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Abstract The epithelial sodium channel (ENaC), a member of the ENaC/DEG superfamily,

regulates Na+ and water homeostasis. ENaCs assemble as heterotrimeric channels that harbor

protease-sensitive domains critical for gating the channel. Here, we present the structure of human

ENaC in the uncleaved state determined by single-particle cryo-electron microscopy. The ion

channel is composed of a large extracellular domain and a narrow transmembrane domain. The

structure reveals that ENaC assembles with a 1:1:1 stoichiometry of a:b:g subunits arranged in a

counter-clockwise manner. The shape of each subunit is reminiscent of a hand with key gating

domains of a ‘finger’ and a ‘thumb.’ Wedged between these domains is the elusive protease-

sensitive inhibitory domain poised to regulate conformational changes of the ‘finger’ and ‘thumb’;

thus, the structure provides the first view of the architecture of inhibition of ENaC.

DOI: https://doi.org/10.7554/eLife.39340.001

Introduction
The fine-tuning of Na+ homeostasis is largely mediated by epithelial sodium channels (ENaC) that

are related in amino acid sequence to acid-sensing ion channels (ASIC) found in eukaryotes, degen-

erin channels (DEG) of Caenorhabditis elegans, and the FMRF-amide peptide-gated channels

(FaNaCh) of mollusk (Driscoll and Chalfie, 1991; Chalfie and Wolinsky, 1990; Kellenberger and

Schild, 2002; Waldmann et al., 1997a; Waldmann et al., 1997b; Krishtal and Pidoplichko, 1981;

Chelur et al., 2002; Garty and Palmer, 1997; Cottrell et al., 1990; Lingueglia et al., 1995). These

ion channels belong to the voltage-independent, Na+-selective, and amiloride-sensitive ENaC/DEG

superfamily which together perform diverse cellular functions in different organisms. In humans,

ENaCs are expressed at the apical surface of epithelial tissues throughout the body, and play critical

roles that range from regulation of total-body salt, water, and blood volume, to modulating airway

surface liquid clearance in epithelial cells in the lungs (Büsst, 2013; Ismailov et al., 1996;

Rossier et al., 2015; McDonald et al., 1994). The importance of ENaC in Na+ homeostasis is

highlighted by gain-of-function mutations causing severe hypertension, as in Liddle syndrome, or

loss-of-function mutations causing the neonatal salt-wasting disorder pseudohypoaldosteronism

type 1 (PHA-1) (Gründer et al., 1997; Hansson et al., 1995; Shimkets et al., 1994; Chang et al.,

1996; Edelheit et al., 2005; Kerem et al., 1999). More subtle ENaC dysfunction contributes to dis-

eases as diverse as essential hypertension, heart failure, and nephrotic syndrome

(Soundararajan et al., 2010; Hamm et al., 2010; Zheng et al., 2016). ENaCs require three different

subunits to form a functional channel, a, b, and g (Canessa et al., 1994). Despite decades of study,

the number of subunits in an active channel remains unclear (Shobair et al., 2016).

Unique among the ENaC/DEG channels, ENaCs are activated by proteolysis of peptidyl tracts

embedded in the extracellular domain (ECD), which releases inhibitory peptides. The cleavage event
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increases channel opening probability, Po (Orce et al., 1980; Vallet et al., 1997; Vallet et al., 2002;

Vuagniaux et al., 2002; Hughey et al., 2004; Hughey et al., 2003; Caldwell et al., 2004;

Passero et al., 2010; Kleyman et al., 2009). Amino acid sequence alignments and biochemical anal-

yses in the ECD have so far revealed that only the b subunit lacks the characteristic motifs for prote-

ase recognition. ENaCs are widely known as substrates of serine proteases like furin, and a growing

list of proteases that recognize sites in ENaC suggests a multifaceted regulation of channel function

(Rossier and Stutts, 2009). Indeed, the complexities of ENaC function involving the requisite het-

eromeric subunit assembly and asymmetric subunit modification via differential proteolytic process-

ing are critical to ion channel gating. Thus, to define subunit arrangement and stoichiometry, and

elucidate the molecular architecture of ENaC inhibition, we determined the structure of ENaC in the

uncleaved state by single-particle cryo-electron microscopy (cryo-EM).

Results

Design and expression of DENaC
We first assessed the expression of full-length (FL) ENaC by small-scale expression in adherent

HEK293S GnTI- cells and fluorescence-detection size-exclusion chromatography (FSEC) (Kawate and

Gouaux, 2006). We found a low, wide peak, indicating a poorly expressing polydisperse population

unsuitable for cryo-EM (Figure 1a). We thus screened a number of deletions and mutations in each

ENaC subunit, harnessing information derived from previous biochemical and functional experiments

gauging the propensity for heterotrimeric formation of ENaC and its susceptibility to proteolytic

processing (Canessa et al., 1994; Orce et al., 1980; Vallet et al., 1997; Vallet et al., 2002;

Vuagniaux et al., 2002; Hughey et al., 2004; Hughey et al., 2003; Caldwell et al., 2004;

Passero et al., 2010), before arriving at the construct referred to here as DENaC (Figure 1a–c, Fig-

ure 1—figure supplement 1, Figure 1—figure supplement 2).

DENaC is composed of abg subunits truncated at the N- and C-termini (Figure 1b,c). Addition-

ally, the Da and Dg subunits possess mutations in the identified furin and prostasin sites which pre-

vent subunit cleavage and channel activation (Hughey et al., 2003; Bruns et al., 2007). For protein

eLife digest The bodies of humans and other animals contain many different fluids that play

vital roles in the body, such as blood, saliva and the fluids that surround cells in organs. These fluids

all contain particles called ions, which can affect the flow of water into and out of cells and alter the

activity of proteins. Therefore, in order to survive, an animal must tightly regulate the levels of ions

in its body.

Epithelial cells line the surface of organs, and the inside of the digestive system and other cavities

in the human body. A channel known as ENaC is found on the surface of epithelial cells and controls

the volume of the fluid surrounding cells, blood pressure and the volume of liquid in the airways.

This channel spans the membrane surrounding each epithelial cell and allows sodium ions to pass

into the cell. To promote the opening of the channel, enzymes remove portions of the ENaC called

extracellular domain, which sits on the outside surface of an epithelial cell. Three components (or

‘subunits’) called alpha, beta and gamma are needed to form an ENaC, but it is not clear how they

fit together to form a single working unit.

Noreng et al. used a technique called cryo-electron microscopy to study the three-dimensional

structure of the human ENaC. This revealed that a single channel contains one alpha, one beta and

one gamma subunit, which sit next to each other to form a narrow tube through the membrane and

a large extracellular domain. When viewed from the outside of the cell the subunits form a narrow

ring in a counter-clockwise manner.

Further analysis of the structure suggested that when enzymes remove pieces of the extracellular

domain of ENaC, it becomes easier for the rest of the channel to adopt a shape that allows sodium

ions to move through the pore. A next step will be to study the three-dimensional structure of ENaC

when it takes on different shapes to better understand how it works.

DOI: https://doi.org/10.7554/eLife.39340.002
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purification, neither Da nor Db were modified with affinity tags because there is strong evidence that

the a subunit can readily form functional homomeric channels, and the termini of Db are sensitive to

perturbations (Canessa et al., 1993). As a result, Dg contains both GFP and a Strep-II tag at the

N-terminus (Figure 1c), minimizing contamination by homomeric Da channels during purification.

This construct provided a homogeneous and highly-expressing population. However, the inherent

pseudosymmetry from common secondary and tertiary structures between the a, b, and g subunits

of human ENaC hindered particle alignment (Figure 1d).

To evaluate biochemical integrity and to facilitate cryo-EM three-dimensional reconstruction of

DENaC, we generated subunit-specific monoclonal antibodies (mAbs) that bind to three-dimensional

epitopes in DENaC and FL-ENaC. For immunization, we exploited the high-expressing chicken ASIC

(cASIC) by adding the first 22 N-terminal amino acids of cASIC to Db, which tolerated the fusion.

This construct is referred to hereafter as DbASIC. Together, Da, DbASIC, and Dg comprise DENaCASIC

(Figure 1—figure supplement 3a,b) (Jasti et al., 2007). Two fragment-antigen binding domains

(Fabs) were isolated that recognize different epitopes (7B1 and 10D4). While these antibodies were

raised against DENaCASIC (Figure 1—figure supplement 3a,b), both Fabs bind to both DENaC
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Figure 1. Creation and analysis of DENaC. (a) Representative FSEC traces of full-lenth ENaC (FL-ENaC, red) and

DENaC (black). (b) Summary of mutations in DENaC. (c) Summary of DENaC constructs. (d) Representative 2D class

averages of DENaC show that pseudosymmetry inherent in ENaC hampers particle alignment. (e) Representative

2D class averages of DENaC-7B1/10D4 complex showing increased detail due to alignment aid from Fabs.

DOI: https://doi.org/10.7554/eLife.39340.003

The following figure supplements are available for figure 1:

Figure supplement 1. Sequence alignment of ENaC with other members of the ENaC/DEG superfamily (human

ENaCa residues 1-387).

DOI: https://doi.org/10.7554/eLife.39340.004

Figure supplement 2. Sequence alignment of ENaC with other members of the ENaC/DEG superfamily (human

ENaCa residues 388-669)

DOI: https://doi.org/10.7554/eLife.39340.005

Figure supplement 3. Fab generation.

DOI: https://doi.org/10.7554/eLife.39340.006

Figure supplement 4. Fab binding properties.

DOI: https://doi.org/10.7554/eLife.39340.007
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expressed in HEK 293S GnTI- and FL-ENaC expressed in HEK293T/17, which indicates that DENaC is

properly folded and that the Fabs do not bind to the ASIC segment (Figure 1—figure supplement

3c,d; Figure 1—figure supplement 4a,b). Inclusion of 7B1 and 10D4 allowed for proper alignment

of the particles (Figure 1e). Moreover, maps of the particles with only 10D4 (monoFab) compared to

those with both 10D4 and 7B1 (diFab) show that each Fab recognizes only one subunit (Figure 1—

figure supplement 4c–f). We monitored and compared grid conditions and the resulting data qual-

ity (including ice thickness, sample quality, particle distribution, and orientation) between the mono-

Fab and the diFab complexes of ENaC and discovered that the diFab complex was a more

promising complex for cryo-EM analysis.

Functional characterization of DENaC
We investigated DENaC function by two-electrode voltage-clamp electrophysiology (TEVC) and

whole-cell patch clamp electrophysiology in oocytes and GnTI- HEK cells, respectively (Figure 2, Fig-

ure 2—figure supplements 1 and 2a and b). Unlike FL-ENaC (Figure 2a, Figure 2—figure supple-

ment 2a), DENaC does not exhibit amiloride-sensitive currents in oocytes and HEK cells, and the

only Na+-specific currents resemble those from uninjected oocytes (Figure 2—figure supplement

1a,b). Similarly, oocytes expressing ENaC channels with restored protease sites in the D subunits

(Da* and Dg*) to form D*ENaC did not present amiloride-sensitive currents (Figure 2—figure sup-

plement 1c). Because HEK cells are better suited to defining whether DENaC traffics to the plasma

membrane, we examined surface expression of DENaC and FL-ENaC expressed in GnTI- HEK cells

using confocal microscopy. To ensure robust expression, we transduced the HEK cells with baculovi-

rus encoding the DENaC and FL-ENaC proteins, taking advantage of the N-terminal eGFP in the Dg

subunit and the N-terminal eGFP in all three FL subunits to visualize expression, respectively. Based

on eGFP fluorescence, we observed robust expression of both DENaC and FL-ENaC (Figure 2—fig-

ure supplement 2c,d). We employed tetramethylrhodamine (TRITC)-labeled 10D4 mAb, an antibody

that binds to the extracellular domain of ENaC, to probe the plasma membrane localization of ENaC

channels. Indeed, we observed overlapping signals from both eGFP and TRITC-10D4 mAb in cells

expressing FL-ENaC but not in cells expressing DENaC. Based on the confocal imaging results,

DENaC is not trafficked to the plasma membrane, in agreement with the electrophysiology results in

HEK 293S GnTI- cells and oocytes (Figure 2—figure supplement 2).

We further examined whether disruption of the channel by mutagenesis also caused the absence

of DENaC current. We tested channels comprising a single D or D* subunit in complex with the two

complementary FL-ENaC subunits. Channels comprising Da-FLb-FLg conduct amiloride-sensitive Na+

currents which increase approximately 5-fold upon trypsin treatment (compared with 2.2-fold for FL-

ENaC, Figure 2b, Figure 2—figure supplements 2 and 3, and Figure 2—source data 1). Since this

trypsin response could be a result of cleavage of FLg, we also tested channels of Da*-FLb-FLg

(Figure 2c). These channels show an increase in total current compared to Da-FLb-FLg, and demon-

strate a more archetypal ENaC current trace (Figure 2a, Figure 2—figure supplement 3, Figure 2—

source data 1). These results, in addition to the cleavage pattern of an anti-a immunoblot (Fig-

ure 2—figure supplement 4) indicate that Da adopts a biologically relevant fold, capable of forming

active channels with other full-length subunits, and that it is likely cleaved once at its N-terminal furin

site (RSRA in Da) but not the C-terminal furin site (AAAA in Da, Figure 1—figure supplement 1). By

restoring the protease sites, as in Da*, the inhibitory peptide was effectively removed.

The FLa-Db-FLg channels conducted amiloride-sensitive Na+ currents with a post-trypsin/pre-tryp-

sin ratio of 1.5 (Figure 2d, Figure 2—figure supplement 3, Figure 2—source data 1), similar to

that of FL-ENaC. Moreover, an anti-b immunoblot shows no cleavage of Db, as expected (Figure 2—

figure supplement 5).The FLa-FLb-Dg channel also conduct an amiloride-sensitive Na+ current with

approximately 9.5-fold increase upon trypsin treatment (Figure 2e, Figure 2—figure supplements

2 and 3, and Figure 2—source data 1). Although the Dg subunit has the canonical furin and prosta-

sin sites mutated (AAAA and QQQQ respectively, Figure 1—figure supplement 1), there are other

basic residues near the furin and prostasin sites that could be cleaved by trypsin. This hypothesis is

further supported by the immunoblot showing significant trypsin digestion in Dg (Figure 2—figure

supplement 6) as well as the even higher trypsin activation of FLa-FLb-Dg* (approximately 13.3-fold,

Figure 2f and Figure 2—figure supplement 3 and Figure 2—source data 1). Nevertheless, the

results are a promising direction for future studies. Importantly, the combination of TEVC traces of

Noreng et al. eLife 2018;7:e39340. DOI: https://doi.org/10.7554/eLife.39340 4 of 23

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.39340


5 s

3000 nA

Δγ*-FLαβ

Δγ*

FLβ FLα

5 s

800 nA

Δγ-FLαβ

Δγ

FLβ FLα

400 nA

5 s

Δβ-FLαγ

Δβ FLα

FLγ

5 s

600 nA

Δα*-FLβγ

FLβ

FLγ

Δα*

5 s

300 nA

Δα-FLβγ

ΔαFLβ

FLγ

5 s

800 nA

FL-ENaC

FLβ FLα

FLγ

a

b

c

d

e

f

100 µM amiloride
2.5 µg/mL Trypsin

K+

Na+

Figure 2. Functional characterization of DENaC by TEVC. (a) Representative current trace of FL-ENaC shows selectivity of Na+ over K+, block by

amiloride and sensitivity to trypsin treatment (2.5 mg/mL for 5 min) by a 2.22 ± 0.49 fold increase in steady state currents post-trypsin treatment (n = 3).

Figure 2 continued on next page
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each D subunit and the a and g D* counterparts supports DENaC representing a biologically relevant

channel.

Cryo-EM analysis of DENaC
We solved the structure of DENaC diFab complex in n-Dodecyl b-D-maltoside (DDM) by cryoEM

(Figure 3, Figure 3—source data 1). We first carried out cycles of 2D and 3D classifications to

remove ice contamination, micelles, and denatured complexes. The remaining particles were sub-

jected to unsupervised ab initio 3D classification and refinement in cryoSPARC (Punjani et al., 2017)

as well as 3D classification and refinement in cisTEM (Grant et al., 2018) to arrive at the cryo-EM

potential map with a nominal resolution of 4.2 Å from both programs, based on the gold standard

FSC = 0.143 and solvent adjusted FSC = 0.143 criteria, respectively (Figure 3—figure supplement

1). Additionally, we conducted a masked refinement excluding the flexible Fc domains of the Fabs

and micelle in cisTEM (Figure 3a), and obtained a map at 3.9 Å, as determined by the solvent

adjusted FSC = 0.143 criterion (Figure 3b,c), with local resolution estimates generated by BSoft

(Heymann and Belnap, 2007) indicating regions of the map with a resolution of 3.7 Å (Figure 3d).

Discussion

ENaC structural overview
The cryo-EM potential map has three major regions into which the two Fabs and homology models

of DENaC were manually fitted (Figure 4). Alignment of predicted glycosylation sites and aromatic

residues to distinct features in the map allowed for the correct assignment of the homology models

of the ENaC ECD, generated from the desensitized state of ASIC (PDB: 2QTS, Figure 4—figure

supplements 1–5, Figure 4—video 1). The b subunit is predicted to have 11 glycosylation sites by

primary sequence, considerably more than a or g. Six prominent glycosylation sites were used to

assign b (as opposed to the three each in a and g ), whereas a glycosylation on the b9-a4 loop distin-

guished a from g (Figure 1—figure supplement 2, Figure 4—figure supplement 1). Guided by

these features and the 10D4 monoFab DENaC map, we assigned the identity of 7B1 and 10D4 as

binding a and b subunits, respectively (Figure 4, Figure 1—figure supplement 4).

Forming a trimeric ensemble, the a-b-g subunits arrange in a counterclockwise manner, as

reported by previous studies (Collier and Snyder, 2011; Collier et al., 2014; Chen et al., 2011)

(Figure 4b,d). The overall domain organization within each subunit of DENaC concurs with that of

Figure 2 continued

The cartoon located on the right side of each current trace represents the combination of subunits injected in the oocytes. Filled circles represent FL-

ENaC subunits while open represent the DENaC subunits. Dotted lines represent ENaC subunits that contain the intact protease sites. (b–f)

Representative current traces of Da-FLbg (b), Da*-FLbg (c), Db-FLag (d), Dg-FLab (e) and Dg*-FLab (f) demonstrate that the DENaC subunits can form a

functional channel with two FL-ENaC subunits that are selective for Na+ over K+ and sensitive to amiloride and trypsin treatment. Currents after trypsin

treament increased by 5.15 ± 1.13 (b), 4.42 ± 0.61 (c), 1.46 ± 0.1 (d), 9.52 ± 2.88 (e) and 13.26 ± 5.67 (f) fold (n = 3 for all combinations).

DOI: https://doi.org/10.7554/eLife.39340.008

The following source data and figure supplements are available for figure 2:

Source data 1. Ratio of measured steady state currents pre- and post trypsin treatment.

DOI: https://doi.org/10.7554/eLife.39340.015

Figure supplement 1. Currents measured in oocytes injected with DENaC resembles currents observed in uninjected oocytes.

DOI: https://doi.org/10.7554/eLife.39340.009

Figure supplement 2. FL-ENaC and DENaC trafficking in HEK 293S GnTI- cells.

DOI: https://doi.org/10.7554/eLife.39340.010

Figure supplement 3. Functional characterization of DENaC by TEVC.

DOI: https://doi.org/10.7554/eLife.39340.011

Figure supplement 4. Cleavage of ENaC Da and FL-a by trypsin shows expected banding.

DOI: https://doi.org/10.7554/eLife.39340.012

Figure supplement 5. Cleavage of ENaC Db and FL-b by trypsin shows expected banding.

DOI: https://doi.org/10.7554/eLife.39340.013

Figure supplement 6. Cleavage of ENaC Dg and FL-g by trypsin shows expected bands.

DOI: https://doi.org/10.7554/eLife.39340.014
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ASIC, which was first illustrated in the crystal structure of chicken ASIC (cASIC) (Jasti et al., 2007)

(chicken ASIC shares 18 – 20% sequence identity with human ENaC; Figure 5, Figure 5—figure sup-

plement 1). Each subunit of DENaC harbors a cysteine-rich ECD resembling a hand with the palm,

knuckle, finger, and thumb domains clenching a ‘ball’ of b strands. This compact organization is sta-

bilized by eight disulfide bridges in the ECDs of a and g and nine in b. Seven of the disulfide bonds

are conserved throughout the ENaC/DEG family (Figure 1—figure supplement 1, Figure 1—figure

supplement 2, Figure 5a–c). The eighth is unique to the three ENaC subunits. For the purpose of

consistency in the following discussion, domain and secondary structure assignment in ENaC follow

those of ASIC (Figure 5d).

At the center of the trimeric architecture of the ECD are b-sheets formed by b1, b3, b6, and b9-b

12 that constitute the palm domain, which are divided into two sections, the upper and lower palm

domains. The upper palm domain cradles the b-ball, which is composed of b2, b4, b5, b7, and b8 in

all three subunits, contrary to previous findings which suggested that the a subunit lacked the b4

and b5 strands (Stockand et al., 2008). Completing the ‘clench’ around the b-ball are the a1 – 3 of

the finger, a4 – 5 of the thumb, and a6 of the knuckle domains. The lower palm is directly linked to
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Figure 3. Cryo-EM analysis of final 3D reconstruction map. (a) Outline of mask used in the final 3D refinement of DENaC-7B1/10D4 complex. (b)

Angular distribution of particle projections of the DENaC-7B1/10D4 complex. (c) Solvent adjusted FSC curve (purple) by cisTEM along with FSC curve

between the atomic model of DENaC-7B1/10D4 complex and half map 1 (Rfree – dark grey), half map 2 (Rwork – light grey) and final reconstruction map

(Rsum – black). The solid line indicates FSC = 0.143. (d) 3D map colored according to local resolution estimation using Bsoft. Blue indicates regions

where local resolution is estimated to be ~ 3.7 Å.

DOI: https://doi.org/10.7554/eLife.39340.016

The following source data and figure supplement are available for figure 3:

Source data 1. Statistics of data collection, three-dimensional reconstruction and model refinement

DOI: https://doi.org/10.7554/eLife.39340.018

Figure supplement 1. Cryo-EM data processing.

DOI: https://doi.org/10.7554/eLife.39340.017
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the transmembrane domain (TMD) via b1 and b12 and to the a4 and a5 of the thumb through b9

and b10. The thumb and the lower palm converge to forge interactions with the TMD at a juncture

called the ‘wrist’ (Figure 5—figure supplement 1). Underscoring the importance of the wrist region

and the critical roles that disulfide bridges play in maintaining the structural and functional integrity

of ENaC, alterations of a conserved cysteine, a-Cys479 to an Arg, causes Liddle syndrome due to a

missense mutation that not only eliminates a disulfide bridge located at the juncture of the thumb
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Figure 4. Architecture of the human epithelial sodium channel. (a) and (b), Cryo-EM map of the DENaC-7B1/10D4

complex viewed parallel (a) and perpendicular (b) to the membrane. The a, b, and g subunits are colored blue,

red, and magenta, respectively. The 7B1 and 10D4 Fv densities are colored green and wheat, respectively. (c) and

(d), Cartoon representation of the DENaC-7B1/10D4 complex viewed and colored as in (a) and (b). The dimensions

of the complex and DENaC alone are indicated. The centers of mass of the Fv’s make 154˚ angle.
DOI: https://doi.org/10.7554/eLife.39340.019

The following video and figure supplements are available for figure 4:

Figure supplement 1. Unique map features facilitated subunit identification and model building.

DOI: https://doi.org/10.7554/eLife.39340.020

Figure supplement 2. Regions of the Da ENaC subunit model shown in stick representation superimposed with

the potential map in light grey mesh, contoured between 7.5 and 8.0 s.

DOI: https://doi.org/10.7554/eLife.39340.021

Figure supplement 3. Regions of the Db ENaC subunit model shown in stick representation superimposed with

the potential map in light grey mesh, contoured between 7.5 and 8.0 s.

DOI: https://doi.org/10.7554/eLife.39340.022

Figure supplement 4. Regions of the Dg ENaC subunit model shown in stick representation superimposed with

the potential map in light grey mesh, contoured between 7.5 and 8.0 s.

DOI: https://doi.org/10.7554/eLife.39340.023

Figure supplement 5. Select regions of the GRIP domain in all three subunits.

DOI: https://doi.org/10.7554/eLife.39340.024

Figure 4—video 1. Three dimensional architecture of the ENaC subunits.

DOI: https://doi.org/10.7554/eLife.39340.025
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and palm domains but also introduces a bulky, positively charged residue (Salih et al., 2017)

(Figure 5a).

ENaC differs significantly from ASIC in both structure and primary sequence at the knuckle and

finger domains (Figure 1—figure supplement 1, Figure 1—figure supplement 2, Figure 5—figure

supplement 1). Each knuckle domain in ENaC makes extensive interactions with the a1 and a2 heli-

ces of the finger domain in the adjacent subunit (Figure 6). Together, the knuckle and finger

domains of all three subunits form a ‘collar’ at the top of the ECD. Sequence alignment of the three

subunits demonstrate divergence in amino acid sequence at the C-terminal end of both a1 and a6

in all three subunits, which results in distinct types of molecular interactions at each subunit interface

that are, perhaps, associated with assembly and stability of the ENaC. The contact between the

Figure 5. Domain organization in each subunit of DENaC resembles a hand clenching a ball. (a–c) Domain organization of each ENaC subunit and

locations of disulfide bridges. Disulfide bridges 1–7 are conserved across ENaC/DEG family while the eighth disulfide bridge is shared by a (a), b (b),

and g (c) and located in the GRIP domain (P1 - P4). The b subunit contains a ninth disulfide bridge that is also located in the GRIP domain. All subunits

are in cartoon representation and colored as in Figure 4 and the disulfide bridges are in sticks representation. (d) Schematic diagram of secondary

structure elements of ENaC subunits colored as follows: knuckle, cyan; palm, yellow; finger, purple; GRIP, blue; b-ball, orange; thumb, green.

DOI: https://doi.org/10.7554/eLife.39340.026

The following figure supplement is available for figure 5:

Figure supplement 1. Comparison between ENaC and ASIC subunit structure.

DOI: https://doi.org/10.7554/eLife.39340.027
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finger and thumb domains is mediated by long antiparallel helices a1 and a2, which form a barrier

between the thumb domain and the b6-b7 loop with a2 making the primary contacts with the thumb

domain (Figure 5—figure supplement 1, Figure 6). The domain arrangement observed in the

DENaC structure agrees with the functional study probing Na+ binding sites in the a subunit of

ENaC (Kashlan et al., 2015). The a2 helix makes an almost 90˚ turn towards the palm domain break-

ing the helix. This architecture marks another departure from ASIC, in which contacts between the

finger and thumb domains are largely mediated by a1, a3, a5, and the a4-a5 loop (Figure 5—fig-

ure supplement 1).

The TMD is not well ordered, hampering our ability to model the entire TMD region and assign a

functional state of the channel. Nevertheless, the EM map offers a glimpse of the positions of TM1

and TM2 on the extracellular side from each subunit (Figure 6—figure supplement 1). The overall

configuration of the TMD shows that TM2 of all three subunits are positioned near the central axis,

poised to mediate ion conduction in agreement with the crystal structures of ASIC and previous ele-

gant functional studies probing ion selectivity and channel block (Kellenberger and Schild, 2002).

Strikingly, the potential map for g-TM1 on the extracellular side illustrates clear map for the main

chain preceding the b1 strand validating a sequence disparity between the g subunit and the other

ENaC and ASIC subunits (Figure 6—figure supplement 1). The g subunit lacks two residues preced-

ing the palm domain (Figure 6—figure supplement 1f). Consequently, interactions within the wrist

region in the g subunit may differ from that of a and b subunits.

The GRIP domain
Previous studies of ENaC have probed stretches of amino acids and their roles in ENaC function by

perturbing known protease sites, observing changes in molecular weight, recording channel activity,

and conducting cross-linking studies (Bruns et al., 2007; Carattino et al., 2006). The structure of

DENaC indicates that these stretches of 20 – 40 amino acids are pieces of larger domains located in

the periphery of the ECD near subunit interfaces (Figure 7). These stretches of amino acids, located

between a1 and a2 are unique to ENaC and are responsible for channel Gating Relief of Inhibition

by Proteolysis and will hereafter be referred to as the GRIP domain. Each GRIP domain is composed

of a core of b strands that forge interactions with the finger and thumb domains forming a b-sheet

‘blanket’ that conceals the a2 helix of the finger (Figure 7—figure supplement 1). Surprisingly,

although the b subunit is not known to gate the channel via proteolysis, it also possesses a GRIP

domain with similar organization to those of the a and g subunits.

a b c d

α1

α2

b6-b7 loopβ6-β7 loop

α6

α1

α2

b6-b7 loopβ6-β7 loop
α6

α1

α2

b6-b7 loopβ6-β7 loop

α6

α-ββ α

γ

β-γ γ-α

Figure 6. Intersubunit interactions in DENaC in the finger and knuckle domains. (a) The finger and knuckle domains forge intersubunit interactions

forming a ‘collar’ at the top of the ECD. Surface representation of DENaC viewed perpendicular to the membrane. Subunits are colored as in Figure 4.

The finger (a1 – 3) and knuckle domains (a6) are shown in cartoon representation. (b–d), Detailed view of the interfaces boxed in (a). The views are

parallel to the membrane and show how the helices from the finger and knuckle domains constitute an enclosure around the b6-b7 loop.

DOI: https://doi.org/10.7554/eLife.39340.028

The following figure supplement is available for figure 6:

Figure supplement 1. The DENaC structure demonstrates asymmetric interactions at the wrist region.

DOI: https://doi.org/10.7554/eLife.39340.029
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Figure 7. The protease-sensitive domain in ENaC is part of the GRIP domain. (a) DENaC is shown in cartoon

representation and colored as in Figure 4. The GRIP domain is shown in surface representation. Close-up view of

the cleft formed by the finger and thumb domains and the P3-P4 segments in a (b), b (c), and g (d). The cleft is

occupied by the P1 segment of the GRIP domain. All three subunits contain conserved tryptophans in a2

(aTrp251, bTrp218, and gTrp229), which interacts with the P1 segment. The P3 and P4 strands are stabilized by the

a5 of the thumb domain by docking on top of aromatic residues (aTyr455, bHis425, and gTyr433).

Figure 7 continued on next page
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In all three subunits, the GRIP domains comprise two antiparallel b strands stapled together by a

disulfide bond located in the loop that rests against the thumb domain (Figure 7b–d, Figure 7—fig-

ure supplement 1b–d). Furthermore, an additional disulfide bond in the loop near the b-g interface

stabilizes the GRIP domain of the b subunit. We suspect that this additional disulfide bond contrib-

utes to the well-ordered behavior of the b GRIP domain, allowing the resolution of nearly the whole

segment between a1 and a2 in the b subunit. Moreover, the 10D4 Fab binds the b GRIP domain,

allowing us to resolve two additional antiparallel b strands. In the a and g subunits, we can only iden-

tify one stretch of residues that adopt an extended conformation. Based on the shared features

observed in all three subunits, it is plausible that the a and g subunits also contain a fourth b strand.

With four possible b strands in the GRIP domains, each strand or stretch of peptides is referred to

here as P1-4 (Figure 7).

Structural insight gleaned from the b GRIP domain reveals the possible positions of the function-

ally well-characterized but structurally elusive inhibitory tracts and furin and other protease sites in

the a and g GRIP domains. Studies by the Kleyman group have identified 8- and 11-mer peptide

tracts within the a and g GRIP domains, respectively, which are implicated in channel gating

(Passero et al., 2010; Carattino et al., 2008b; Kashlan et al., 2010). Sequence comparison

between the three subunits suggests that the inhibitory tracts contain the P1 strand (Figure 7b – d,

Figure 7—figure supplement 1b–d, Figure 1—figure supplement 1). Based on this configuration,

the first furin site lies at the N-terminal side of P1 whereas the second protease site (furin for a and

other protease sites for g) is likely located at the C-terminal side of P2. The anti-parallel organization

of P1 and P2 strands places the two protease sites in close proximity to each other. We speculate

that this arrangement allows for efficient proteolysis, especially for the cleavage of the a subunit by

furin.

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.39340.030

The following figure supplement is available for figure 7:

Figure supplement 1. Cryo-EM map of the P1 segments in a, b, and g demonstrates critical interactions with the

finger and thumb domains.

DOI: https://doi.org/10.7554/eLife.39340.031

Figure 8. The a2 helix is buried in the aromatic pocket formed by key gating domains in ENaC. The aromatic pockets at the a-b (a), b-g (b), and g-a (c)

interfaces are shown in cartoon representation. The aromatic residues are shown in sticks representation. Residues conserved in ASIC are colored

green. The a2 helices and the GRIP domains are omitted for clarity. The position of the a2 is shown as dotted circles.

DOI: https://doi.org/10.7554/eLife.39340.032
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Aromatic pocket
The first crystal structure of ASIC identified the finger and the thumb domains as major players in

ion channel gating. Rearrangements of these domains are coupled to the TMD via the wrist. Addi-

tionally, the crystal structure provided insight into the domain essential for fine-tuning ASIC pH-

response, deemed the acidic pocket, formed by the b-ball, finger, and thumb domains of one sub-

unit, and the palm domain of the adjacent subunit (Vullo et al., 2017). While the acidic pockets in

ASIC are lined with negatively charged residues, the equivalent crevices in ENaC are replete with

aromatic residues. In fact, aside from Ser428 of Db (Asp346 in ASIC), the equivalent sites in the

thumb domain that are acidic in ASIC are occupied by tyrosines in all three subunits (Figure 8, Fig-

ure 1—figure supplement 1, Figure 1—figure supplement 2) (Jasti et al., 2007). Accordingly, the

pocket that is largely occupied by a2 in DENaC is referred to here as the aromatic pocket.

Tucked in the aromatic pocket, a2 makes contacts with all critical elements of the gating machin-

ery in ENaC. This observation is consistent with studies finding that site-directed mutagenesis per-

turbing residues in the a2 results in changes in Na+ self-inhibition and binding of the P1 segment of

the GRIP domain (Kashlan et al., 2010). In all three ENaC subunits, the a2 forms contacts with the

thumb, a1 helix, the b6-b7 loop and the GRIP domain, and with the knuckle and the upper palm

domains in the adjacent subunit (Figure 8). Moreover, studies using synthesized 8-mer (LPHPLQRL)

and 11-mer peptides (RFLNLIPLLVF) (Passero et al., 2010), the inhibitory peptides of a and g subu-

nits, respectively, have identified residues in a2 to be critical to the binding of the inhibitory pepti-

des. These peptides pack against a2 and form a wedge between the thumb domain and a1 in the

DENaC structure (Figure 7b–d and Figure 7—figure supplement 1b–d). These inhibitory peptides

contain prolines that introduce a kink within the tract that may serve as a point that divides P1 into

two segments: the N-terminal side, which interacts with the finger and thumb; and the C-terminal

side, which interacts primarily with a2 and P3. The observed orientation of the P1 segment is consis-

tent with the cross-linking experiments by Kashlan et al., which provided two major findings: (1) the

inhibitory tracts adopt an extended conformation and (2) the N-terminal side of the peptide binds

near the thumb/finger interface (Kashlan et al., 2010; Kashlan et al., 2012).

The potential map for a-P1 suggests that the N-terminal side mirrors that of b-P1 forging con-

tacts with the a1 helix (Figure 7—figure supplement 1b,c). In contrast, the potential map for the g-

P1 suggests that the peptide interacts with the thumb and a1/a2 more extensively and extends

toward a3 (Figure 7—figure supplement 1d). These distinct points of contact with the finger and

thumb domains between the a- and g-P1 segments may influence the extent to which the subunits

influence channel Po. While removal of the inhibitory tract in a transitions the channel to an interme-

diate Po state, excision of the g-P1 segment places the channel in the high Po state; this high Po state

can be accomplished without the removal of the a-P1 (Carattino et al., 2008a). The visual evidence

of direct interactions between P1 and the finger and thumb domains demonstrated in the DENaC

structure sheds light into how these inhibitory tracts can modulate channel function in ENaC.

Figure 9. Mechanism of protease-dependent gating in a single ENaC subunit. Removal of the protease sensitive

segments of the GRIP domain (a) induces conformational changes in the finger and thumb domains (b), which is

perhaps coupled to ion channel gating through the wrist.

DOI: https://doi.org/10.7554/eLife.39340.033
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Mechanism
DENaC follows a common organization that was first observed in ASICs: a scaffolding structure in

the upper palm, the flexible lower palm which is tethered to the TM and thumb, and the b-ball (Fig-

ure 5—figure supplement 1) (Jasti et al., 2007). However, the specialized finger domains deviate

from what is observed in ASIC and such deviations accommodate the distinct functions between the

proton sensors of ASIC and the protease-sensitive regulators of ENaC.

Key gating structures are preserved, albeit with specific structural configurations in both ASIC

and ENaC supporting the idea that the superfamily of ENaC/DEG channels conform to a gating

scheme that involves conformational changes of the finger and thumb domains, rearrangements that

are propagated to the ion channel via the wrist (Jasti et al., 2007). In the case for ENaC, a specula-

tive model for gating involves proteolysis and the subsequent removal of the P1 segment, which

serves as a wedge, inducing rearrangements of the finger and thumb domains (Figure 9).

The structural work presented here provides new insight into ENaC assembly and gating. The

structure unveils the positions of the GRIP domains, specifically the key peptidyl tracts that inhibit

ENaC activity, and the distinct interactions that they mediate with the finger and thumb domains.

Furthermore, it reveals that there are different interactions between the finger and knuckle domains

at each subunit interface, and between the base of the thumb and the TMD in the wrist region sug-

gesting that each subunit differentially contributes toward gating the channel, supporting electro-

physiological findings. Importantly, the structure provides the first molecular model for protease-

dependent regulation of ENaC opening and Na+ and water homeostasis.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Homo sapiens)

amiloride-sensitive sodium channel
subunit alpha
isoform 1

Synthetic NCBI Reference
Sequence:
NP_001029.1

Gene sysnthesized
by BioBasic

Gene
(Homo sapiens)

amiloride-sensitive sodium channel
subunit beta

Synthetic NCBI Reference
Sequence:
NP_000327.2

Gene sysnthesized
by BioBasic

Gene
(Homo sapiens)

amiloride-sensitive
sodium channel
subunit gamma

Synthetic NCBI Reference
Sequence:
NP_001030.2

Gene sysnthesized
by BioBasic

Cell line
(Homo sapiens)

HEK293S GnTI- ATCC Cat # ATCC CRL-3022

Cell line
(Homo sapiens)

HEK293T/17 ATCC Cat # ATCC CRL-11268

Antibody 7B1 OHSU VGTI,
Monoclonal Antibody Core

AB_2744525 Isotype IgG2a, kappa

Antibody 10D4 OHSU VGTI,
Monoclonal Antibody Core

AB_2744526 Isotype IgG1, kappa

Recombinant
DNA reagent

pEG BacMam Gift from Eric Gouaux doi: 10.1038/
nprot.2014.173

Commercial
assay or kit

mMessage mMachine T7
Ultra
Transcription

Ambion AM1345

Chemical
compound, drug

Amiloride
hydroschloride hydrate

Sigma A7410

Chemical
compound, drug

Phenamil
mesylate

Tocris Cat # 3379

Software,
algorithm

Relion-2.0 doi: 10.1016/
j.jsb.2012.09.006

RRID:SCR_016274 https://www2.mrc-lmb.cam.a
c.uk/relion/index.php?
title=Main_Page

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

DoG picker doi: 10.1016/
j.jsb.2009.01.004

OMICS_27772 https://omictools.com/
dog-picker-tool

Software,
algorithm

MotionCor2 doi:10.1038
/nmeth.4193

SCR_016499 http://msg.ucsf.edu/em/
software/motioncor2.html

Software,
algorithm

Gctf doi:10.1016
/j.jsb.2015.11.003

SCR_016500 https://www.mrc-lmb.cam
.ac.uk/kzhang/Gctf/

Software,
algorithm

cryoSparc doi:10.1038/nmeth.4169 SCR_016501 https://cryosparc.com/

Software,
algorithm

cisTEM https://doi.org/10.1038
/nmeth.4672

SCR_016502 https://cistem.org/

Software,
algorithm

Bsoft doi:10.1006/
jsbi.2001.4339

SCR_016503 https://lsbr.niams.n
ih.gov/bsoft/

Software,
algorithm

Pymol PyMOL Molecular
Graphics System,
Schršdinger, LLC

RRID:SCR_000305 http://www.pymol.org/

Software,
algorithm

UCSF Chimera doi:10.1002/jcc.20084 RRID:SCR_004097 http://plato.cgl.
ucsf.edu/chimera/

Software,
algorithm

Coot https://doi.org/10.1107/
S0907444904019158

RRID:SCR_014222 https://www2.mrc-lmb.
cam.ac.uk/persona
l/pemsley/coot/

Software,
algorithm

Rosetta https://doi.org/10.1371
/journal.pone.0020450

RRID:SCR_015701 https://www.
rosettacommons.org/

Software,
algorithm

Phenix doi:10.1107/
S2059798318006551

RRID:SCR_014224 https://www.phenix-
online.org/

Software,
algorithm

Jpred4 https://doi.org/
10.1093/nar/gkn238

SCR_016504 www.compbio.
dundee.ac.uk/jpred/

Software,
algorithm

Psipred v3.3 https://doi.org/
10.1093/bioinformatics
/16.4.404

RRID:SCR_010246 www.bioinf.cs.u
cl.ac.uk/psipred

Software,
algorithm

QUARK doi:10.1002/
prot.24065 (2012)

OMICS_10835 https://omictools.
com/quark-tool

Software,
algorithm

Molprobity doi:10.1107/
S0907444909042073

RRID:SCR_014226 http://molprobity.
biochem.duke.edu

Construct design
The cDNA encoding the full length a, b and g subunits of human ENaC were cloned into pEG Bac-

Mam expression vector harboring an N-terminal eGFP (Goehring et al., 2014). The Da was gener-

ated by removing both N- and C-terminal segments and modifying the furin sites obtaining a mutant

variant of the a subunit lacking 42 and 89 residues at N- and C- termini, respectively. While the Db

was designed to possess truncations of 30 and 79 residues at the N- and C-terminal regions, DbASIC
has the same truncated regions as Db but contains an additional N-terminal 2 – 22 residues of cASIC

upstream of Db. Lastly, Dg lacks 20 and 79 residues at the N- and C-terminal domains, has modified

furin and prostasin sites, and includes a Strep-tag II, an octa-histidine tag, eGFP, and Thrombin

cleavage site at the N-terminus.

Generation and isolation of Fabs
Mouse monoclonal antibodies 7B1 and 10D4 were generated using standard procedure by Dan

Cawley at the Vaccine and Gene Therapy Institute (OHSU). Liposomes containing asolectin:choles-

terol:lipidA:brain polar lipid extract (BPLE) (16:4.6:1:5.3) were prepared in 20 mM Tris, 150 mM NaCl

at pH 8.0 at a concentration of 40 mg/ml. The mixture was subjected to repeated freeze-thaw cycles

followed by extrusion through a 200-nm filter. Purified DENaCASIC (Da, DbASIC, Dg ) protein was

added to the liposome mixture in the presence of 400 mM NaCl and 0.8% Na-cholate and passed

through a PD-10 desalting column to remove excess salt and detergent. Mice were immunized with

approximately 30 mg of the reconstituted DENaCASIC for generation of hybdridoma cell lines
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(Figure 1—figure supplement 3). Monoclonal antibodies were screened by FSEC and BioDot blot

to identify clones that recognize tertiary or primary epitopes. The 7B1 and 10D4 mAbs were

selected because they recognize tertiary epitopes of ENaC. The mAbs were purified, and their Fabs

were generated by papain cleavage. Fab 7B1 was isolated by anion exchange using HiTrap Q HP

column while Fab 10D4 was eluted using Protein A column to remove Fc. After isolation, both Fabs

were dialyzed in 200 mM NaCl and 20 mM Tris at pH 8.0.

Expression and purification of DENaC-Fab complexes
Human embryonic kidney cells lacking N-acetylglucosaminyltransferase I (HEK293S GnTI- cells) were

grown in suspension at a density of 2�4 � 106 cells / ml in Freestyle medium with 2% FBS and trans-

duced with the virus (Da, Db and Dg ) at a multiplicity of infection (MOI) of 1 and incubated at 37˚C.
Eight hours post-transduction, sodium butyrate and phenamil mesylate were added to 10 mM and

500 nM, respectively, and cells were incubated at 30˚C. After 36 hr, the cells were collected by cen-

trifugation at 4790 xg for 15 min. The pellet was washed with 20 mM Tris, 200 mM NaCl and fol-

lowed by a second round of centrifugation at 4790 xg for 15 min. Cells were homogenized with a

dounce homogenizer and sonicated in 20 mM Tris, 200 mM NaCl, 5 mM MgCl2, 25 mg/ml DNase I

and protease inhibitors. Lysed cells were centrifuged at 9715 xg for 20 min; the resulting superna-

tant containing the membrane fraction was further centrifuged at 100,000 xg for 1 hr. Membrane

pellets were resuspended and solubilized in 20 mM TRIS pH 8, 200 mM NaCl, 20 mM n-dodecyl-b-

D-maltopyranoside (DDM, Anatrace), 3 mM cholesteryl hemisuccinate (CHS), 2 mM ATP, 2 mM

MgSO4, protease inhibitor and 25 U/mL nuclease for 1 hr at 4˚C. The solubilized fraction was iso-

lated by ultracentrifugation 100,000 xg for 1 hr, and DENaC was bound to streptactin resin packed

into an XK-16 column. The column was washed with 20 mM TRIS, 200 mM NaCl, 0.5 mM DDM, 75

mM CHS and 25 U/mL nuclease, followed by an additional wash of the same buffer containing 2 mM

ATP, and eluted with 2.5 mM desthiobiotin. The eluted fractions were concentrated and then incu-

bated with either one Fab 10D4 (monoFab complex) or two Fabs 7B1 and 10D4 (diFab complex) in

a 1:3 molar ratio of ENaC:Fab for 10 min, and clarified by ultracentrifugation 100,000 xg for 1 hr.

The supernatant was injected onto a Superose 6 Increase 10/300 GL column equilibrated in 20 mM

TRIS pH 8.0, 200 mM NaCl, 0.5 mM DDM, 75 mM CHS and 1 mM TCEP to isolate the protein com-

plex by size-exclusion chromatography. Monodispersed fractions were pooled and concentrated to

2.2 mg/mL.

For FSEC experiments analyzing peak shifts of the DENaC and FL-ENaC with 7B1 and 10D4,

DENaC was expressed in HEK 293S GnTI-, as described above, while FL-ENaC was expressed in HEK

293T/17. The HEK 293T/17 cells were grown in suspension at a density of 2�4 � 106 cells / ml in

Freestyle medium with 2% FBS and transduced with the virus (FL-a, FL-b and FL-g) at a multiplicity of

infection (MOI) of 1 and incubated at 37˚C. Eight hours post-transduction, 500 nM phenamil mesy-

late was added, and cells were incubated at 30˚C. After 36 hr post-transduction, the cells were col-

lected by centrifugation at 4790 xg for 15 min. The pellet was washed with 20 mM Tris, 200 mM

NaCl and followed by a second round of centrifugation at 4790 xg for 15 min. Cell pellets were

resuspended and solubilized in 20 mM TRIS pH 8, 200 mM NaCl, 20 mM n-dodecyl-b-D-maltopyra-

noside (DDM, Anatrace), 3 mM cholesteryl hemisuccinate (CHS), protease inhibitor and 25 U/mL

nuclease for 1 hr at 4˚C. The solubilized fraction was isolated by ultracentrifugation 100,000 xg for 1

hr, then incubated with either one Fab (7B1 or 10D4) or two Fabs (7B1/10D4) in a 1:3 molar ratio of

ENaC:Fab for 10 min, and clarified by ultracentrifugation 100,000 xg for 1 hr. The supernatant was

injected onto a Superose 6 Increase 10/300 GL column for FSEC analysis.

Immunoblotting
Aliquots of 7 mg purified ENaC were incubated with 2.5 mg/mL trypsin for 10 min at room tempera-

ture. These samples were then run through 4 – 20% Criterion SDS-PAGE gels and blotted onto nitro-

cellulose membranes according to manufacturer’s instructions (Bio-Rad). After blocking overnight in

5% non-fat milk in TBS, membranes were incubated in primary antibody (ENaC a subunit, 6 mg/blot

SC-21012; ENaC b subunit, 6 mg/blot SC-21013; ENaC g subunit, 10 mg/blot abcam ab133430) for 2

hr. The membranes were then incubated in 1 mg/blot IRDye 800CW goat anti-rabbit IgG (Licor) for 1

hr.
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Image acquisition and processing
Purified DENaC-Fab complexes were applied to glow-discharged Quantifoil holey carbon grids (Au

1.2 mm/1.3 mm hole space/hole separation, 300mesh), blotted using a Vitrobot Mark III (FEI) with the

following conditions, 7 s wait time, and 5 s blot time at 100% humidity, and then plunge-frozen in

liquid ethane cooled by liquid nitrogen. All images were collected on a Titan Krios electron micro-

scope operating at 300 kV at the Multiscale Microscopy Core (OHSU). Images were recorded by a

Gatan K2 Summit direct electron detector operating in super-resolution mode, and the images were

collected using the automated acquisition program SerialEM (Mastronade, 2003). Magnification of

the recorded images corresponded to a pixel size of 1.33 Å in counting mode (0.665 Å in super-res-

olution mode). For the DENaC-10D4 complex, two data sets were acquired and were initially proc-

essed separately, and subsequently combined for 3D reconstruction. Each image in the first dataset

was dose-fractionated to 30 frames with 0.5 s per frame and a total exposure time and dose of 15 s

and 54 e-/Å2, respectively. The second dataset was collected in counting mode, and was therefore

not binned when combined with the first where each image was dose-fractionated to 60 frames with

0.25 s per frame and a total exposure time and dose of 15 s and 50 e-/Å2, respectively. Similarly,

two separate datasets were obtained for DENaC-7B1/10D4 complex in super-resolution mode. Like

in the monoFab complex, each data set was processed separately and later combined for further

analysis and 3D reconstruction. The images of the first dataset of the diFab complex were dose-frac-

tionated to 40 frames with 0.25 s per frame and a total exposure time and dose of 10 s and 62 e-/

Å2, respectively, while the images of the second dataset were dose-fractionated to 48 frames with

0.25 s per frame and a total exposure time and dose of 12 s and 71 e-/Å2, respectively.

The DENaC-10D4 data set collected in super-resolution mode was binned 2 � 2 while the

DENaC-10D4 data set collected in counting mode was left unbinned. Both data sets were motion

corrected using MotionCor2 (Zheng et al., 2017), and automated particle selection was performed

using DoGPicker (Voss et al., 2009). Defocus values for individual particles were estimated using

Gctf (Zhang, 2016), and particles belonging to low-abundance classes were removed via 2D classifi-

cation and 3D classification in RELION (Scheres, 2012). The final set of particles was further analyzed

in cryoSPARC and refined to a nominal resolution of 5.4 Å (Punjani et al., 2017).

For the DENaC-7B1/10D4 data sets, super-resolution counting images were 2 � 2 binned, and

motion corrected using MotionCor2. Manual and automated particle selections were performed

where DoGPicker was utilized for the latter resulting in a total of 667,984 particles. Defocus values

for individual particles were estimated using Gctf, and particles of low-abundance classes via 2D

classification in RELION were removed. For 3D classification in RELION, a reference model of a low-

resolution map of ENaC-7B1/10D4 obtained from a data set (14.4 Å) was low-pass filtered to 50 Å,

and particles were classified into two classes where the major class contained 385,997 particles.

Duplicates (as a result of RELION2.0 re-centering particles after 2D classification) and particles close

to micrograph edges were removed, resulting in 329,180 particles that were subjected to ab initio

3D classification in cryoSPARC (Punjani et al., 2017), and 3D classification and refinement in cisTEM

(Grant et al., 2018). Particles belonging to the low abundance class in cryoSPARC and cisTEM were

discarded yielding 244,223 and 290,007 particles, respectively. Using default settings in cryoSPARC,

particles with class probability of > 0.9 were used for refinement; thus, final reconstruction and

refinement used 244,223 particles. For cisTEM, initial 3D classification and refinement was done

using a refinement threshold of 8 Å and applying a mask during the last few iterations that excluded

the constant domain (Fc) of the Fabs. During this process, we noticed that extraneous features, such

as the micelle, were having a strong influence on alignment and classification, so the cisTEM par-

ticles were then re-processed using a mask that excluded both the micelle and the Fc of the Fabs,

and aligned with a 5.4 Å limit. This dataset consisted of 302,263 particles and improved the resolu-

tion, as determined by the FSC = 0.143 criterion (~3.9 Å). More importantly, the electrostatic poten-

tial map was notably improved in the regions of interest. The resolutions reported in Figure 3—

source data 1 are based on the FSC = 0.143 criterion (gold-standard in the case of RELION and cry-

oSPARC). Final resolution reported in Figure 3—source data 1 are solvent adjusted FSC = 0.143 cri-

terion. No symmetry was applied during data processing.
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Model building
Homology models of the human a, b, and g subunits were generated with the crystal structure of

cASIC (Jasti et al., 2007) (PDB code: 2QTS, chain A) as a template using SWISS-MODEL server and

homology models for the Fabs were also generated by SWISS-MODEL (Arnold et al., 2006). All

models were docked into the EM potential in UCSF Chimera then rigid-body fitted into the EM

potential using Coot (Pettersen et al., 2004; Emsley and Cowtan, 2004). We incorporated models

generated from Rosetta (DiMaio et al., 2011) into manual fitting and adjustments during model-

building in Coot to build the palm, knuckle, TM, thumb, b-ball, and finger domains. To build the

GRIP domains, we integrated analysis from Jpred4, PSIPRED v3.3, and QUARK online ab initio pro-

tein structure prediction to support our analysis of the cryo-EM map (Buchan et al., 2013; Xu and

Zhang, 2012; Drozdetskiy et al., 2015). The final model was subjected to refinement using the

module phenix.real_space_refine in PHENIX (Adams et al., 2011).

The cryo-EM map in all three subunits preceding the N-terminal side of the a2 helices was unam-

biguous and showed features consisting of two b-strands connected by a loop, the P3 and P4 seg-

ments of the GRIP domains (Figure 4—figure supplement 5). Secondary structure prediction

analysis by online servers Jpred4, PSIPRED v3.3, and QUARK supported this observation

(Buchan et al., 2013; Xu and Zhang, 2012; Drozdetskiy et al., 2015). We found that the potential

map in the b subunit had the best-defined feature demonstrating four b strands (Figure 4—figure

supplement 5). Based on the cryo-EM map, the P1 segments in a and g adopt b strand-like confor-

mations, like in the b subunit, which is also supported by the secondary structure prediction servers

(Figure 4, Figure 4—figure supplement 5). The regions between P1 and P3 in the a and g subunits,

however, are disordered in the cryo-EM map. We built stretches of residues into the P1 potential

maps in the a- and g-GRIP domains using sequence alignment with the b-GRIP domain and cryo-EM

potential map features as guides.

For validation, FSC curves were calculated between the final model and the EM map as well as

the two half maps generated by cisTEM. We implemented MolProbity to analyze geometries of the

atomic model (Chen et al., 2010). All figures of map and atomic model were prepared using UCSF

Chimera and Pymol (Pettersen et al., 2004).

Two-electrode voltage clamp electrophysiology
All constructs used for two-electrode voltage clamp electrophysiology (TEVC) experiments were

cloned into pGEM vector, linearized and transcribed to mRNA using mMESSAGE mMACHINE T7

Ultra Kit (Ambion) procedure. Xenopus laevis oocytes purchased from Ecocyte were injected with a

volume of 50 nL containing either 0.5 – 1.0 ng of each FL-ENaC subunit mRNA or 5 ng of each

DENaC and D*ENaC subunit mRNA. For experiments containing combinations of FL-ENaC and

DENaC, 5 ng of each subunit mRNA was injected. Oocytes were incubated at 16˚C for 12 – 48 hr in

the presence of 100 mM amiloride and 250 mg/mL amikacin. The recordings were performed using

two different ionic solutions with or without 100 mM amiloride (110 mM KCl and 110 mM NaCl)

where all buffers additionally contained 1.8 mM CaCl2 and 10 mM HEPES (pH 7.4). Macroscopic

ENaC currents are defined as the difference between inwards currents obtained in the absence and

in the presence of 100 mM amiloride. To test full activation of DENaC constructs, 2.5 mg/mL Trypsin

was perfused for 5 min in the presence of 100 mM amiloride. Amiloride-sensitive currents were

recorded prior to Trypsin treatment as well as after in order to determine the increase in current

amplitude. All recording experiments were carried out at a holding potential of �60 mV and

repeated independently at least three times.

Whole-cell patch clamp electrophysiology
HEK293S GnTI- cells were grown in suspension at a density of 2�4 � 106/ml in Freestyle medium

with 2% FBS and transduced with the virus (Da, Db, and Dg ; or FL-a, FL-b, and FL-g ) at a multiplicity

of infection (MOI) of 1 and incubated in the presence of 500 nM phenamil mesylate at 30˚C for 12

hr. Five hours before recording, cells were transferred to wells containing glass coverslips at a den-

sity of 0.3 – 0.5 � 106 cells/ml and in Dulbecco’s Modified Eagle Medium supplemented with 5%

FBS and 500 nM phenamil mesylate. Whole-cell recordings were carried out 17 – 24 hr after trans-

duction. Pipettes were pulled and polished to 2 – 2.5 MW resistance and filled with internal solution

containing (in mM): 150 KCl, 2 MgCl2, 5 EGTA and 10 HEPES (pH 7.35). External solution contained
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(in mM): 150 NaCl, 2 MgCl2, 2 CaCl2, 10 HEPES (pH 7.4), and 0.1 amiloride. Test external solution

did not contain 0.1 mM amiloride. As in TEVC experiments, macroscopic ENaC currents are defined

as the difference between inwards currents obtained in the absence and in the presence of 100 mM

amiloride. Holding potential was at �60 mV.

Confocal microscopy
Six mg of mAb 10D4 was dialyzed into 0.2 M carbonate-bicarbonate (Na2CO3/NaHCO3) solution

buffered at pH 9.0. The dialyzed mAb was concentrated to 6 mg/mL. Tetramethylrhodamine (TRITC,

ThermoFisher 46112) was dissolved in DMSO at a final concentration of 1 mg/mL. To the 10D4 solu-

tion, 35 mg of TRITC was slowly added and mixed thoroughly. The 10D4-TRITC mix was incubated at

room temperature in the dark for 2 hr followed by gel filtration to remove excess TRITC. The carbon-

ate-bicarbonate buffer was exchanged with Tris-buffered saline buffer (200 mM NaCl, 20 mM TRIS,

pH 8.0) using PD-10 desalting column. The dye:protein molar ratio of the final TRITC-labeled mAb

10D4 in TBS buffer was approximately 2.8.

HEK293S GNTI- cells were resuspended from DMEM into 2 mL HBSS media, stained with 10 mg

(5 mg/mL stock) of WGA Alexa Fluor 647 conjugate (ThermoFisher W32466) and 170 mg (4.9 mg/mL

stock) of 10D4-TRITC and subsequently incubated at 37˚C for 10 min. The cells were then washed

with PBS two times before resuspended in 1 mL HBSS. Live cell imaging was performed on a Yoko-

gawa CSU-W1 spinning disk confocal microscope using a 60 � 1.4 Plan Apo VC objective. Images

were acquired at a pixel size of 0.108 mm for three different wavelengths, starting at 640 nm, 561

nm and then 488 nm. Exposure time varied depending on sample intensity, but remained the same

for each wavelength between the two samples of infected cells (FL-ENaC and DENaC), 400 ms for

640 nm, 2 s for 561 nm and 600 ms for 488 nm. Images were imported into Fiji for image analysis.
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