean GC
content of PWM clusters (PWM cluster type 2). For each PWM cluster, the mean value of the AUC is taken over the 51 ChIP-Seq data sets. The
mean GC content of a PWM cluster is computed by averaging the sum of the frequency of ‘G’ and ‘C’ over all the PWMs belonging to the PWM
cluster. Red is the best-fit linear regression line with a positive slope. (B) Cluster analysis of 368 PWM clusters (PWM cluster type 2) from 51
ChIP-Seq data sets using AUC values. (C) Scatter plot of the mean Z-score and the mean GC content of PWM clusters. (D) Cluster analysis of 368
PWM clusters (PWM cluster type 2) from 51 ChIP-Seq data sets using Z-scores.
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score of these TFs in the ChIP-Seq peak loci were quite
similar to that of E2F (Figure 5C), indicating that these
TFs might act in conjunction with E2F for target gene
regulation. In support of this prediction, functional inter-
actions between E2F and AHR, ARNT, HIC1, EGR, SP1
and SP3 for transcriptional regulation have been previ-
ously reported (50–56). In addition, TFBSs for NRF1,
TEAD2, and ETF are known to co-occur with that of
the E2F family in their target genes (57,58).

Modeling signal-specific co-occurring cis-motifs: a case
of JUN family

We next asked whether our method could be used to
identify signal-specific co-occurring motifs. For this
purpose, we chose four sets of ChIP-Seq data assayed
with JUN in K562 cells after IFNa or IFNg stimulation
(Supplementary Table S2D). JUN is a basic region-leucine
zipper protein and belongs to the family of AP-1, which
consists of JUN, FOS, MAF and ATF subfamilies (59).
Activated AP-1 recognizes and binds to TGA(C/G)TCA
with high affinity or TGACGTCA with low affinity, and
acts as a regulatory factor of diverse cellular processes,
such as proliferation, transformation and apotosis (59).
Cooperative interactions between AP-1 and other TFs in
the promoter have been suggested as the regulatory mech-
anism of target gene specificity governed by AP-1 (60).

For un-stimulated K562 cells, JUN binding loci did not
possess prominent JUN binding sequences, as judged by
conventional SwissRegulon or by TFBS-Scanner using
clustered PWMs (Figure 6A). However, upon stimulation

with IFNa, binding sequences for JUN became dominant
in the peak loci of JUN ChIP. Along with JUN, motifs for
BACH1, FOS, GATA, MAF or NFE2 also exhibited sig-
nificantly higher Z-scores than the cut-off value, which
became prominent after stimulation (Figure 6B
andSupplementary Table S3). The distribution of the
normalized affinity scores of these TFs overlapped with
that of JUN, and their co-occurrence became stronger
after stimulation with IFNa (Figure 6C). In the JUN
ChIP-Seq data sets for IFNg stimulation, major
co-occurring motifs were very similar to that of IFNa
stimulation (Supplementary Table S3). These data
suggest that JUN might coordinate with BACH1, FOS,
GATA, MAF or NFE2L2 for gene regulation specific for
IFNg or IFNa� In support of this prediction, inter-relation
between the AP-1 motif and cis-element of GATA or NFE
have been previously reported (61–63). Similar to JUN,
binding sites for MYC were significantly enriched at the
peak loci of the MYC ChIP-Seq after IFNa or IFNg
stimulation, along with co-occurring motifs of
NHMHB2/3, HAND1/2, HMX, MAX, MYB, USF1/2
or XBP1 (Supplementary Figure S5). To evaluate the per-
formance of clustered PWM over single PWM, we finally
compared the Z-score of PWM cluster type 2 with that of
the representative PWM (Supplementary Figure S6).
In the both E2F1 and JUN ChIP-Seq data set, PWM
clustering usually showed better performance than the
representative PWM. These results suggest that our stat-
istical framework using clustered PWMs is useful at iden-
tifying co-occurring motifs of TFs.

Figure 6. Condition specific co-occurring motifs of JUN. (A) The AUC (Area under curve of an ROC curve) for the JUN ChIP-Seq data sets using
different PWMs or PWM clusters are shown. (B) StarGlyph distribution of Z-scores for 368 TFs from the JUN ChIP-Seq data sets for basal status
or IFNa stimulation. (C) The motifs for JUN and other TFs with high Z-scores are enriched at the center of the JUN ChIP peak loci, which became
evident upon stimulation.
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DISCUSSION

The code for gene regulation is widely accepted to be
encoded in the four-letter alphabet of the genome, but
decoding the rules for the transcription regulatory
circuits that govern diverse cellular responses remains
challenging. To reconstruct the transcriptional regulatory
network, an important intermediate step is to efficiently
predict the binding sites of TFs in the regulatory regions.
In this article, we developed a computational framework
for predicting the putative TFBSs for a group of TFs for a
DNA sequence of choice. Our approach uses modified
PWMs based on a previous statistical framework (26)
and clustered PWMs based on their sequence similarity
and quality. The TFBS-Scanner utilizes 368 TFs and 565
PWMs data sets, which are available in an up-to-date
public database.
The performance of most conventional TFBS predic-

tion tools heavily depends on the selection of a PWM
that represents a genuine motif for a given TF.
However, without a reference set of binding for TFs, it
is impossible to identify the best-performing PWMs from
pre-existing pools. Furthermore, accumulating evidence
suggests that a number of TFs can be associated with
more than one binding motif, and a single PWM can be
recognized by functionally distinct TFs (5,8). Therefore,
conventional motif scanning programs, which assume a
single PWM for a single TF, have a fundamental
problem. To maximize prediction efficiency, we strategic-
ally developed a quality scoring and clustering tool for
PWMs. Using the genome-wide ChIP binding peaks,
we were able to identify the set of the reference PWM
for a given TF and a PWM clustering type that maximizes
prediction efficiency. Findings of this article support
the idea that approaches combining multiple PWMs
associated with a given TF outperform algorithms
relying on a single PWM. In addition, it is noteworthy
to mention that integration of the GBP score (16)
further improved the prediction efficiency of the TFBS-
Scanner.
In general, there is growing evidence to support the view

that a single motif cannot explain all in vivo binding
regions (5). In addition, in vitro binding of the purified
TF protein demonstrates that it can recognize more than
one species of the binding motifs (8). Therefore, using a set
of qualified PWMs rather than a single PWM to identify
in vivo binding regions should be more effective and prac-
tical. However, it is worth noting that our clustered
PWMs cannot detect binding regions of TFs that are in-
directly bound or that have bindings dependent on other
factors that act in neighboring regions. Although a TF has
the ability to recognize DNA sequences directly, not every
TF solely depends on direct interaction with DNA se-
quences in vivo. Instead, protein-aided recruitment by
the TF adjacent to other TFs may facilitate the formation
of stable transcription regulatory complexes (41,64,65). In
recent reports, overlapping localization on the genome
loci and combinatorial interactions among TFs were
strongly suggested as one of the features that explains
complex transcriptional regulation of tissue or condition
specificity (66,67).

To identify co-occurring motifs of gene regulation,
several approaches have been proposed. Identification
tools of the enriched motifs from ChIP-chip or
ChIP-Seq data sets can be grouped into two classes
based on their underlying assumptions. The methods be-
longing to the first class are based on the assumption that
a true motif is located at the centers of the binding regions,
whereas insignificant motifs are uniformly distributed
(68). However, these approaches require a cutoff to scan
the TFBSs of a predefined motif. The second class, which
is based on the assumption that a true motif should be
overrepresented in the binding regions compared to back-
ground sequences, overcomes the drawback of the cutoff
for scanning TFBSs by using standard ROC analysis
(69,70). Although these approaches can reduce the per-
centages of false positives by taking into account the GC
content of background sequences, it could actually filter
out a true GC-rich motif. In contrast to these approaches,
our method randomly selects the background sequences
without considering the GC content, and then eliminates
false positive GC-rich motifs by normalizing the AUC
scores. Because our method utilizes Z-scores to select stat-
istically significant motifs, its efficiency depends on the
size of the ChIP-Seq data sets to approximate the exact
distributions of the AUC scores of each TF.

The genome encodes the blueprints of every possible
transcriptional regulatory network. A condition-specific
regulatory network of transcription emerges from
multiple protein–protein and protein–DNA interactions,
activated by specific signaling pathways. Our computa-
tional approach provides the groundwork to build a
map of these potential networks. Accompanied by
genome-wide information of all protein–protein and
protein–DNA interactions, our program will serve as a
helpful tool to reconstruct the functional network that
governs specific cellular responses.
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