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Abstract

Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and 

lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS 

patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The 

current therapies of pSS are merely short–term symptomatic relief and can’t provide effective 

long–term remedy. Extracellular vehicles (EVs) are nano–sized lipid bilayer–delimited particles 

spontaneously released by almost all types of cells and carrying various bioactive molecules 

to mediate inter–cellular communications. Recent studies found that EVs from salivary gland 

epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs 

and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. 

Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by 

modulating immune responses. This review summarizes recent findings in roles of EVs in pSS 

pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research 

directions.
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1. Overview of primary Sjogren’s syndrome

Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease mainly affecting 

salivary and lacrimal glands with lymphocytic infiltration, B cell hyperactivity, and 

autoantibody formation [1,2]. The long–term hypofunction of these exocrine glands leads 

to dry mouth (xerostomia), dry eyes (xerophthalmia), and consequent symptoms such as 

dental caries, periodontal disease, taste impairment, and difficulties in speech, swallow, 

and sleep [3,4]. Systematic symptoms of pSS include common fatigue, musculoskeletal 

pain, fever and lymphadenopathy, as well as less common pulmonary, renal and dermal 
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disorders [5–7]. Due to the critical role of saliva in oral health, quantitative and qualitative 

changes in saliva are associated with discomfort and drop of life quality [8]. Therefore, 

oral and dental problems are common in pSS patients, including oral mucosa atrophy, 

oral ulcers, fungal infections, glossitis, halitosis, chemosensory abnormalities, and dentures 

wearing difficulties [9–11]. Sjögren syndrome (SS) could be consequences of other systemic 

autoimmune diseases such as systemic sclerosis (SSc), systemic lupus erythematosus (SLE) 

and rheumatoid arthritis (RA). In these cases, SS is defined as secondary SS (sSS) with 

clinical, serological and pathological features different from pSS [12]. Therefore, this review 

focuses on pSS.

Serum autoantibodies, anti–Sjögren’s–syndrome–related antigen A (anti–SSA/Ro) and anti–

SSB/La, can be detected in 50–70 % of pSS patients [13]. The anti–SSA antibodies 

recognize two cellular proteins with molecular weights of approximately 52 and 60 kD, 

i.e. Ro52 and Ro60. Ro 52, also known as tripartite motif–containing protein 21 (TRIM21), 

is a ubiquitin E3 ligase that targets cytosolic virus–antibody complexes for degradation; 

while Ro60, also known as TROVE2, is a RNA–binding protein. SSB, also known as 

Lupus La protein, is involved in diverse aspects of RNA metabolism. Anti–SSA and –

SSB antibodies are also found in patients with SLE and may be present in patients with 

other autoimmune diseases, including systemic sclerosis and RA [14]. Therefore, secretory 

functions of salivary glands and tear glands need to be tested for pSS diagnosis. For pSS 

patients negative for these autoantibodies, labial salivary gland (LSG) or minor salivary 

gland biopsy (MSGB) is necessary for diagnosing [14]. Besides serum autoantibodies, the 

increase of serum Type I interferon (I–IFN) is another remarkable SS manifestation and the 

sources of I–IFN include DCs, peripheral blood mononuclear cells and CD14+ monocytes 

[15]. Serum levels of multiple other proinflammatory cytokines such as TNF–α, IL–17A, 

IL–6 also increased in pSS patients [16–18]. IL–17A is mainly produced by T helper 

17 (Th17) cells [19,20], while the increased IL–6 during SS pathogenesis promotes Th17 

differentiation and results in differentiation of B cells into plasma and memory cells [21–

24]. However, the changes of these pro–inflammatory cytokines are not specific for pSS and 

found in various autoimmune diseases.

In saliva of pSS patients, S100A proteins related to IL–12 production, proteins vital for 

innate major histocompatibility complex class I (MHC class I) cellular regulation such 

as Neutrophil gelatinase–associated lipocalin (NGAL) and T–cell activation (CD44), β–2 

macroglobulin (B2M) correlated with lymphocyte infiltration in labial salivary glands, and 

IgM and IgA autoantibodies against salivary protein 1 (SP–1), parotid secretory protein 

(PSP) or anti–carbonic anhydrase 6 (CA6) are at significantly higher levels than in non–SS 

patients [25–27]. Further studies are warranted to determine diagnostic and prognostic value 

of these salivary biomarkers.

2. Overview of extracellular vesicles

Extracellular vesicles (EVs) are nano–sized lipid bilayer–delimited particles spontaneously 

released by almost all types of cells and found in almost all tissues and biological fluids [28–

30]. Based on their origin, EVs are classified as exosomes formed by the endosomal route, 

microvesicles (MV) formed by direct outward budding from cell membrane, and apoptotic 
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bodies released by dying cells [31,32]. Exosomes are the smallest EVs with diameters of 

40–100 nm and also termed as small EVs (sEVs); the size of MVs typically range from 100 

to 1000 nm in diameter, while apoptotic bodies are with size from 50 to 5000 nm in diameter 

[33–35].

EVs contain various biomolecules including nucleic acids (ssDNA, genomic DNA, 

microRNA, tRNA, non–coding RNA, circular RNA), lipids (phosphoglycerides, 

cholesterol), proteins (integrins, heat shock proteins, Alix, TSG101, tetraspanins, cytokines, 

and growth factors) [36–38]. The unique characteristics of EVs such as high stability 

and low immunogenicity make EVs a reliable vehicle to deliver these biomolecules into 

recipient cells [39,40]. Therefore, EVs play essential roles in various biological activities 

including intercellular communications, immune modulation, angiogenesis, inflammation, 

and transportation of genetic signals and biomolecules [41–44]. This review will focus 

on immune modulatory effects of EVs secreted by immune cells such as T and B cells, 

macrophages [45], dendritic cells (DCs) [46] and natural killer cells (NKs) [47] and 

non–immune cells [1,48]. Moreover, we will review recent findings on EVs for the early 

diagnosis of autoimmune disorders such as SS before autoantibodies including antinuclear 

antibody (ANA), anti–Ro/SSA and anti–La/SSB [49–51] are detectable in later course of the 

disease [52,53].

Corresponding to SS, there have been also studies reporting the increasing amount of 

circulating EVs in different autoimmune diseases such as RA [54], SSc [55] and SLE [56]. 

The miRNA content of EVs have shown alterations in autoimmune disorders patients and 

miRNA content of salivary–derived EVs in SS patients is an example for that [57–59]. 

Hence, the detection of Salivary EVs and their miRNA cargo alterations in SS patients has 

acquired increasing interest in recent years and therefore, in this review, we will discuss 

about SS pathogenesis, the role of salivary EVs and derived miRNA in the diagnosis and 

treatment of this autoimmune disorder.

3. EVs and pSS pathogenesis

Although SS etiology remains unclear, low estrogen levels and dihydrotestosterone defects 

partially elucidate much higher pSS incidence in women. This hormonal imbalance could 

result in apoptosis of salivary gland epithelial cells (SGECs) and the release of SS–specific 

autoantigens such as a–fodrin, SS–A and hy1–RNA [60]. These apoptotic cells and their 

DNA/RNAs activate multiple toll–like receptors (TLRs) primarily expressed in human 

epithelial and immune cells [61] to provoke inflammatory responses through type I–IFN 

pathway induction in the exocrine glands of SS patients [60]. In this process, apoptotic 

bodies formation and immune tolerance impairment are essential for the emergence of 

autoinflammation in SS patients [60,61]. Elevated levels of EVs have been identified in 

multiple autoimmune disorders including pSS [52,62,63]. During the disease progression, 

emergence of damage–associate molecular patterns (DAMPs) such as DNAs and RNAs 

activate pattern–recognition receptors (PRRs) such as TLRs to trigger autoinflammation 

[62,64].
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DNAs and RNAs delivered by apoptotic bodies and other types of EVs are processed in 

endosomes of recipient cells and activate multiple endosomal TLRs [61,62]. During pSS 

progression, TLR–7/8 signaling is activated by single strand RNA (ssRNA) including GU–

rich microRNAs such as miR–21 and let7 miRNAs abundant in EVs [65]. The activation 

of TLR–7/8 signaling triggers two important inflammatory–related downstream pathways, 

nuclear factor–κB (NF–κB) and the interferon–regulatory factors (IRFs) that induce type I 

IFN, IFN–α and IFN–β responses [65,66]. Furthermore, TLR–7 signaling pathway enhances 

SS progression through MYD–88 pathway positively correlated to CXCR5, CXCL13, 
LT–α and TNF expression [67]. In the NOD.B10 mouse model of pSS, TLR–7 agonist 

Imiquimod administration significantly promoted pSS progression [68]. In SGECs from 

pSS patients, TLR–7 signaling promoted the presentation of autoantigens Ro52/SS–A 

and TRIM21 by MHC class I, which likely contributes to the progression of pSS [69]. 

Secondly, the stimulation of endosomal TLR–3 by double strand RNA (dsRNA) also 

induces type I interferon (IFNβ) and inflammatory cytokines such as IL–6, IL–1β and CCL5 
in submandibular gland (SMG) tissues of pSS patients [70–72]. In the NZB/WF1 mouse 

model of pSS, the administration of TLR–3 agonist accelerated the development of SS–like 

disease [70–72]. In SGECs from pSS patients, TLR–3 agonist induced apoptosis [73] and 

enhanced the expression of autoantigens Ro/SS–A and La/SS–B [74].Moreover, exosomes 

produced from SGECs of pSS patients contain autoantigens Ro/SSA, LA/SSB, and Sm 

ribonucleoproteins and may mediate the presentation of these autoantigens via surface 

receptors or antigen–presenting cells (APC) [75]. Plasma exosomes from pSS patients 

contain epithelial cell–derived proteins involved in ferroptosis, suggesting that ferroptosis 

may be closely related to SS epithelial cell lesions [76]. Ca2+ and cAMP signaling pathways 

regulate the secretion of enzymes and fluids by salivary glands. Exosomes from B cells 

of pSS patients can transfer an EBV–specific microRNA (EBV–miR–BART13–3p) to 

SGECs, which impairs salivary gland function through targeting the Ca2+ sensor stromal 

interaction molecule 1 (STIM1) [77]. Exosomes from T cells of pSS patients can transfer 

miR–142–3p to SGECs, down–regulate key elements of intracellular Ca2+ signaling and 

cAMP production, and consequently impair the secretory function of SGECs [78].

4. Diagnostic values of plasma and salivary EVs and their cargos for pSS

In diagnosed pSS patients, around 40 % were positive for histopathology but negative 

for SSA/SSB autoantibodies [79]. The salivary gland biopsy requires trained professionals 

and its interpretation can be challenging. Therefore, the lack of serological markers in 

so many pSS patients has encouraged researchers to investigate for novel minimally 

invasive diagnostic biomarkers [80]. Since EVs and EV–associated miRNAs and proteins 

play important roles in pSS pathogenesis, they are promising candidates of such early 

diagnostic biomarkers. In the NOD mouse model of SS, small RNA deep sequencing 

identified a unique miRNA signature in serum exosomes including miR–127–3p, miR–409–

3p, miR–410–3p, miR–541–5p, and miR–540–5p, which dysregulate pathways involved 

in inflammation [81,82]. In plasma of pSS patients, prothrombinase capture and flow 

cytometry assays indicated that levels of total platelet and leukocyte microparticles all 

significantly increased, while the increase of platelet–derived microparticles is accompanied 
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with the increase of platelet activation markers, sCD40L and sCD62P, highlights platelet 

activation in pSS [52].

Chronic autoimmune diseases generally cause endothelial damage, while circulating 

endothelial microparticles (CD31+CD42− microvesicles) greatly increased in pSS patients 

with respect to healthy controls, which directly correlated with disease duration 

from symptoms and diagnosis [52,83]. In a more recent study using size exclusion 

chromatography (SEC) and flow cytometry, specific plasma EV sub-populations derived 

from neutrophils, endothelial, and epithelial cells were found increased in pSS patients 

compared to healthy donors and patients with SLE; consistently, plasma EVs from 

pSS patients showed a proteomic signature featured with neutrophil–, epithelial–, and 

endothelial–related proteins, such as integrin alpha M (ITGAM), olfactomedin–4 (OLFM4), 

Ras–related protein RAB10, and CD36 [84].

Isolating EVs from plasma or serum is challenging mainly due to high levels of proteins 

and lipoproteins associated with EVs [85,86]. The absence of lipoproteins and low level of 

proteins in saliva make it an attractive source of EVs as biomarkers for various disorders 

such as autoimmune diseases, cancer and brain injuries [85,87–90]. Moreover, saliva is an 

easily accessible biological fluid for EV isolation due to convenient, inexpensive, and safe 

collection method [85,91,92].

Saliva EVs and miRNAs have been isolated from pSS patients and showed significant 

differences from non–pSS controls [58,80]. In EVs isolated from saliva of pSS patients with 

SEC, liquid chromatography–mass spectrometry (LC–MS) analysis identified biomarkers 

critical for activation of the innate immune system (SIRPA and LSP1) and adipocyte 

differentiation (APMAP) [93]. Reverse transcription–quantitative polymerase chain reaction 

(RT–qPCR) analyses of whole saliva showed that saliva miRNA profile of pSS patients 

is different from non–pSS controls with significant downregulation of the miR–17 

family; moreover, 9 saliva miRNAs correlated significantly with salivary flow rates 

and histopathology; therefore, this saliva miRNA signature, especially the simultaneous 

downregulation of miR–17–5p and upregulation of let–7i–5p, could be considered as 

specific diagnostic biomarkers of pSS [94]. Since small RNAs including miRNAs are 

enriched in EVs, Cross et al. isolated EVs from pooled saliva of pSS patients or healthy 

controls with SEC and then isolated EV–RNAs for microarray analysis. This study revealed 

that saliva EV tRNAs (transfer RNAs), particularly tRNA–Ile–AAT–2–1, were greatly 

downregulated in pSS patients, which might be a potential diagnostic biomarker for pSS 

[95]. This study also identified one miRNA (MIR6870) significantly downregulated in saliva 

EV of pSS patients.

Since small RNAs are more enriched and more representative of the local environment in 

saliva EVs compared to whole saliva, the former may provide a superior diagnostic oral 

liquid biopsy than latter. However, current evidence is still insufficient to show that EVs or 

EV–miRNAs can be used as reliable markers of pSS. One major challenge is the high cost 

and low yield of current EV isolation approaches such as ultracentrifugation and SCE. The 

development of more efficient and affordable EV isolation approaches such as microfluidic 

technology is promising to overcome this hurdle [96].
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5. pSS treatment using EVs

pSS has long been an orphan disorder since no therapy has demonstrated to be really 

effective, and current therapeutic management for pSS is mainly based on the symptomatic 

treatment of sicca symptom-atology and a variety of immunosuppressive agents for systemic 

features [97]. Mesenchymal stem cells (MSCs), multipotent stem cells isolated from various 

tissues, can modulate immune responses through paracrine effects. In preclinical studies and 

a few small clinical trials, allogeneic but not autologous MSCs alleviated pSS after systemic 

infusion [19,98]. However, the clinical application of MSCs is hindered by their high 

cost, variations, and safety concerns. EVs from MSCs showed similar immune–modulatory 

properties and appear more feasible for clinical applications than live cells.

EVs from different sources of MSCs showed similar therapeutic effects on pSS but the 

underlying mechanisms appear different. In an experimental Sjögren syndrome (ESS) mouse 

model induced by immunization with salivary gland proteins, the intravenous injections of 

exosomes (Exo) derived from bone marrow MSCs or olfactory ecto–MSCs (OE–MSCs) 

significantly improved saliva flow rate, and OE–MSC–Exos also significantly decreased 

serum levels of autoantibodies, which is achieved through the restoration of impaired 

immunosuppressive function of myeloid–derived suppressor cells (MDSCs) by OE–MSC–

Exo–secreted IL–6 [99,100]. Notably, the immunosuppressive function of MDSCs is also 

mediated by EVs, and the intravenous injection of EVs from tumor–induced functional 

MDSCs into abovementioned ESS mice significantly attenuated the progression of ESS 

and markedly reduced the percentage of germinal center B cells, which is likely mediated 

by targeting Bcl–6 with miR–10a–5p in EVs generated from MDSC [40]. In the NOD 

mouse model of sSS, intravenously injected exosomes from human labial gland MSCs 

(LGMSCs) alleviated SS–like symptoms, which is likely mediated by inhibiting the plasma 

cell response via targeting BLIMP1 with miR–125b delivered by exosomes [101]. In mouse 

models of both secondary and primary SS (NOD and NOD.B10 mice), intravenously 

injected EVs from human iPS cell–derived standardized MSCs (iPSC–MSCs) inhibited 

the onset of SS [3,102]. Further study indicated intravenously injected EVs accumulated 

mainly in the spleen and taken up by splenic macrophages, which promoted the polarization 

of splenic macrophages into the anti-–inflammatory M2 phenotype and consequently 

inhibited the differentiation of Th17 cells [103]. Notably, only EVs from young but not 

aging iPSC–MSCs inhibited the pSS onset, which is related to the enrichment of multiple 

immune–modulatory molecules in young EVs such as TGFβ1 protein and miR–21 [102]. 

Interestingly, EVs from aging iPSC–MSCs are enriched with miR–125b, whereas the 

transfer of miR–125b inhibitors into aging iPSC–MSCs restored the effect of their EVs 

in blocking pSS onset [103]. These findings seemingly contradictory to those on LGMSC 

exosomes [101], suggesting that either miR–125b plays a context–dependent role or other 

cargos in EVs outweigh the effect of miR–125b in SS progression.

Instead of using EVs/exosome isolated from MSC culture medium, some researchers prefer 

MSC extracts produced by the repeated freezing and thaw of MSCs, which contain EVs/

exosome and other paracrine mediators [104,105]. In the NOD mouse model, intravenously 

injected extract of mouse bone marrow MSCs preserved both salivary and lacrimal glands 

function, which is related to the re–establishment of the peripheral tolerance [104].
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The increase of Th17 cells and the decrease of Treg cells are essential for pSS progression. 

In CD4+ T cells sorted from blood of pSS patients, treatment with EVs derived from 

umbilical cord MSCs (UC–MSCs) inhibited Th17 cell differentiation, promoted Treg cell 

differentiation, and restored the Th17/Treg balance, which is likely through reducing the 

elevated autophagy levels [106].

For the dry eye symptom of pSS, subconjunctivally injected small extracellular vesicles from 

human umbilical cord MSCs (hUC–MSC–sEVs) attenuated autoimmune dacryoadenitis in 

a rabbit model, which is through promoting M2 macrophage polarization and inducing 

Tregs via miR–100–5p [107]. The dry eye disease associated with Graft–versus–host 

disease (GVHD) shares many features with that in pSS. In both mice and humans, MSC 

exosomes administered as eye drops notably alleviate GVHD–associated dry eye disease by 

suppressing inflammation and improving epithelial recovery, which is related to miR–204–

mediated reprogramming of macrophages toward the immunosuppressive M2 phenotype 

[108]. These findings encourage the research on locally injected EVs for treating dry eye.

Multiple studies proposed various microRNAs as key effectors in MSC EVs for inhibiting 

pSS progression. However, many other types of immune–modulatory molecules are present 

in MSC–EVs [109] whereas GU–rich microRNAs such as miR–21 and let7 miRNAs 

abundance in some MSC–EVs can activate TLR–7/8 signaling pathway that involves in 

pSS pathogenesis [65]. Therefore, the relative contribution of microRNAs vs. other types 

of bioactive molecules to the therapeutic effects of MSC EVs still needs to be carefully 

analyzed.

6. Other salivary diagnostic tests for pSS detection and future prospective

Beside salivary EVs and their cargos, other salivary biomarkers are emerging for SS 

diagnosis, especially for discriminating SS from Non-–Sjögren’s Sicca. Most of these 

salivary biomarkers are proteins involved in the immune response and inflammation, such 

as kappa and lambda free light chains (KFLC and LFLC) and IgG [110], tripartite motif 

containing protein 29 (TRIM29) [111], and β–2 microglobulin [112]. Some salivary protein 

biomarkers are promising to improve diagnosis of pSS in the early stage. One small clinical 

study showed that salivary levels of tissue–specific autoantibodies, including anti–CA6, 

anti–SP1, and anti–PSP IgGs, increased significantly in anti–SSA–negative pSS patients 

compared with healthy controls [113]. However, many protein markers are identified 

in proteomics studies using expensive methods such as Mass Spectrometry and two–

dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS–PAGE) 

[114]. When using more clinically feasible methods, inconsistent results have been reported 

for these putative biomarkers. For instance, salivary levels of LFLC and IgG measured by 

immunoturbidimetry were significantly different between pSS and healthy controls [115], 

but salivary levels of LFLC and KFLC measured by commercial immunonephelometry kits 

are not suitable to distinguish SS patients with neurological involvement and neurological 

control subjects [116]. Therefore, for the accurate differential diagonisis of SS, these 

salivary protein markers need to be combined with other biomarkers such as EVs, and 

more reliable and clinically feasible methods for detecting salivary protein markers need to 

be developed.
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7. Summary

EVs play important roles in the pathogenesis of pSS such as inducing auto–immune 

responses and impairing the secretory function of gland epithelial cells. The altered sources 

and cargos of EVs in plasma and saliva make them promising biomarkers for pSS diagnosis. 

Moreover, EVs from MSCs and other immune–modulatory cells are promising to improve 

pSS treatment.
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Abbreviations:

ANA
Antinuclear antibody

Anti–carbonic anhydrase 6
CA6

Anti–SSA/Ro
anti–Sjögren’s–syndrome–related antigen A

APC
Antigen–presenting cells

B2M
β–2 macroglobulin

DAMPs
Damage–associate molecular patterns

dsRNA
Double strand RNA

ESS
Experimental Sjögren syndrome

EV
Extracellular vesicle

Exo
Exosome

KFLC
Kappa Free light chain

GVHD
Graft–versus–host disease
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I–IFN
Type I interferon

iPSC–MSC
iPS cell–derived MSC

IRFs
Interferon–regulatory factors

ITGAM
Integrin alpha M

LC–MS
Liquid chromatography–mass spectrometry

LFLC
Lambda Free light chain

LGMSC
Labial gland MSC

LSG
Labial salivary gland

MDSC
Myeloid–derived suppressor cell

MHC class I
Major histocompatibility complex class I

MSC
Mesenchymal stem cell

MSGB
Minor salivary gland biopsy

MV
Microvesicle

NF–κB
Nuclear factor–κB

NGAL
Neutrophil gelatinase–associated lipocalin

OE–MSC
Olfactory ecto–MSC

OLFM4
Olfactomedin–4
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PRRs
Pattern–recognition receptors

pSS
Primary Sjögren syndrome

SP–1
Salivary protein 1

PSP
parotid secretory protein

RA
Rheumatoid arthritis

RT–qPCR
Reverse transcription–quantitative polymerase chain reaction

SEC
Size exclusion chromatography

sEV
Small EV

SGECs
Salivary gland epithelial cells

SGUS
Salivary gland ultrasonography

SLE
Systemic lupus erythematosus

SMG
Submandibular gland

SS
Sjögren syndrome

sSS
Secondary Sjögren syndrome

ssRNA
Single strand RNA

SSc
Systemic sclerosis

STIM1
Stromal interaction molecule 1
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Th17
T helper 17

TLRs
Toll–like receptors

TRIM29
Tripartite motif containing protein 29

tRNAs
Transfer RNAs

TRIM21
tripartite motif–containing protein 21

UC–MSC
Umbilical cord MSC
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