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Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein
kinase that sits at the nexus of multiple signaling pathways. Its deep integration
into cellular control circuits is consummate to its implication in diseases ranging
from mood disorders to diabetes to neurodegenerative diseases and cancers.
The selectivity and insulation of such a promiscuous kinase from unwanted
crosstalk between pathways, while orchestrating a multifaceted response to
cellular stimuli, offer key insights into more general mechanisms of cell
regulation. Here, we review recent advances that have contributed to the
understanding of GSK-3 and its role in driving appreciation of intracellular
signal coordination.
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Introduction
Initially discovered as a contributor to regulating the rate-limiting 
step of glycogen synthesis via phosphorylation and deactivation 
of glycogen synthase1, glycogen synthase kinase-3 (GSK-3) has 
since been associated with a variety of other signaling pathways. 
These include cyclic adenosine monophosphate (cAMP) signaling, 
Wnt, Hedgehog, Notch, transforming growth factor-beta (TGF-
β), nuclear factor of activated T cells (NF-AT), and agonists that 
act via stimulation of phosphatidylinositol 3-kinase (PI3K)2–4. To 
date, over 40 GSK-3 substrates have been identified5, and over 500 
others as potential candidates remain to be validated6. With such a 
broad range of pathway involvement and substrate interactions, it is  
unsurprising that GSK-3 participates in the regulation of multiple 
cellular functions, including metabolism, cell motility, apoptosis, 
cell differentiation, proliferation, and embryonic development, and 
that its dysregulation is implicated in various diseases, including 
mood disorders, diabetes, Alzheimer’s disease (AD), and several 
forms of cancer7,8. Depending on the type of tumour tissue, GSK-3  
can act as either a tumour promoter or suppressor9. The multi-
plicity of actions of this protein kinase, coupled to its insinuation  
into diverse cellular regulatory processes, creates challenges in 
understanding its true functions and provides deeper insights into 
the interconnectivity of cellular control circuitry. While in no way 
attempting to be exhaustive, we will offer some highlights from 
the last three years of research on GSK-3 that have provided new 
appreciation as well as avenues for future research.

GSK-3 is a ubiquitously expressed serine/threonine kinase that 
exists as two isoforms (GSK-3α and GSK-3β) encoded by two 
distinct genes10. The two proteins share 98% identity in their 
kinase domain, but GSK-3α has a glycine-rich N-terminal exten-
sion that accounts for its larger mass (51 kDa compared with 47 
kDa for GSK-3β). There are also differences in their C-termini, 
with only 36% identity in the last 76 residues. It is distinguished 
among kinases for preferring substrates that are primed by a prior  
phosphorylation event C-terminal to the GSK-3 phosphoryla-
tion site11. The priming phospho-serine or threonine binds within 
a positively charged pocket (created by R98, R180 and K205 in 
GSK-3β) such that a serine or threonine 3-4 residues N-terminal  
to the substrate’s priming residue is directed to the GSK-3 active 
catalytic site. GSK-3 also has the rare characteristic of being 
active under basal conditions. It can instead be inhibited by 
phosphorylation by upstream kinases (S21 for GSK-3α and S9 
for GSK-3β)12, the phosphorylated serine acting as a pseudo- 
substrate at the priming phosphorylation binding pocket resulting in 
competitive inhibition13,14.

Recent advances in GSK-3 biology
Wnt/STOP
In addition to regulation by phosphorylation, GSK-3 activity is 
modulated through association with scaffolding proteins, promot-
ing its association with some substrates and allowing insulation 
from others. A significant challenge in the field of cell signaling 
has been to understand how a single protein kinase or signaling 
component may participate in the control of multiple, distinct 
pathways. Together with dynamic considerations, such as subcel-
lular localization, concentration, activity, and modification state15,  

scaffolding proteins16 form part of the answer. The best character-
ized interaction between GSK-3 and a scaffold is its association with 
Axin. Less than 10% of the total GSK-3 molecules (α or β) in a cell 
is associated with Axin, but only GSK-3 bound to Axin is capable 
of phosphorylating β-catenin as part of the canonical Wnt signaling 
pathway17. Through this sequestration, Axin consigns a portion of 
the GSK-3 cellular pool to Wnt-related signaling. In the absence of 
Wnt ligands, a destruction complex is formed comprising Axin, ade-
nomatosis polyposis coli (APC), casein kinase-1α (CK1α), GSK-3, 
β-transducin repeat containing protein 1 (β-TrCP) and β-catenin. 
This complex maintains low levels of cytosolic β-catenin. After a 
priming phosphorylation by CK1α, GSK-3 further phosphorylates 
β-catenin allowing it to be recognized and polyubiquitinated by the 
E3 ligase, β-TrCP, and fating it for degradation by the 26S protea-
some18,19. Upon stimulation by Wnt, the co-receptors Frizzled (Fzd) 
and low-density receptor-related protein (LRP5/6) cluster together 
with another scaffolding protein, Disheveled (Dvl). Activated 
Dvl binds to Axin, bringing GSK-3 and CK1 into proximity with 
LRP5/6. A recent structural and kinetic study of LRP6 peptide with 
a Ser/Pro-rich sequence showed not only that Axin-bound GSK-3 
phosphorylates LRP5/6 but also that phospho-LRP5/6 motifs act as 
direct inhibitors of GSK-320. GSK-3 thus fashions its own inhibitor 
by phosphorylating LRP5/6. Axin is also phosphorylated by GSK-3 
and, in this state, adopts an “open” conformation that associates with 
β-catenin and LRP5/6. When GSK-3 is inhibited, the equilibrium 
shifts towards dephosphorylation of Axin by protein phosphatase-1 
(PP1) and to a “closed” conformation that diminishes its associa-
tion with β-catenin and LRP5/621. β-catenin thereby accumulates 
in the cytoplasm and translocates to the nucleus where, associated 
with TCF/LEF (T-cell factor/lymphoid enhancer binding factor) 
DNA binding proteins, it regulates gene expression. Dephosphor-
ylated Axin auto-inhibits through an intermolecular interaction of 
its β-catenin binding domain (BCD) and its DIX domain, and high 
concentrations of β-catenin may win out the competitive inhibi-
tion, thus triggering reformation of the complex and regulation of  
β-catenin levels21. These studies of LRP5/6 and Axin provide  
insight into the mechanism of signaling regulation and draw  
attention to the role of conformational changes and allosteric  
interactions that are affected by phosphorylation.

Although the above schema describes the canonical Wnt/β- 
catenin signaling pathway, there has been recent focus on  
β-catenin-independent Wnt signaling, as reviewed by Acebron and 
Niehrs22. LRP5/6-bound Wnt does not simply feed into canoni-
cal Wnt signaling but can branch off to regulate other pathways. 
Since phosphorylation by GSK-3 can prime many proteins, in addi-
tion to β-catenin, for E3 ubiquitin ligase recognition and eventual  
proteasomal degradation, suppression of GSK-3 activity leads to 
stabilization of these proteins. This process of Wnt-dependent sta-
bilization of proteins has been referred to as Wnt/STOP and peaks 
in the G

2
/M phase of the cell cycle23. Wnt/STOP signaling is pos-

tulated to slow degradation of proteins as cells prepare to divide. 
The Niehrs lab recently showed that Wnt/STOP is independent 
of β-catenin by studying Wnt signaling in sperm where effects of 
transcription can be excluded24. In another branch of Wnt/LRP5/6 
signaling, referred to as Wnt/TOR, tuberous sclerosis complex 2 
(TSC2) phosphorylation by GSK-3 is inhibited such that TORC1 is 

Page 3 of 7

F1000Research 2017, 6(F1000 Faculty Rev):167 Last updated: 20 FEB 2017



no longer repressed and protein synthesis is promoted25. Together, 
these three branches of Wnt/LRP5/6 signaling control various 
aspects of the cellular proteome by promoting gene expression 
(Wnt/β-catenin) and protein synthesis (Wnt/TOR) and by decreas-
ing protein degradation (Wnt/STOP). What is less clear is whether 
these pathways are tied to the theory that GSK-3 can be sequestered 
into multivesicular bodies during Wnt signaling26. Chronic activa-
tion of Wnt components is reported to lead to association of the 
Axin complex with the endocytotic LRP6 signalosome, giving rise 
to multivesicular bodies that physically separate GSK-3 from the 
cytosol by two lipid bilayers. However, there are a number of cave-
ats of the original experimental evidence, as outlined by Metcalfe 
and Bienz27.

A defined subset of proteins may be stabilized by Wnt/STOP  
in a concerted fashion to set the stage for mitosis. Identification  
of those proteins stabilized in this manner may uncover new  
players in cell cycle control and processing. It is also possible  
that there are distinct subsets of regulatory protein complexes 
within the Wnt/STOP response that are dedicated to particular  
compartments.

GSK-3 regulation by post-translational modifications
Besides exploring the regulation of GSK-3 through association 
with scaffolding proteins and phosphorylation at S9/21, recent find-
ings have explored GSK-3 regulation by other post-translational 
modifications. A distinct phosphorylation site occurs at S389 on  
GSK-3β (GSK-3α lacks this residue)28. With a mouse model in 
which S389 was mutated to alanine to prevent phosphorylation, 
it was shown that this modification restrains GSK-3 activity inde-
pendently of S9 phosphorylation. GSK-3β is phosphorylated at this 
site by p38 mitogen-activated protein kinase (MAPK). Phosphor-
ylation of GSK-3β at S389 occurs predominantly in the thymus29 
and is induced in response to DNA double-strand breaks. Inactiva-
tion of GSK-3β leads to stabilization of induced myeloid leukemia 
cell differentiation protein (Mcl-1), which is important for promotion 
of cell fitness and protection against apoptosis.

ADP-ribosylation occurs via addition of ADP-ribose from the co-
factor β-NAD+ to a protein substrate. Like phosphorylation, this 
reaction is reversible through the action of ADP-ribosyltransferases 
in the forward direction and ADP-ribosylhydrolases in the reverse 
direction. Recently, ARTD10 was identified as catalyzing mono-
ADP-ribosylation of GSK-3β. This results in decreased in vitro 
kinase activity of GSK-3β. This inhibition has also been observed 
in U2OS cells that co-express GFP-ARTD10 and GSK-3β30. Com-
plementing this finding was the discovery that MacroD2 acts as a 
mono-ADP-ribosylhydrolase that removes the ADP-ribose group 
from GSK-3β, thus restoring its activity both in vitro and in cells31.

GSK-3β is also citrullinated within its N-terminal domain by pro-
tein arginine deiminase 4 (PAD4) in a reaction in which arginine 
residues are converted to (uncharged) citrulline residues. This 
modification was observed to promote nuclear accumulation of  
GSK-3β32. In a distinct study, ubiquitination of GSK-3 at lysine 63 
by the E3 ligase TNF receptor-associated factor 6 (TRAF6) was  
shown to be essential for incorporation of GSK-3 into a Toll-like  
receptor 3-assembled multiprotein complex that then activated 

an ERK and p38 MAPK immune response via pro-inflammatory 
cytokine production33. Only GSK-3β (not GSK-3α) was involved 
in TLR3-mediated pro-inflammatory cytokine production. This  
was determined by inhibition of inflammatory cytokines—includ-
ing interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) 
and IL-10—in GSK-3β selectively silenced bone marrow-derived  
macrophages.

Non-redundancy of GSK-3 isoforms
Despite their high degree of structural similarity, the two isoforms 
of GSK-3 are not functionally equivalent. Homozygous inactiva-
tion of GSK-3β is embryonically lethal for mice because of mas-
sive liver degeneration or cardiac patterning defects, and GSK-3α is 
unable to rescue this phenotype34. GSK3-α null mice, on the other 
hand, are viable. The research literature has also tended to focus on 
GSK-3β and has largely neglected GSK-3α.

Two recent studies, however, have looked specifically at GSK-3α. 
In the first, GSK-3α global knockout mice were observed to have a 
shorter lifespan than their wild-type littermates. This led to the dis-
covery that GSK-3α is a suppressor of ageing, retarding age-related 
pathologies in the heart, liver, small intestine, bones and joints35. 
Although this study did not focus on the molecular mechanisms by 
which GSK-3α mediated these effects, two pathways that involve 
autophagy were implicated. Activation of protein kinase B (Akt/
PKB) via the insulin/insulin-like growth factor 1 (IGF-1) signal-
ing pathway failed to impair autophagy in GSK-3α knockout mice. 
Moreover, loss of inhibition of the mechanistic target of rapamycin 
(mTOR) pathway was critical to the ageing phenotypes. GSK-3 
inhibits mTOR complex 1 (mTORC1) via interaction with TSC2, 
and unrestrained activity of mTORC1 in GSK-3α knockout mice 
led to significant inhibition of autophagy, impairment of which was 
proposed to promote ageing.

A second study focusing on GSK-3α showed that this isoform  
plays a role in atherosclerosis, a disease of the medium and large 
arteries in which arterial walls are inflamed and accumulate lip-
ids. In this study, GSK-3α knockout mice were crossed with low-
density lipoprotein receptor-deficient (Ldlr−/−) mice and effects of 
GSK-3α deficiency on high-fat diet-induced atherosclerosis were 
examined36. When placed on a high-fat diet, both heterozygous 
and homozygous GSK-3α knockout mice developed significantly 
smaller atherosclerotic lesions and had significantly less hepatic 
lipid accumulation compared with the Ldlr−/−, Gsk3a+/+ control mice. 
In vitro treatment of thioglycolate-elicited peritoneal macrophages 
with glucosamine or tunicamycin revealed a fourfold increase in 
IL-10 expression in GSK-3α-deficient macrophages compared with 
animals with wild-type GSK-3α. Elevated levels of IL-10 were  
also detected in high-fat diet-fed mice that lacked GSK-3α.  
These data point to possible roles of GSK-3α in regulation of pro-
inflammatory and anti-inflammatory responses, as has also been 
suggested for GSK-3β in other systems37.

Inhibitor development
Although there has been a slowly growing literature that distin-
guishes GSK-3α from GSK-3β, functional redundancy of the two 
isoforms may turn out to be an effective means of regulating total 
GSK-3 activity should an isoform-specific inhibitor be developed. 

Page 4 of 7

F1000Research 2017, 6(F1000 Faculty Rev):167 Last updated: 20 FEB 2017



All currently available small-molecule inhibitors are equipotent 
towards both isoforms. Moreover, the pro-oncogenic effects of 
GSK-3 inhibition on β-catenin stabilization require greater than 
75% inhibition, and no impact is observed if only one isoform is 
inactivated. This selective therapeutic value is further supported by 
the fact that birds that have no GSK-3α have significantly lower 
levels of tau phosphorylation, one of the pathologies associated 
with AD38. However, the structural similarity of isoforms, espe-
cially in proximity to the ATP binding site (the common target 
of most inhibitors), has stymied development of isoform-specific 
inhibitors to date.

A possible alternative approach takes advantage of inherent  
specificity of substrates for their respective kinases. Substrate- 
competitive inhibitors provide a promising route to selectivity 
that also yields more moderate levels of inhibition, which may be 
desirable in the treatment of chronic diseases where target abla-
tion is deleterious39. This approach led Eldar-Finkelman et al. to 
look at developing a GSK-3-specific inhibitor from a substrate pep-
tide. Building on previous work in which they developed a pep-
tide lead compound derived from heat shock factor-1 (HSF-1)40, 
they improved on the compound such that it acts as both a sub-
strate and an inhibitor. By retaining the phosphorylation site, the 
second-generation compound (termed L807) is first phosphorylated 
and then becomes inhibitory41. By molecular dynamic simulation, 
these authors suggest that the mechanism of inhibition relies on 
phosphorylation changing the conformation of L807 and shifting 
it within the substrate binding trough to lock down on the peptide. 
When dually phosphorylated, the L807 peptide forms a stable 
hydrophobic center within itself and the two phosphorylated ser-
ine residues bind to the positively charged priming site cavity on  
GSK-3, forming hydrophobic contacts with the substrate bind-
ing pocket. Cell permeability was achieved by addition of a C14 
fatty acid to the N-terminal end of the peptide to yield L807mts. 
As a bonus, this N-terminal conjugation appears to enhance phar-
macological properties, as compound degradation is typically the 
weakness of peptide-based inhibitors. Rather, L807mts is stable, 
can penetrate the blood-brain barrier, and is non-toxic in mice at 
effective doses. Mice treated with L807mts exhibited improved 
cognitive and social behaviours in an AD model. The authors  
postulate that L807mts acts to increase autophagic flux, thereby 
clearing β-amyloid plaques present in the disease model. What 
is most exciting about this work is that it opens up a new way of  
thinking about kinase inhibitor development in that the strategy 
relies on the kinase to create its own inhibitor that is then resistant 
to dissociation by virtue of being phosphorylated.

We also note that the clinical development of GSK-3 inhibitors  
has not been rosy as a series of highly selective and potent small 
molecules have not made it past pre-clinical assessment. One  
exception is the non-ATP competitive inhibitor tideglusib or 

NP03112. This molecule reached phase II clinical trials for the 
treatment of AD42. Although the results of this trial suggested that 
the drug was safe over the 26-week course of the study, no clini-
cal benefits were observed for patients with mild to moderate AD. 
There were promising results, however, in a low-dose group sug-
gesting that its pharmacological action should be further examined 
to find optimal conditions for inhibition, especially given that no 
other drugs have yet proven successful in halting progression of 
this disease.

Future considerations
The enduring view of signal transduction that is still espoused in 
textbooks and product catalogs is that signaling is largely linear 
with some arrows linking feedback mechanisms and crosstalk. As 
numerous proteomic studies have amply demonstrated, proteins are 
not organized in such simplistic cascades and instead are clustered 
into macromolecular complexes, often tasked with subspecialized 
functions. This view of signaling helps to explain the exquisite level 
of tuned responses within cells as well as overall coordination of 
responses. Yet our approaches to tampering with signaling mol-
ecules for therapeutic use still suppose that these targets are arranged 
in discrete pathways. Moreover, our experimental tools are largely 
agnostic to the intricate decoration of signaling hubs and clusters and 
take an indiscriminate approach to blocking their targets—treating 
all of the target molecules identically, regardless of their disposition 
within subcellular complexes. This is true of small interfering RNA 
(siRNA), gene knockouts, drugs and CRISPR/CRISPR-associated 
protein-9 nuclease (Cas9). This may also explain the low threshold 
for adverse side effects, especially in chronic diseases where the  
targets are not wildly active and play essential roles in multiple, 
unaffected tissues. If this is true, it also represents a largely untapped 
opportunity for increased selectivity and precision in therapeutic 
targeting. In the case of GSK-3, for example, blocking its asso-
ciation with specific scaffolding molecules or regulatory elements  
may allow modulation of a problematic signaling mode while  
leaving its functions in other systems unharmed. Greater appre-
ciation of the subcellular geography and microdomains of protein 
assemblies should also lead to better predictive modeling of normal 
and disease conditions and consign the simplistic, two-dimensional 
regulatory circuits to historical rather than teaching books.
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