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Posttraumatic osteoarthritis: from basic science to
clinical implications
Justin M. Haller, MDa,*, Marjolein C H. van der Meulen, PhDb, Steven Olson, MDc, Donald Anderson, PhDd,
J. Lawrence Marsh, MDd, Zachary Working, MDe

Abstract Posttraumatic osteoarthritis (PTOA) is a subset of osteoarthritis that occurs after joint injury and is associated with degra-
dation of articular cartilage and subchondral bone. As comparedwith primary osteoarthritis, PTOAoccurs in a timewindow initiated by a
traumatic event resulting in damage to layers of joint structure and alterations in joint shape. As techniques in open reduction and internal
fixation continue to mature, our success in preventing posttraumatic osteoarthritis has not kept pace. Advances in research in the
subchondral bone, inflammatory response, and joint mechanics continue to open our understanding of this posttraumatic process. In
addition, there are possibilities emerging as biological agents to therapeutically alter the progression of PTOA.
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1. Introduction

Osteoarthritis (OA) is a whole joint disease, and the major
cause of disability in the adult population is due to joint
stiffness, swelling, and ultimately loss of function. Joint
pathology associated with OA includes disruption in normal
cartilage morphology, changes in the subchondral bone
properties, and osteophyte formation at joint margins.
Traumatic joint injuries, such as meniscus or ligament tears
or damage to articular cartilage, increase the susceptibility of
developing a specific form of the disease, posttraumatic OA

(PTOA). In contrast to the indeterminate timing of OA
initiation and development, PTOA develops after a defined
injury. In addition to cartilage damage, PTOA is associated
with changes to subchondral bone.

2. Role of Bone Remodeling in PTOA Development

Understanding early stage PTOA requires preclinical models,
which demonstrate progressive changes in the subchondral bone
initiating with bone resorption and loss before late-stage bone
formation.[1,2] To examine OA development and progression, a
noninvasive load-induced model of joint damage in adult mice
was developed. The application of repetitive (daily) loading to the
knee leads to the development of OA-like features in the
articular cartilage, rapid changes in the periarticular bone
including osteophytes, and finally subchondral cortical bone
sclerosis.[3] Alternately, a single bout of compressive load
applied to the mouse knee leads to PTOA.[4] Cartilage and
bone tissue damage develop over time and are evident at 1 and 2
weeks after loading, but not immediately after load application
(0 weeks). In subchondral bone, increased bone resorption
occurred with early stage arthritis in the 2-week window after
loading. This model provides an opportunity to study the early
events after PTOA initiation and apply treatments immediately
or at a delay after joint injury.

Bisphosphonates, including alendronate, significantly suppress
bone resorption and turnover and can be used to inhibit
subchondral bone remodeling after PTOA initiation. In pre-
clinical studies, inhibiting remodeling through alendronate
treatment immediately after joint injury to initiate PTOA slows
the progression of cartilage degeneration and reduces subchon-
dral bone changes.[5] However, in clinical patients with OA,
efforts to halt further OA progression by inhibiting remodeling
through bisphosphonate treatment have yielded mixed results.[6]

These findings suggest awindow after OA initiation duringwhich
inhibiting the initial increase in remodeling can slow future OA
development. We sought to determine the contributions of
subchondral bone remodeling to PTOA progression using
alendronate-based inhibition of remodeling after load-induced
PTOA initiation. We hypothesized that inhibiting remodeling
immediately after PTOA initiation will most effectively attenuate
load-induced PTOA progression.
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To study whether inhibiting bone remodeling slows OA
progression after the initiation of load-induced joint damage,
the repetitive loading PTOA model was used.[7] For this model,
26-week-old male mice received a single bout of loading andwere
followed for 3 or 6 weeks while receiving alendronate treatment
to inhibit bone remodeling immediately after loading (0-week
group) or at 1 or 2 weeks postloading. Control mice received
saline injections for 3 or 6 weeks. Articular cartilage degeneration
and cartilage thickness in the tibial plateau were quantified by
histological staining. Bone changes in the subchondral plate and
epiphysis were analyzed using micro-CT. Bone remodeling was
characterized by immunohistochemistry.

Overall, severe joint damage, including substantial erosions of
both cartilage and subchondral bone, occurred in the medial tibia
6 weeks after a single bout of loading. Inhibiting remodeling
through alendronate treatment immediately after load-induced
damage initiationmost effectively slowed arthritis progression, as
reflected by reduced load-induced cartilage damage, preserved
subchondral bone volume at 3 and 6 weeks, and decreased
osteophyte formation at 6 weeks. Delaying the inhibition of bone
remodeling reduced load-induced cartilage degeneration at 6
weeks but did not attenuate OA-related bone changes with
osteophyte formation and loss of subchondral bone volume
similar to vehicle treatment.

These results indicate that subchondral bone loss contributes to
cartilage changes in load-induced PTOA. Furthermore, based on
these data and other studies, low bone stiffness may contribute to
OA development.[7,8] More research is required to better
understand how best to modulate subchondral bone to reduce
or delay PTOA development after joint injury.

3. Inflammation in the Pathogenesis of PTOA

McKinley made the observation that the rates of fair to poor
clinical outcomes for articular fractures such as tibial plateau and
acetabulum fractures have not changed for 50 years.[9] Impor-
tantly, a major cause of these poor outcomes is PTOA. Hence,
although advances in radiology, surgical techniques, and
implants have improved, the clinical outcomes have not.

Although no medical therapies are available to reduce PTOA
severity, important insights into PTOA pathogenesis have been
revealed over the past decade. Works from both preclinical
animal models and studies of human clinical specimens have
implicated the importance of inflammation in the response to
intra-articular injury in PTOA development.[10–12]

One of the first models was a murine, closed intra-articular
tibial plateau fracture.[13] This model was the first to observe the
natural history of an articular fracture from injury to de-
velopment of PTOA. Using a custom cradle for anesthetized B6
mice and a blunt impactor, a displaced intra-articular fracture
(IAF) is created that developed PTOA histologically in 56 days (8
weeks). This model simulates human disease in that the initial
injury is limited to a focal area on the tibial plateau; however, the
injured joints develop whole joint involvement of PTOA by 56
days. A seminal observation was made at 7 days after acute
articular injury when histology of the joints revealed an extensive
synovitis image throughout the injured joint.[13,14] Before this
observation, the major focus in PTOA research was limited to
injury to the articular cartilage. No attention was given to the role
of the synovium in the development of PTOAbefore this. Detailed
studies of the effect of fracture energy showed that increasing
energy of injury did not result in greater chondrocyte death.[14]

Rather increasing energy of fracture resulted in an increase in

histologically evident synovitis. This work used the liberated
surface area method with micro-CT of intact and broken limbs to
determine fracture energy.

Leveraging the use of different genetic strains of mice, it was
observed that a similar tibial plateau fracture in the knee of an
MRL/MpJ (MRL) mouse resulted in evidence of initial injury
response but without development of histological changes of
PTOA at 56 days.[15] In fact, the proteoglycan content in MRL
cartilage seemed to remain visually unchanged or increased. A
detailed comparison of closed IAF in B6 and MRL mice showed
that IL-1b expression in the synovium of B6 mice was increased
720-fold after IAF and only 74-fold inMRLmice.[14] Increases in
IL-1b after IAF were also demonstrated by other investigators
using a closed IAF model in mice.[16] These early proinflamma-
tory cytokines are also seen in humans after articular fractures.[10]

Subsequent proof-of-concept work using intra-articular ad-
ministration of IL-1 receptor antagonist (IL-1Ra) after acute IAF
in B6mice showed a significant reduction in histological evidence
of PTOA.[17] In comparisons of systemic administration of IL-
1Ra and a single intra-articular injection of IL-1Ra, the single
injection showed superior effect (Fig. 1). Although the systemic
administration of IL-1Ra reduced inflammation, it was also
associated with nonunion of the tibial plateau fracture. Similar
findings of reduction in PTOA severity were observedwith the use
of a drug depot delivery system for intra-articular delivery of IL-
1Ra and with intra-articular injection with stem cells.[18,19]

4. Mechanical Variables That Affect PTOA
Development and Outcome

It has long been dogma, largely based on anecdote and empirical
evidence, that mechanical factors predispose a joint to PTOA
after IAF. This led surgeons to pursue precise articular fragment
reduction to prevent PTOA. However, because mechanical
factors such as the acute fracture severity and chronic contact
stress elevation attributed to residual joint incongruity could not
bemeasured, it has been impossible to understand how they affect
PTOA development and outcome. Furthermore, because out-
comes in joints such as the ankle have likewise been difficult to
measure, challenged greatly by the difficulties of interpreting
plain radiographic views of complex 3D anatomy, the preserva-
tion of joints after surgical intervention has been hard to fully
ascertain.

Reliable methods of predicting who is at risk of a disease often
lead to success in preventing or decreasing the risk or severity of
that disease. Identifying people at high risk makes it possible to
test new treatments in those who are most likely to develop the
disease. The ability to predict PTOA risk after IAF would make it
possible to conduct rigorous clinical trials of new treatments
within a relatively short period of time and to devise in-
dividualized patient treatments. Over the past 2 decades,
important advances in objectively quantifying these mechanical
factors and evaluating joint preservation have opened new
opportunity to establish these relationships in a manner that
can guide clinical treatment decision making.

Objective methods have been developed to measure fracture
severity from standard preoperative CT data. These methods
have been validated in surrogate bone[20] and bovine bone[21]

specimens, and used in clinical studies.[22,23] Fracture severity is
indexed primarily based on the energy released in fracture, which
is directly related to the amount of interfragmentary bone surface
liberated. CT intensities are sampled to incorporate bone density
in the fracture energy computation. Patients with a tibial pilon
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fracture whose severity exceeded a threshold value were much
more highly likely to suffer from PTOA at 2 years postinjury than
those whose did not.[24] The same authors later developed
methods to streamline computation and documented feasibility of
the methods by measuring fracture severity in 394 patients with
IAFs: 129 tibial plateau, 118 tibial pilon, 79 acetabular, 20 distal
radius, and 48 calcaneal.[25]

Chronic elevated contact stress caused by articular surface
incongruity is another strong predictor of PTOA risk after
IAF.[26] Objective methods to index chronic contact stress
elevations using patient-specific computational stress analysis
have been developed based onmodels derived from postreduction
CT scans.[27] Habitual contact stress elevations were quantified
using a time-weighted metric of contact stress overexposure (ie,
harmful exposure to elevated contact stress) that correlated
strongly with the incidence and progression of OA in previous
studies.[28] The percentage of contact area with a stress–time dose
exceeding a tolerance threshold proved a nearly perfect predictor
of PTOA development in ankles 2 years after patients received
surgical treatment for their IAFs.[26]More recently, thesemethods
were applied to the hip (acetabular IAF) and subtalar (calcaneal

IAF) joints.[25] This approach can be highly automated,[29] but it
relied on the availability of a postoperative CT scan, which is not
routinely acquired. Low-dose weight-bearing CT (WBCT) scan
can offer comparable capability, with the added benefit of
imaging the joint in a load-bearing apposition. This advance
comes at a cost similar to conventional radiographs and an
equivalent relative radiation level. Preliminary data indicate that
WBCT images provide superior markers of joint health,
representing a promising tool to hasten the pace of early diagnosis
and advance the clinical care of patients with IAF.[30]

Having computed both fracture energies and contact stress
exposures for patients with IAFs,[25] the results strongly suggest
that these pathomechanical measures are interrelated but their
respective influence on PTOA risk differs between different joints
(Fig. 2). Coupling the objective assessment of these mechanical
risk factors with early imaging markers from WBCT will enable
better prediction, improved understanding, earlier diagnosis, and
more meaningful longitudinal and long-term assessment of
PTOA. This will eventually lead to better informed treatment
decisions and provide a robust framework for the clinical testing
of new treatments to prevent or forestall PTOA.

Figure 1. Local IL-1Ra prevents PTOA 8weeks after fracture (fx). Intra-articular inhibition of IL-1 significantly reducedMankin scores. However, systemic inhibition of
IL-1 led to increased arthritic changes (*increased compared with non-fx controls, P, 0.05; #increased in L (fx) compared with R (non-fx), P, 0.05; **Left limb in
non-fx controls was not fractured). Histological sections of fractured knee [adapted from (12)].

Figure 2. Plots showing how acute fracture severity and chronic contact stress overexposure influence PTOA risk for intra-articular fractures of the tibial pilon,
acetabulum, and calcaneus. The pathomechanical measures are normalized across the groups from0 to 1. Each of the bubbles indicates an individual case, with the
bubble color based on KL grade/PTOA status (green, no PTOA; red, PTOA) at 2 years after surgical treatment. The diameter of the bubble corresponds to the KL
grade (from 0 to 4).
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5. Biological Enhancements for the Prevention
of PTOA

During the past decades, treatment of articular fractures has been
exclusively directed toward restoring or at least improving the
mechanical environment by reducing the fracture fragments. We
are nowat timewhere at least experimentally,we can start to assess
the role of biological enhancements to improve cartilage outcomes.

Articular injury starts as a mechanical event. The acute
mechanical injury to the articular surface that produces the
fracture damages the cartilage. The severity of this acute injury is
a very important part of the pathophysiology of subsequent
PTOA. Higher energy fractures damage more cartilage. The
second important mechanical variable surgeons modify by
surgically reducing the fracture which avoids overload and
increased contact stress.Mitchell and Shepard[31] in 1980 showed
in a rabbit knee intra-articular fracture model that compression
fixation resulted in hyaline cartilage repair which led to the belief
that perfect articular reduction could prevent PTOA.

These mechanical factors lead to complex biological and
mechanical interplays that result in either a preserved articular
surface or progressive loss of articular cartilage and PTOA. For
decades, most research has focused on the mechanical side, and
there have been few studies on the biological changes that occur
after injury and during healing of an intra-articular fracture. In
recent years, most scientific investigation of cartilage after
traumatic injuries has been in the knee and focused on anterior
cruciate ligament injuries which result in a blunt impact to the
cartilage and are very different from major articular fractures.[32]

There are few basic science studies or animal models of intra-
articular fractures.

Tochigi et al[33] developed a human cadaver ankle drop tower
pilon fracture model. The cartilage on the fractured articular
surface was examined with confocal microscopy over 2 days
postfracture. It showed a time-dependent spreading zone of cell
death that started at the fracture margin and evolved with death
of cartilage cells farther from the fracture line developing over
time. This raised the possibility that mediators released from
injured cartilage lead to progressive cell death in initially viable
cartilage cells. Using information from other progressive tissue
damage models, it was hypothesized that intense bursts of
reactive oxygen species (ROS) and free radicals produced by
mitochondria from injured cartilage may be what leads to
progressive tissue damage. Rotenone, which inhibits the mito-
chondrial transport chain, has demonstrated preserved chondro-
cytes in a cartilage impaction testing.[34] Further experiments
demonstrated that blocking production of ROS by mitochondria
can be accomplished at 2 different levels by either N-acetyl
cysteine (NAC) or amobarbital.[35,36]

Goetz et al[37] developed a large animal articular fracture with
internal fixation model in the Yucatan mini pig hoc (ankle) joint.
In this model, both anatomic reduction and a 2-mm step off led to
loss of articular cartilage. Loss of cartilage was seen on both sides
of the hoc joint (talus and tibia). Further experiments using the
same model by Coleman et al assessed cartilage outcomes in
reduced fractureswith andwithout treatment by amobarbital and
NAC. At 6 months, compared with controls, cartilage was
substantially preserved in both treatment groups.[36]

Based on cadaver and large animal trials, the stage is seemingly
set for a clinical trial in patients with an articular fracture. Given
their typical rapid progression to PTOA, patients with tibial pilon
fracture may be the optimal patient population to study PTOA.
One potential mechanism for PTOA development is the activation

of the mitochondrial ROS pathway that leads to cell death.
Amobarbital and NAC are safe and effective medications that can
stabilize this pathway andpotentiallymitigate PTOAdevelopment.

6. Summary

PTOA continues to affect function and quality of life in young,
active patients without much change in the past several decades.
Recent investigation demonstrates that subchondral bone
changes influence the cartilage and play a role in PTOA
development. Local joint postinjury inflammation can trigger
joint synovitis leading to articular changes, and this joint
inflammation can be targeted by local anti-inflammatories.
Advances inWBCT and image analysis techniques that calculate
fracture severity and joint space changes have allowed providers
to better target patients at risk for developing PTOA. ROS and
free radicals seem to play a role in articular cartilage damage
after injury, and stabilizing this mitochondrial ROS pathway
with medications may reduce PTOA. After years of PTOA
research, investigators are close to identifying high-risk PTOA
patients and deploying medications that modulate subchondral
bone changes, dampen the postinjury inflammatory cascade, or
stabilize the mitochondrial ROS pathway to effectively mitigate
PTOA development.
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