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Angiogenesis is a key mechanism for tumor growth and metastasis and has been a
therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant
with the rapidly proliferating tumor cell population and tumor outgrowth. Current
angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range
of downstream signaling molecules provide clinical benefit, but not without significant side
effects. miRNAs are important post-transcriptional regulators of gene expression, and
their dysregulation has been associated with tumor progression, metastasis, resistance,
and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief
overview of the current anti-angiogenic approaches, their molecular targets, and side
effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we
highlight specific miRNAs, based on their activity on endothelial or cancer cells, we
discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the
importance of angiogenesis being evaluated in such combinatorial approaches.
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INTRODUCTION

Angiogenesis is the physiological process for new blood vessel development from pre-existing ones.
It is a highly coordinated, multistage process that occurs in physiological conditions, such as wound
healing, the female reproductive cycle, and embryonic development, and many pathological
conditions, including cancer. The angiogenic outcome highly depends on the balance of growth
factors and angiogenesis inhibitors. Dysregulation of this balance leads to the increased or limited
vascular network identified in a series of pathologies, such as retinopathies, inflammatory disorders,
cardiovascular disorders, and tumors (1–3).

The rapid growth of tumor cells requires the continuous supply of oxygen and nutrients, the
diffusion of which in vivo is significantly limited at 100-500 microns from the nearest capillary. Solid
tumors cannot grow more than 2-3 mm in diameter and thus become dormant without vascular
support (4, 5). The rapid proliferation of the tumor cells leads to their distant localization from the
nearest capillary and the induction of hypoxia, a major driver of angiogenesis. Hypoxia leads to the
secretion of many growth factors, such as vascular endothelial growth factor (VEGF) and basic
fibroblast growth factor (bFGF), cytokines, such as interleukin 8 (IL-8), and other pro-angiogenic
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mediators, such as sphingosine-1 phosphate (S1P), leading to the
proliferation, migration and tumor-like formation of the nearby
endothelial cells (5–8). The newly formed tumor vessels are
markedly distinct from the normal capillaries due to their chaotic
structure characterized by the absence of proper orientation, the
limited pericyte and smooth muscle cell coverage, blunt capillary
ends, increased leakiness, and limited perfusion. The increased
leakiness provides fertile ground for tumor cell dissemination
and metastasis, while the limited mural support often leads to
their collapse due to the higher interstitial pressure of the
tumoral area, increasing further the hypoxic conditions (3, 5, 9).

Targeting the tumor vascular network with anti-angiogenic
therapy, despite the excellent preclinical results and the high
potential these provided, did not meet the expectations in the
clinic, with ephemeral results and not significant benefit in
overall survival in most tumors. A prominent reason for this is
considered the induction of compensatory mechanisms due to
increased hypoxia upon anti-angiogenic treatment, which drives
the overexpression of other pro-angiogenic factors, blocks
immune functionality, and limits the perfusion of cytotoxic
therapies (10, 11). During the last decade, the notion of
vascular normalization as an outcome of anti-angiogenic
therapy has risen, which can be achieved within a short
therapeutic window during anti-angiogenic therapy. Tumor
vascular normalization is expected to induce the integrity of
the tumor vessels providing increased mural cell support, limited
leakiness, inhibition of trans-endothelial cancer cell migration
and metastatic incidence, and higher perfusion, which would
limit the hypoxic areas and accommodate improved anti-cancer
drug delivery in the tumoral area (12–14). The majority of the
studies have focused on VEGF inhibition, the main target of anti-
angiogenic therapies. A precise dosage of VEGF inhibitors has
been demonstrated to inhibit vascular permeability by tightening
cell-to-cell contacts and recruiting pericytes. VEGF is not the sole
mediator of vascular permeability, as an increasing volume of
data has highlighted the involvement of other molecular players
and pathways, such as Angiopoietin-2, Semaphorin 3A, nitric
oxide, superoxide dismutase-3, Notch, WNT, platelet-derived
growth factor-B (PDGF-B) and bone morphogenetic protein
(MBP) signaling in this process (10, 11, 13, 15, 16).

Nucleic acid-based therapeutics have attracted attention for the
treatment of several diseases, including cancer (17, 18),
inflammation (19), or the development of vaccines, such as
against SARS-CoV-2 (i.e. COVID-19) (20–22). Among the
different types of nucleic acids currently under research, miRNAs,
natural molecules produced by the cells frequently transcribed along
with protein-expressing genes (23, 24), are commonly dysregulated
in diseases, such as cancer, inflammation, and others. Not
surprisingly, miRNAs were recognized as potential prognostic and
diagnostic markers in cancer (23–26). More importantly, as
miRNAs are small, non-coding RNAs that utilize the cell’s RNA
interference mechanism to regulate multiple gene expressions,
miRNAs are evaluated as therapeutic tools against cancer (23).
An increasing body of literature focuses on dysregulated miRNAs
for their properties as tumor suppressors or oncogenes, and on their
action to either suppress or activate tumor-promoting
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pathways (23). Exogenous delivery of miRNA constructs,
similarly to the exogenous delivery of siRNAs, aims to replace or
correct observed miRNA dysregulations. Unlike siRNAs though,
miRNA replacement therapies induce the expression or increase the
levels of nucleic acid sequences naturally occurring in the cells,
which should have an indistinguishable effect on the endogenous
miRNAs (23, 24). Though this approach has limitations, the
exogenous delivery of miRNAs should induce a strong beneficial
effect on cells associated with the disease (i.e., cancer cells or cells of
the tumor microenvironment with dysregulated miRNA
expression) while having minimal effects on normal cells (i.e.,
absence of dysregulation) (27).

Representatively, miR-34a is characterized as a master tumor
suppressor against multiple cancer types, capable of regulating
proliferation, migration (28), apoptosis (29), metastasis,
senescence, differentiation, and immune responses (30).
Similarly, the clinical potential and translation of other
miRNAs are currently undergoing. We are not outlining these
studies, as several review publications focus on the current and
past clinical trials [indicatively, refer to: (31–33)]. As miRNAs are
expressed in all types of cells, miRNAs regulate vascular
development and angiogenesis in endothelial cells (EC).
Landskroner-Eiger et al. (34) summarized the importance of
miRNAs in angiogenesis from the perspective of the Dicer
enzyme. Dicer enzyme is a key component in the biogenesis of
miRNAs, and several studies evaluated the effect of Dicer
deletion/inactivation in normal vascular development. Dicer
activity affected angiogenesis, attributed to defective miRNA
expression, dysregulating the expression of VEGF and its
receptors. As miRNA dysregulation in cancer has been well
documented (35) either through cell-to-cell communication
between cancer cells and EC or EC intracellular miRNA
dysregulation, utilization of miRNAs as targets or regiments
can benefit cancer treatments through regulation of EC
function and formation of blood vessels (36, 37). There is an
increasing interest in the combination of anti-angiogenic agents
with traditional chemotherapeutics and several clinical trials
pursued that approach (2, 38). We sought to explore the use of
miRNAs for cancer treatment due to their ability to regulate
angiogenesis and focus on their potential and utilization as
adjuvant therapies with chemotherapeutics because of their
anti-angiogenic properties. Although there is a substantial body
of literature focusing on miRNAs and angiogenesis, limited work
exists on their combination with chemotherapeutics
predominately due to their anti-angiogenic properties. Here, we
present miRNAs that are frequently studied due to their
angiogenesis-inhibiting capacity and have been combined with
traditional chemotherapeutics, even when the utilization of these
miRNAs was not because of their anti-angiogenic properties.
CURRENT ANTI-ANGIOGENIC THERAPIES

Not long after its discovery, VEGF was characterized as a
principal vascular regulator (39, 40). VEGF haploinsufficiency
led to embryonic lethality due to impaired angiogenesis and
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blood vessel formation (41, 42). The striking impact on
angiogenesis, vascular morphology, and functions upon VEGF
inhibition or deficiency, along with its overexpression in most
solid tumors, including lung, breast, liver, and ovarian cancers,
brought it to the frontline of anti-angiogenic targets, where it
remains till today. The first FDA-approved anti-angiogenic drug
was bevacizumab, a monoclonal antibody against VEGF (43, 44).
Bevacizumab, combined with chemotherapy, improved overall
survival in colorectal cancer (45) and soon provided encouraging
results when tested in ovarian, cervical, non-small cell lung
cancers, and mesothelioma. Today, bevacizumab is FDA-
approved for colorectal cancer, non-small cell lung cancer,
renal cell carcinoma, cervical, fallopian tube cancer, peritoneal
cancer, and glioblastoma, whereas it failed to provide clinical
benefit in the majority of the other cancer types, including breast
cancer, for which the FDA approval lasted for a short period (2).
Apart from bevacizumab, other antibody-based anti-angiogenic
inhibitors are ramucirumab and aflibercept, which target VEGF
receptor 2 (VEGFR2) or VEGF-A, VEGF-B and placental growth
factor (PlGF), respectively. The rest of the angiogenesis
inhibitors include small molecule or tyrosine kinase inhibitors
that target one or more signaling pathways. Some of these
tyrosine kinase inhibitors, such as sunitinib and regorafenib,
inhibit a wide range of molecular targets and downstream
mediators. The current, clinically administered anti-angiogenic
inhibitors, their molecular targets, and the approved cancer types
are presented below (2, 46–54):

• Bevacizumab, targeting VEGF-A, for glioblastoma, colorectal,
cervical, fallopian tube, peritoneal, non-small cell lung
cancers and renal cell carcinoma.

• Ramucirumab, targeting VEGFR2, for gastric, gastroesophageal
junction, non-small cell lung and colorectal cancers.

• Aflibercept, targeting VEGF-A,-B and PlGF, for colorectal
cancer.

• Axitinib, targeting VEGFR1-3, for renal cell carcinoma.
• Cabozantinib, targeting VEGFR1-3, receptor tyrosine kinase

(KIT), tropomyosin receptor kinase B (TRKB), anexelekto
receptor tyrosine kinase (AXL), Rearranged during
transfection (RET), tyrosine kinase MET, Fms-like tyrosine
kinase-3 (FLT-3), TEK receptor tyrosine kinase (TIE2), for
hepatocellular and renal cell carcinomas, and Medullary
thyroid cancer.

• Everolimus, targeting mammalian target of rapamycin
(mTOR), for breast, pancreatic, gastrointestinal, and lung
cancers, Renal cell and subependymal giant cell carcinomas.

• Lenalidomide, targeting Ikaros family zinc finger protein 1,3
(IKZF1,3), E3 ubiquitin ligase, for follicular, mantle cell and
marginal zone lymphomas, and multiple myeloma.

• Lenvatinib, targeting VEGFR1-3, for endometrial,
hepatocellular and renal cell carcinomas and Thyroid cancer.

• Pazopanib, targeting VEGFR1-3, PDGF receptor-a/b
(PDGFR-a/b), fibroblast growth factor receptor 1,2
(FGFR1,2), c-KIT, for renal cell and soft tissue carcinomas.

• Sorafenib, targeting VEGFR1-3, PDGFR-b, FLT-3, c-KIT,
RAF kinases, for hepatocellular and renal cell carcinomas
and thyroid cancer.
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• Sunitinib, targeting VEGFR1-3, PDGFR-a/b, KIT, FLT-3,
colony-stimulating factor receptor Type 1 (CSF-1R), RET,
for gastrointestinal stromal and pancreatic cancers and renal
cell carcinoma.

• Regorafenib, targeting VEGFR1-3, KIT, PDGFR-a/b,
FGFR1,2, TIE2, discoidin domain receptor tyrosine kinase 2
(DDR2), tropomyosin receptor kinase A (TRKA), Eph2A,
RAF-1, BRAF, BRAFV600E, SAPK2, PTK5, Abelson tyrosine
kinase 1 (ABL), for gastrointestinal stromal and colorectal
cancers and hepatocellular carcinoma.

• Thalidomide, targeting tumor necrosis factor-a (TNF-a), for
multiple myeloma.

• Vandetanib, targeting VEGFR, epidermal growth factor
receptor (EGFR), RET, for medullary thyroid cancer.
LIMITATIONS AND SIDE EFFECTS OF
ANTI-ANGIOGENIC THERAPIES

As seen above, most anti-angiogenic drugs are targeting VEGF or
VEGFR, either solely or in combination with other growth factor
receptors or downstream kinases. Their administration provides
encouraging clinical benefit; however, their application is not
without side effects. The two most critical side effects of anti-
angiogenic therapy are the induction of tumor aggressiveness
along with metastatic potential and the tumor angiogenesis
relapse due to the development of resistance mechanisms. The
induction of tumor aggressiveness and metastatic potential upon
anti-angiogenic therapy is still under debate, as it has been
reported in preclinical models, but not always verified in other
studies, demonstrating the variability of this phenomenon
(55–57).

One of the limiting factors of anti-angiogenic therapy in
cancer is that since cancer cells are not eradicated, as they do
not consist the target of anti-angiogenic therapy, anti-angiogenic
drugs have to be administered over long periods. The ephemeral
outcome of anti-angiogenic therapy and the need for prolonged
treatment eventually lead to the development of resistance upon
anti-angiogenic inhibition. Resistance can be driven by the
tumor cells, the stroma, immune cells, or endothelial
progenitors, is mediated by the upregulation of alternative pro-
angiogenic mediators, and presents cancer type- and patient-
specific variability (8, 58).

Systemic anti-angiogenic drug administration, both in the
case of antibody-specific VEGF inhibition and a wide range of
tyrosine kinase inhibitors, can lead to organ- or tissue-specific
side effects (59). A meta-analysis offive randomized clinical trials
of metastatic colorectal, breast, and non-small cell lung cancers
highlighted the risk of a thromboembolic event as another side
effect of bevacizumab treatment in combination with
chemotherapy (60). Cardiomyopathy and congestive heart
failure have also been reported as side effects of anti-
angiogenic inhibitors (61). Although the exact mechanism for
cardiomyopathy and congestive heart failure upon VEGF
signaling blockade has not yet been fully delineated, the
current notion is that existing conditions depleting the vascular
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reserve, such as hypertension and coronary artery disease, may
be considered risk factors for cardiotoxicity with VEGF signaling
inhibitors, while reduced nitric oxide production, mitochondrial
dysfunction and pericyte population depletion have been
attributed as potential mechanisms (62, 63). It has been further
preclinically demonstrated that abrogation of the physiological
VEGF activity can result in increased systemic (and coronary)
vascular resistance and decreased cardiac output per se, which is
the typical reason for cardiomyopathy development. Moreover,
the roles of chemotherapy or radiation therapy as concomitant
factors in VEGF blockade-induced cardiotoxicity have been
further reported (63, 64).

Two well-known side effects of anti-angiogenic therapy that go
hand in hand are the increased rate of hemorrhage and the
inhibited wound healing process, both of which are determining
factors for the timing of surgical procedures (65). Pulmonary
hemorrhage with fatal outcome has been reported for non-small
cell lung cancer patients with different anti-angiogenesis
inhibitors, such as bevacizumab, ramucirumab, sunitinib,
axitinib, and motesanib. A small percentage of gastrointestinal
tumor patients developed bleeding at the tumor sites, while central
nervous bleeding has also been reported (61, 65). Impaired wound
healing is a common issue. Angiogenesis is a pivotal part of the
wound healing process, mediated by VEGF and other growth
factors, thus is expected that VEGF inhibition hampers the
inflammatory and granulation wound healing phases, pivotal for
the wound healing process. As an alternative, milder anti-
angiogenic treatments have been proposed to overcome this
issue (66).To avoid wound healing deficiency of the surgical area
anti-angiogenic treatment has to be terminated for at least four
weeks before the surgical procedure so that the body will “wash
out” the drug’s effects (61, 65).

The above demonstrate the impact and role of angiogenic
factors in physiological vascular functions, the interdependence
of the primary tumor and the tumor microenvironment, the
need for highly targeted, vascular-specific anti-angiogenic
approaches, and the consideration of anti-angiogenic therapies
specifically targeting aberrant angiogenesis, without affecting
regular angiogenic functions.
MiRNA THERAPEUTICS AND
THEIR ADJUVANT POTENTIAL
AGAINST ANGIOGENESIS

As research on miRNAs rapidly proliferates, miRNAs’ contribution
in tumor suppression via anti-angiogenic function presented
multifaceted therapeutic potentials for these molecules. miRNAs
have primarily been studied for their activity as single molecules
against cancer (17, 35, 67). With numerous miRNAs being able to
regulate cell functions and pathways, the number of potential
mechanisms of action of miRNAs in angiogenesis correlates to
the potential pathways associated with angiogenesis. Nonetheless,
similarly to traditional anti-angiogenic approaches, studies on
miRNAs and angiogenesis have primarily focused in known,
Frontiers in Oncology | www.frontiersin.org 4
more traditional angiogenic pathways. Thus, miRNAs studies
focus on angiogenic factor receptors or signaling molecules in
ECs to inhibit tumor angiogenesis (68), among them more
prominently being VEGF, VEGFR and PDGFR (69–71). As
numerous dysregulated miRNAs have been identified in tumor
samples, here, we will present a few of the miRNAs with explicit
action on angiogenesis and their identified molecular targets.

miR-34a, a master tumor suppressor, is one of the best-
studied miRNAs, and, hence, its activity on tumor cells and
cells of the tumor microenvironment has been thoroughly
evaluated. Several studies have reported on miR-34a’s ability to
inhibit tumor angiogenesis. This activity takes place via multiple
approaches, including the inhibition of the Silent Information
Regulator 1 (Sirt1) expression, increase of the expression of
acetylated Forkhead Box O1 (FoxO1) transcription factor,
Notch1 targeting, and the p53 protein in endothelial progenitor
cells and human cancer cells (72–75). miR-34a downregulation
in EC induced BCL-2-overexpression and inhibition of
apoptosis, while miR-34a upregulation suppresses tumor
angiogenesis, EC proliferation, migration, and tube formation
(76, 77). miR-34a has also extensively been studied in
combination with several chemotherapeutics, such as cisplatin
(78, 79), doxorubicin (80), sorafenib (81), and paclitaxel (82),
among others. Despite the well-studied anti-angiogenic
properties of the miRNA, we did not find research on its
combination with a chemotherapeutic agent based solely due
to its anti-angiogenic properties, rather than miR-34a’s activity
on the tumor cells.

Similarly, the miR-29 family, miR-29a, miR-29b, and miR-29c,
are downregulated in various cancers, such as endometrial
carcinoma, hepatocellular carcinoma, gastric cancer, and breast
cancer (83–86). miR-29b overexpression inhibits angiogenesis and
tumorigenesis in vivo and weakens tube formation, cell
proliferation, and migration in vitro (83). miR-29b prevented
tumor angiogenesis by targeting AKT3 and inhibited Akt3-
mediated VEGF and C-myc activations (86). In a gastric cancer
mouse model, miR-29a/c prevented tumor growth, tube
formation, and suppressed angiogenesis by suppressing VEGF-A
expression (87). Similar to miR-34a, members of the miR-29
family have been attributed with tumor-suppressive properties
and evaluated with several chemotherapeutic agents, such as
cisplatin (88), and paclitaxel (89), among others. Of interest,
miR-29a has been reported to contribute to doxorubicin
resistance in breast cancer cells (90) and inhibit doxorubicin
resistance in colon cancer cells (91). Li et al. (92) reported that
cisplatin treatment induces upregulation of miR-29b, which
suppressed invasion and angiogenesis of the cancer cells in vitro
and inhibited tumor growth and neovascularization in vivo. The
authors demonstrated that ectopic expression of miR-29b via
intravenous administration in a subcutaneous xenograft mouse
model of cervical cancer (HeLa cells) inhibited tumor growth and
VEGF expression, corresponding to a decrease in vessel formation,
although the authors did not evaluate this activity with the co-
administration with cisplatin.

miR-221 and miR-222 modulated the angiogenic behavior of
human umbilical vein endothelial cells (HUVECs) through the
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regulation of c-Kit expression (93). As these miRNAs were among
the most abundantly expressed miRNAs in ECs (94), Nicoli et al.
reported that miR-221 is essential for angiogenesis, in the zebrafish
model (95). In human venous or lymphatic endothelial cells, miR-
221 has been shown to inhibit angiogenesis (93, 96–98). miR-221
has been identified as oncogenic in pancreatic cancer cells (99),
glioblastoma (100), breast cancer (101), and lung cancer (102),
among others. miR-221/222 have also been associated with
increased chemoresistance to cisplatin in ovarian (103) and breast
cancer cells (104). Similar results have been reported with
Adriamycin (doxorubicin) (105, 106), 5-fluorouracil (107), and
paclitaxel (108). Representatively, in vivo analysis of
downregulation of miR-221/222 through local injection in a
breast cancer mouse model enhanced the cisplatin’s tumor
growth inhibition capacity, but no analysis on tumor vasculature
took place (104). In fact, in the in vivo studies of the miRNA-drug
combinations, angiogenesis was not evaluated. This complex
behavior is a representative example of the multi-faceted activity
of miRNAs, which can be cancer- or cell-type-specific, and their
combination with drugs can extend outside of the tumor cells, to the
tumor microenvironment.

The expression of the most potent angiogenesis modulators in
different tumors in terms of downstream targets of miRNAs has
been extensively studied. Multiple miRNAs have been found to
target VEGF since it is the most potent trigger for angiogenesis.
miR-20 (109), miR-29b (110), miR-93 (111, 112), miR-126 (113,
114) target the 3’-UTR region of VEGF-A mRNA. Following, we
provide representative examples of miRNAs with anti-
angiogenic properties that also demonstrated anti-tumoral
activity. miR-27b (115, 116) and miR-128 (69) suppress tumor
progression and angiogenesis by targeting VEGF-C. miR-125b
suppressed EC tube formation by inhibiting E-cadherin (117).
miR-192 targets EGR1 and HOXB9, leading to anti-tumor and
anti-angiogenic activity in human ovarian epithelial tumors
(118). miR-200 family inhibited angiogenesis through direct
and indirect mechanisms by targeting interleukin-8 (IL8) and
CXCL1 secreted by the tumor endothelial and cancer cells (119).
Overexpression of miR-190 inhibited EMT and angiogenesis by
inactivating AKT-ERK signaling (120). miR-206 inhibited HGF-
induced epithelial-mesenchymal transition (EMT) and
angiogenesis in lung cancer, by suppressing Met/PI3k/Akt/
mTOR signaling (121). miR-135a promoted cell apoptosis and
inhibited cell proliferation, migration, invasion, and tumor
angiogenesis by targeting the IGF-1 gene through the IGF-1/
PI3K/Akt signaling pathway in non-small cell lung cancer
(NSCLC) (122). Finally, miR-143 and miR-506, alone and in
combination have been reported to affect angiogenesis, by
inhibiting tube formation in HUVEC cells, while causing
apoptosis to lung cancer cells (123).

As the VEGF family and its downregulation have been
implicated in drug resistance in tumor cells (124–126), it is
reasonable to predict that miRNAs with the capacity to target
members of the VEGF family will become part of a cell-
sensitization goal for specific chemotherapeutics. Due to this
reason alone, studies of miRNA-chemotherapeutic drugs
combinatorial use for cancer treatment have the potential to
Frontiers in Oncology | www.frontiersin.org 5
proliferate in the future (Figure 1). One representative example
would be miR-126, where Zhu et al., (127) demonstrated that
miR-126 decreased the minimum inhibitory concentration of
Adriamycin and Vincristine by targeting VEGF-A. In Table 1,
we present a short list of studies with miRNAs with known anti-
angiogenic activity in combination with chemotherapeutics.

Illustratively, Wang et al. (155) studied the combination of
miR-30a-5p with gefitinib to overcome drug resistance via
regulation of the insulin-like growth factor receptor-1 (IGF1R)
and hepatocyte growth factor receptor signaling pathways in
NSCLC both in vitro and in vivo. Liang et al. (156) formulated
exosomes to simultaneously deliver the anticancer drug 5-FU
and a miR-21 inhibitor oligonucleotide (miR-21i) to 5-FU-
resistant colon cancer cells. This approach reversed drug
resistance and significantly enhanced the drug’s cytotoxicity in
5-FU-resistant colon cancer cells, compared to the single
treatment with either miR-21i or 5-FU in an in vivo mouse
model. Similarly. miR-375-3p, which has been reported to
suppress tumorigenesis and reverse chemoresistance in colon
cancer, along with 5-FU co-delivered in lipid-coated calcium
carbonate nanoparticles were used to study the role of miR-375-
3p in 5-FU-resistance in colorectal cancer (157, 158).
DISCUSSION

It is evident that miRNAs can have a significant impact on
angiogenesis and cancer treatment. As our knowledge on
miRNA activity expands, the highly complex interaction
between miRNA and angiogenesis due to autocrine or
paracrine interactions will dictate the future potential of the
miRNAs as therapeutic tools. One major hurdle of anti-cancer
therapies, including the anti-angiogenic therapies described
above, is the off-target effects due to non-specific tissue- or
cell-targeting. This hurdle is further exacerbated with the
miRNAs, as the tumor type and the multifaceted activity of the
miRNAs can have synergistic or antagonistic therapeutic
outcomes through the tumor microenvironment. Thus, the in
vivo evaluation of the miRNAs needs to expand outside the
tumor cell growth and incorporate aspects, such as angiogenesis.
Another parameter to be taken into account for miRNA-based
therapies is the promiscuous binding of high miRNA dose,
causing multiple off-target effects. This significant hurdle of
miRNA-based treatments can be resolved by miRNA
cooperativity and lower miRNA doses, while it is noteworthy
that the final outcome of the targets of the cooperating genes
strongly depends on the cellular environment (159).

miRNA delivery has been challenging by itself, due to the
nucleic acids’ rapid elimination from the circulation, the
abundance of nucleases in vivo, and the need for a carrier for
the large hydrophilic nucleic acid constructs to enter the cells (23,
24). The added complexity of the required cell type drug delivery
specificity presents an additional challenge, which needs to be
potentially overcome in the presence of an already impaired
tumor vascular system (26). Several novel delivery carriers have
been developed and studied for the delivery of miRNAs. These
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include micelles, polymeric nanocarriers, lipid-based carriers,
viruses, inorganic carriers, and systems with long-circulating
properties and/or active targeting to receptors over-expressed
in cancer cells (23). Although the goal of a single organ and
single-cell type targeting maybe be understandably impractical,
these methodologies have provided significant benefits for
minimizing off-target effects, increasing accumulation in the
tumor, and preferentially increasing drug/nucleic acid
Frontiers in Oncology | www.frontiersin.org 6
concentration in specific cell types. Nonetheless, off-target
effects will persist, even due to cell-to-cell communication.

This perspective has a significant impact when studying
miRNA-drug combinations. Although in vitro analysis is
fundamental to evaluate the synergistic/antagonistic behavior
of a miRNA and a drug, the effect of the co-delivery of the
miRNA-drug combination in vivo should take into consideration
the anti-angiogenic properties of the miRNAs. Of course, this
TABLE 1 | Representative examples of combinatorial miRNA-chemotherapeutics treatments.

miRNA Drug Cancer References

miR-34a Doxorubicin Hepatocellular carcinoma (80)
Osteosarcoma (128)

Paclitaxel Cervical cancer (129)
Melanoma cancer (130)
Colorectal Cancer (131)

Docetaxel Breast cancer (132)
5- Fluorouracil Colorectal cancer (133, 134)

Let-7c-5p 5-Flurouracil Hepatocellular carcinoma (135)
Anti-miR-21 Sunitinib Glioblastoma (136)

Pancreatic ductal adenocarcinoma (137)
miR-145 Sunitinib Glioblastoma (138)

5-Fluorouracil Breast cancer (139)
miR-205 Gemcitabine Pancreatic cancer (140)
miR-129 5-Fluorouracil Colorectal cancer (141)
miR-497 5-Fluorouracil Colorectal cancer (142)
miR-34a and miR-27b Docetaxel Prostate cancer (143)
miR-29b Dihydroartemisinin Cholangiocarcinoma (144)
miR-221 Doxorubicin Glioma (145)
miR-192-5p Doxorubicin Breast cancer (146)
miR-378a Sorafenib Liver cancer (147)
miR-122, miR-338-3p Sorafenib Hepatocellular carcinoma (148)
miR-193a Taxol Colorectal cancer (149)
miR-143 Cisplatin Cervical cancer (150)
miR-29 Cisplatin Ovarian cancer (151)
miR-7 Doxorubicin and Temozolomide Glioma, Cervical carcinoma, Papillary thyroid (152)
miR-506-3p Cisplatin Ovarian cancer (153)
miR-135 and miR-138 5- Fluorouracil Colon cancer, pancreatic cancer, cervical cancer (154)
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All miRNAs listed have tumor-inhibiting properties.
FIGURE 1 | miRNA and anti-cancer drug combinations can potentially synergistically affect tumor growth through their respective activities and potential
synergistic effects on the tumor cells and the tumor microenvironment. With miRNAs mediating cell proliferation, drug resistance or angiogenesis, exogenous
upregulation or inhibition of miRNAs in combination with anti-proliferative, cytotoxic or anti-angiogenic drugs represents a rationally designed and promising
research development.
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easily expands to other aspects of the tumor microenvironment,
such as macrophages, though immunosuppressed animal models
will present challenges for such evaluation.

Though we recognize that there might be published research on
miRNA-drug combination focusing on angiogenesis we overlooked,
it is apparent from our analysis that currently the anti-angiogenic
aspect of miRNAs co-delivered with drugs is not the primary focus,
or is not studied in detail or at all, even for miRNAs with known
anti-angiogenic properties. Simply stated, the question arises on
how much of the enhanced anti-tumoral activity of miRNA-drug
combinations can be attributed to the alteration of tumor cell
behavior, angiogenesis, or both. Finally, another important aspect
is the toxicity potential from the miRNAs. We described above the
side effects attributed to the clinically used anti-angiogenic therapies,
which have a clinical history with well-defined side effects. In
contrast, miRNAs have not achieved clinical translation to the
same extent, and, thus, similar or other side effects may not yet
have become apparent. Nonetheless, the utilization of dysregulated
miRNAs, their property of being natural cell products, and the
development of novel nanocarriers provide significant advantages to
overcome side-effects, commonly present in traditional anti-
angiogenic therapies (160). In conclusion, miRNAs are
fundamentally important targets and tools for cancer therapy.
They have significant potential, based alone on their multifaceted
activities on the tumor cells and tumor vascular microenvironment.
Frontiers in Oncology | www.frontiersin.org 7
Identification of miRNAs with combined anti-angiogenic and anti-
tumoral effects can provide significant advantages in cancer
treatment, alone or in combination with clinical ly
used chemotherapeutics.
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