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Automated COVID-19 Grading With Convolutional
Neural Networks in Computed Tomography Scans:

A Systematic Comparison
Coen de Vente , Luuk H. Boulogne , Kiran Vaidhya Venkadesh , Cheryl Sital , Nikolas Lessmann ,

Colin Jacobs , Clara I. Sánchez , and Bram van Ginneken

Abstract—Amidst the ongoing pandemic, the assessment of com-
puted tomography (CT) images for COVID-19 presence can exceed
the workload capacity of radiologists. Several studies addressed
this issue by automating COVID-19 classification and grading from
CT images with convolutional neural networks (CNNs). Many
of these studies reported initial results of algorithms that were
assembled from commonly used components. However, the choice
of the components of these algorithms was often pragmatic rather
than systematic and systems were not compared to each other
across papers in a fair manner. We systematically investigated the
effectiveness of using 3-D CNNs instead of 2-D CNNs for seven
commonly used architectures, including DenseNet, Inception, and
ResNet variants. For the architecture that performed best, we
furthermore investigated the effect of initializing the network with
pretrained weights, providing automatically computed lesion maps
as additional network input, and predicting a continuous instead of
a categorical output. A 3-D DenseNet-201 with these components
achieved an area under the receiver operating characteristic curve
of 0.930 on our test set of 105 CT scans and an AUC of 0.919 on a
publicly available set of 742 CT scans, a substantial improvement
in comparison with a previously published 2-D CNN. This
article provides insights into the performance benefits of various
components for COVID-19 classification and grading systems. We
have created a challenge on grand-challenge.org to allow for a fair
comparison between the results of this and future research.

Impact Statement—Applied artificial intelligence (AI) research
focuses disproportionately on novel architecture modifications that
do not necessarily generalize to other datasets, while neglecting
systematic comparisons between commonly used algorithm

Manuscript received April 28, 2021; revised June 2, 2021 and July 28, 2021;
accepted September 18, 2021. Date of publication October 8, 2021; date of
current version March 24, 2022. This work was supported in part by the Euro-
pean Regional Development Fund (ERDF) East Netherlands. This article was
recommended for publication by Associate Editor Gary Fogel upon evaluation
of the reviewers’ comments. (Coen de Vente and Luuk H. Boulogne contributed
equally to this work.) (Corresponding author: Luuk H. Boulogne.)

Coen de Vente is with the Radboud University Medical Center, Donders
Institute for Brain, Cognition and Behaviour, Department of Medical Imaging,
6525 GA Nijmegen, The Netherlands and also with the Informatics Institute,
Faculty of Science, University of Amsterdam, 1012 WX Amsterdam, The
Netherlands (e-mail: coen.devente@radboudumc.nl).

Clara I. Sánchez is with the Informatics Institute, Faculty of Science,
University of Amsterdam, 1012 WX Amsterdam, The Netherlands (e-mail:
clara.sanchezgutierrez@radboudumc.nl).

Luuk H. Boulogne, Kiran Vaidhya Venkadesh, Cheryl Sital, Nikolas
Lessmann, Colin Jacobs, and Bram van Ginneken are with the Radboud
University Medical Center, Radboud Institute for Health Sciences, Department
of Medical Imaging, 6525 GA Nijmegen, The Netherlands (e-mail: luuk.
boulogne@radboudumc.nl; kiranvaidhya.venkadesh@radboudumc.nl; cheryl.
sital@radboudumc.nl; nikolas.lessmann@radboudumc.nl; colin.jacobs@
radboudumc.nl; bram.vanginneken@radboudumc.nl).

Digital Object Identifier 10.1109/TAI.2021.3115093

components. This inhibits the deployment of AI for real-world
applications. For automatic COVID-19 grading specifically,
attention for compatibility of AI with clinical workflow is lacking.
This paper presents a systematic investigation of COVID-19
grading algorithm components using a large publicly available
dataset. The results are published in an online challenge. These
contributions speed up the development of AI applications for
COVID-19 grading by establishing insights into the components
of such applications and by allowing applications produced by
future research to be compared in a fair manner. The adherence
to a standardized COVID-19 grading system may increase the
compatibility between AI and clinical workflow.

Index Terms—3-D convolutional neural network (CNN),
CO-RADS, COVID-19, deep learning, medical imaging.

I. INTRODUCTION

IMAGING of COVID-19 with chest computed tomography
(CT) has been found to be helpful for diagnosis of this disease

in the current pandemic [1]. With the aim to reduce the work-
load of radiologists, various machine learning techniques have
been proposed to automatically grade and classify the presence
of COVID-19 in CT images [2]–[23]. Automatic COVID-19
classification methods have already been deployed in several
medical centers [8].

By far the most common technique for automatic COVID-19
classification from CT images is the convolutional neural net-
work (CNN) [24], [25], which is the current state-of-the-art for
image classification [26]. The works that use this approach can
be divided into those that use 2-D CNNs [2], [6], [7], [11], [13],
[15], [18]–[20], [22] and those that use 3-D CNNs [4], [9], [10],
[12]–[14], [16], [17], [23]. While 3-D CNNs are directly capable
of exploiting 3-D information present in CT volumes, 2-D CNNs
can only indirectly use 3-D information by aggregating their
output for individual slices of the image to produce an image
level prediction. 3-D CNNs are typically more memory intensive
than 2-D CNNs, but graphics processing units (GPUs) with suf-
ficient memory to train 3-D models are becoming increasingly
available. Moreover, radiologists are specifically instructed to
take 3-D information into account by inspecting different or-
thogonal views for assessing the suspicion of COVID-19 in CT
scans [27]. This indicates that 3-D information is essential for
radiologists in assessing the patterns indicative for COVID-19.
Additionally, the slice thickness of CT scans is increasingly
becoming smaller [28] so that the scans contain more detailed
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3-D information. Therefore, we hypothesize that 3-D CNNs are
more suitable for COVID-19 classification from CT scans than
2-D CNNs.

A major issue that inhibits the utilization of artificial intelli-
gence in real-world applications, such as COVID-19 diagnosis
from CT, is the excessive focus of research on novel architec-
tures, while scientifically sound comparisons and proper eval-
uations on external datasets are lacking. Often, small additions
and adaptations to model architectures for incremental improve-
ments on specific datasets are proposed that do not generalize
well to other datasets. This issue is increasingly being recog-
nized and simple baselines have been proposed, which perform
comparably to or better than overengineered solutions [29], [30].

The goal of this article is therefore not to introduce novel
architectural tweaks, but instead to perform a comparative study
that evaluates existing approaches. To indicate the generaliza-
tion capabilities of automatic COVID-19 classification systems,
some methods have been validated on data from different cen-
ters than the data that were used for training [4], [14]. Also,
the same validation methods, such as receiver operating char-
acteristic (ROC) curves and the area under the ROC curve
(AUC), have been reported across different studies [2], [4],
[6]–[10], [12]–[15], [18]–[20], [22], [23]. However, since each
study used different datasets for training and for validation, the
need for fair, direct comparisons of the performance of these
algorithms remains unsatisfied. Recently, the “CT images and
clinical features for COVID-19” (iCTCF) dataset was made
publicly available [31], enabling a fair comparison of COVID-19
classification methods.

This article compares a variety of 2-D and 3-D CNN archi-
tectures for COVID-19 classification. We trained and evaluated
the approaches on the same internal dataset. Moreover, in an
ablation study, we investigated performance changes due to 1)
using transfer learning for 2-D and 3-D COVID-19 classification
models, 2) using prior information in the form of COVID-19
related lesion segmentations as additional input to the network,
and 3) replacing the categorical output with a continuous output.

We furthermore created a public challenge [32] for evaluating
and comparing different COVID-19 classification algorithms.
Algorithms can be submitted to the challenge as Docker con-
tainers and are evaluated on the iCTCF dataset that we used in
this article. This allows their performance to be compared to the
methods presented in this article, as well as to other COVID-19
grading and classification algorithms that are submitted to the
challenge.

II. BACKGROUND

3-D CNNs were initially proposed for processing video
data [25], where the third dimension of the convolutional layers
dealt with the temporal dimension. In later works, 3-D CNN
architectures were derived from 2-D CNN architectures by
expanding the 2-D filters into 3-D [33]. Methods based on
these inflated 3-D CNNs, in particular the Inflated Inception-v1
(I3D) model, have recently been successfully employed for lung
nodule detection and scan-level classification tasks from thorax
CT scans [34], [35].

The large majority of the architectures used for COVID-19
classification from CT scans in previous works [2], [4]–[10],
[12], [14]–[19], [19], [20], [22], [23], [36] are heavily or com-
pletely based on the ResNet [37], DenseNet [38], or Incep-
tion [39] architecture families. Especially ResNet architectures
have been used frequently [2], [6], [8]–[10], [15]–[20], [36].
Some works did not use a full ResNet architecture, but did
incorporate residual blocks into their model [5], [22]. Architec-
tures from the DenseNet [4], [19], [23] and Inception [7], [14]
families have been used less frequently. Other architectures such
as VGG-19 [40], Inception-ResNet-v2 [41], NASNet [42], and
EfficientNet [43] have also been used in research for COVID-19
classification from CT scans [36], [44]–[47]. Due to the lack
of standardized data for testing across different works, previous
research does not identify which architecture produces the best
performance for COVID-19 classification from CT.

Fine-tuning is a widely used technique in research on deep
learning in medical imaging [48] and COVID-19 classification
specifically [49]. With fine-tuning, models are initialized with
pretrained weights from models trained on a different task or
dataset. They are commonly pretrained on the ImageNet [50]
dataset that contains a large variety of 2-D natural images. Af-
terward, the models are trained for the task at hand. Pretraining
speeds up training and can offer performance gains for large
models [48]. It has been used in several 2-D CNN COVID-19
classification methods [2], [6], [7], [18], [20]. Pretrained weights
have also been used for 3-D CNN-based methods. Wang et al. [4]
pretrained their model for COVID-19 classification on a large
number of CT scans from lung cancer patients. Inflated 3-D
CNNs can conveniently be initialized by inflating 2-D weights.
2-D weights have been used to pretrain I3D models for video
classification [33] and chest CT classification [34] tasks.

Before presenting CT images to the CNN, they are often
preprocessed by extracting the lung region using lung or lobe
segmentation algorithms. These lung regions are then used either
for cropping around and centering to the lungs [4], [6], [14], [16],
[18] and/or by suppressing nonlung tissue [2], [4], [6], [8]–[10],
[12], [15], [17]. Yang et al. [19] used a lung segmentation as an
additional input channel and used lesion masks as extra informa-
tion by training their model to perform lesion segmentation and
COVID-19 classification simultaneously. Lessmann et al. [14]
also added a lesion segmentation to the input of their model.

Most studies on automated detection of COVID-19 employ
a categorical classification output format that uses a softmax or
sigmoid activation [49]. Previous works have trained models to
discern between COVID-19 positive and negative patients [4],
[5], [6], [12], [15], [16], [18]–[20], [22], [23], COVID-19 pos-
itive patients and patients with other types of pneumonia [4],
[7], [9], and between all three [2], [10], [17]. In this work,
we followed Lessmann et al. [14] and trained our models to
produce CO-RADS [27] scores on chest CT scans of suspected
COVID-19 patients. The CO-RADS score denotes the suspicion
of COVID-19 on a scale from 1 to 5 and was developed to
standardize reporting of CT scans of patients suspected with
COVID-19 [27]. Scoring systems, like CO-RADS, have been
advocated for better communication between radiologists and
other healthcare providers [14], [27].
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TABLE I
NUMBER OF CT IMAGES IN INTERNAL DATASET

III. METHODOLOGY

A. Data

1) Training and Internal Test Data: The internal dataset
contained CT scans from consecutive patients, who presented
at the emergency wards of the Radboud University Medical
Center, the Netherlands in March, April and May 2020 and
were referred for CT imaging because of moderate to severe
COVID-19 suspicion. The retrospective and anonymous col-
lection of this data was approved by the ethical review board
of Radboudumc (CMO2016-3045, Project 20027) prior to the
study. Further details such as imaging parameters can be found
elsewhere [14].

CO-RADS scores were reported by a radiologist as part of
routine interpretation of the scans. CO-RADS 1 was used for
normal or noninfectious etiologies, having a very low level of
suspicion. CO-RADS 2 was used if the CT-scan was typical
for other infections than COVID-19, indicating a low level of
COVID-19 suspicion. CO-RADS 3 implies equivocal findings
and features compatible with COVID-19, but characteristics of
other diseases are also found. CO-RADS 4 and 5 indicate a high
and very high level of COVID-19 suspicion, respectively.

We randomly split the dataset into a development set with 616
patients and an internal test set of 105 patients. The patients in
the development set were split into 75% for training and 25%
for validation using data stratification based on the CO-RADS
scores. The distribution of CO-RADS scores over the different
splits is displayed in Table I. All data splits were made such that
all scans from a patient with multiple visits ended up in the same
split.

2) External Test Data: For external evaluation, we used the
publicly available CT images and clinical features for COVID-
19 dataset (iCTCF) dataset [13], [31]. Since we focused on
comparing architectures for CT image processing for COVID-19
classification, we did not incorporate the clinical features from
this dataset into the input for our models. In iCTCF, patients were
categorized with a Chinese grading system that distinguishes
the classes as control, mild, regular, severe, critically ill and
suspected. Since there was no etiological evidence available
for the presence of COVID-19 in suspected cases [13], we did
not use them for testing our models. The distribution of the
other classes is displayed in Table II. The grading system uses
etiological laboratory confirmation and other factors such as
clinical features and CT imaging [13]. The control cases include
both healthy patients and patients with community acquired
pneumonia. Most of the iCTCF data has been made publicly
available, but some CT scans were not available at the time of

TABLE II
NUMBER OF CT IMAGES IN EXTERNAL DATASET

conducting this study. We validated our models with all available
data from the first iCTCF cohort for which etiological evidence
for the presence of COVID-19 was available [31].

B. 2-D and 3-D Architectures

We compared the performance of a variety of popular 2-D
and 3-D CNN architectures for the task of COVID-19 classifi-
cation from CT. More specifically, we compared vanilla 2-D and
3-D versions of DenseNet-121, DenseNet-169, DenseNet-201,
Inception-v1, ResNet-18, ResNet-34, and ResNet-50. Section II
describes previous works that have used many of these architec-
tures.

Since we used scan-level labels for training and testing these
models, the 2-D architectures required the integration of a
slice-wise reduction step, while the 3-D architecture did not.
For the 2-D architectures, we therefore integrated the slice-wise
reduction step presented by Li et al. [2]. First, the 2-D CNN
extracts features of individual axial slices. A global max pooling
step reduces these features to a 1-D vector, to which a fully
connected layer is applied with an output size equal to the
number of classes.

C. Ablation Study

We investigated whether additional model components had an
effect on COVID-19 classification performance in an ablation
study. Fig. 1 shows a summary of the processing pipeline that
was used.

Since performing the ablation study for all 2-D and 3-D
architectures would require a large quantity of computational
resources, the ablation study was instead performed with only
the best performing architecture in terms of quadratic weighted
kappa (QWK).

1) Lesion Map as Prior Information: To aid the model in
localizing COVID-19 related parenchymal lesions, we provided
a lesion segmentation map as additional input in a separate input
channel. More specifically, the CT image was fed into the first
input channel, the lesion segmentation into the second channel,
and the third channel was presented with zeros. When training
models without the additional lesion segmentation input, the CT
image was fed into all three input channels.

A 3-D nnU-Net [29] trained by Lessmann et al. [14], which
segments ground-glass opacities (GGOs) and consolidations,
provided the lesion segmentations. GGOs and consolidations
are biomarkers with major importance in diagnosing COVID-
19 [27].

2) Dimensionality: Since various components were added to
the models in the ablation study, we trained both the 2-D and
3-D variants of the best performing architecture. This allows
for an analysis of the performance difference solely due to the
dimensionality of the model in our complete processing pipeline.
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Fig. 1. Schematic representation of the different components used for CO-RADS grading from CT scans using CNNs in patients suspected with COVID-19. This
processing pipeline was used in all experiments of this work. (a) The input CT scan is fed into a lesion segmentation network. The CT and the lesion segmentation
are used as separate input channels to the classification network as described in Section III-C1. In one of the ablation study experiments, this lesion segmentation
input was left out. (b) We compared a variety of 3-D (top) and 2-D architectures (bottom) as described in Section III-C2. The 3-D architectures take as input the
full volume. The 2-D architectures use individual slices as input. (c) We compared a continuous output to a categorical output in the ablation study. Section III-C4
describes the continuous output in detail. The dashed line indicates that the categorical output replaces the continuous output in one of the models in the ablation
study and all models in the architecture search, but it is not incorporated in the main approach.

3) Pretraining: We investigated the performance changes
due to pretraining on a natural image classification task. The 2-D
models were initialized with weights pretrained on ImageNet.
The 3-D models were initialized with the same weights by
inflating the pretrained 2-D convolution kernels to 3-D.

4) Continuous Output: The standard output format of CNNs
used for categorical classification does not capture the ordinal
nature of the CO-RADS scoring system. Furthermore, although
the CO-RADS scoring system allows for a higher level of
interpretability than a binary system, the fact that a CO-RADS
suspicion score of three indicates that it is unclear whether
COVID-19 is present makes it difficult to decide on the onset
of the positive class for the predicted scores in ROC analyses.
For these reasons, we considered the CO-RADS classification
to be a regression task. Hence, the model had one output node
that was forced to the range (0,1) using the sigmoid function.
CO-RADS scores were mapped to target values in the range
[0,1] with a uniform spacing between CO-RADS classes such
that CO-RADS scores of 1 and 5 were assigned target values of 0
and 1, respectively. As the network had one output node, binary
cross-entropy was used as loss function. With this method,
unlike a standard categorical approach with a softmax layer and
categorical cross-entropy loss, predictions that are further off
from the target are penalized more heavily than predictions that
are closer. To obtain a CO-RADS score during inference, the
sigmoid output was multiplied by 4, rounded to the nearest
integer and added to 1. De Vente et al. [51] explored this
approach for prostate cancer grading and found that it outper-
formed other regression and categorical output methods.

D. Preprocessing

The CT scans were clipped between −1100 and 300
Hounsfield units, normalized between 0 and 1, and resampled to
a voxel spacing of 1.5 mm3 using linear interpolation. The scans
were further preprocessed using a lung segmentation algorithm
that was trained on data from patients with and without COVID-
19 [52]. More specifically, any slices with a distance of 10 mm
or more to the lung mask were discarded and the remaining
slices were cropped to 240 × 240 pixels around the center of the
mask. Following previous research with I3D models [33]–[35],
we trained our models with a fixed 3-D input size. To achieve
this without adding extra slices that do not contain information
regarding the presence of COVID-19, we uniformly sampled
128 axial slices along the z-axis.

E. Training

We trained all networks with a batch size of 2, the Adam
optimizer with β1 = 0.9, β2 = 0.999, and a learning rate of
10−4. Data augmentation consisted of random zooming between
−20% and +20%, rotation between −15% and +15%, shearing
between −10% and +10% and elastic deformations in the axial
plane, translation between −2 and +2 voxels in the z-direction,
−20 and +20 voxels in both the x- and y-direction, and additive
Gaussian noise with a mean of 0 and a standard deviation be-
tween between 0 and 0.01 (after intensity normalization between
0 and 1). To correct for the class imbalance, we monitored
the performance on the validation data in the development set
during training with balanced samples based on the distribution
of CO-RADS classes in the training set. We used early stopping
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with a patience of 10 000 training batches and the QWK on the
validation set for the stopping criterion. Gradient checkpoint-
ing [53] reduces GPU memory requirements for training deep
neural networks without affecting performance. This technique
was used when necessary to enable a batch size of 2 for the 2-D
models.

To rule out the possibility that performance differences be-
tween the 3-D and 2-D approach were due to other factors such
as preprocessing or data augmentation, we kept all hyperparam-
eters the same during training.

Each model was trained on a single GPU, using NVIDIA
GeForce GTX TITAN X, GeForce GTX 1080, GeForce GTX
1080 Ti, GeForce RTX 2080 Ti, TITAN Xp, and A100 SXM4
cards.

F. Ensembling

The models were sensitive to the randomness of the
training process introduced by initialization of weights without
pretraining, sample selection, and data augmentation. In order to
enable stable comparisons, we obtained ensembles by training
10 instances of the same model with different random seeds.
The ensemble output was obtained by simply taking the mean of
the individual model outputs. For categorical model ensembles,
the output was the mean of the probability output vectors of
the individual models. All results presented in Section IV were
obtained from ensembles unless stated otherwise.

G. Evaluation

We evaluated the CO-RADS scoring performance using the
QWK score. This measure accounts for the ordinal nature of
the CO-RADS score by weighting mismatches between true
and predicted labels differently based on the magnitude of the
error. Following previous works on COVID-19 classification
and grading [2], [4], [6]–[10], [12]–[14], diagnostic performance
was evaluated using the AUC and ROC curves.

We calculated 95% confidence intervals (CIs) with nonpara-
metric bootstrapping and 1000 iterations [54]. Statistical signif-
icance was computed with the same bootstrapping method [55].

The AUCs that our models achieved on the external test set
are additionally listed on the grand challenge platform [32] to
allow for a direct comparison between our and future COVID-19
grading and classification solutions.

Inference duration was calculated on the same machine for
each architecture, using a GeForce RTX 2080 Ti card. The
reported durations were averaged over 50 forward passes of a
batch with one sample.

IV. RESULTS

A. Architecture Selection

Fig. 2 shows the QWK and AUC for the different 2-D and
3-D architectures. Table III shows the number of trainable
parameters, single-model inference time for one sample and
FLOP count for each architecture. All 2-D architectures were
outperformed by their 3-D counterparts both in terms of QWK
and AUC. The 3-D DenseNet-201 architecture performed best in
terms of QWK, followed by the 3-D Inception-v1 architecture. In

Fig. 2. Performance of 2-D and 3-D CNN architectures on the internal test set
for the task of CO-RADS grading from CT images is shown in QWK and AUC,
respectively. The error bars indicate the 95% CIs. The AUC was computed with
CO-RADS 1-2 as the negative class (30 scans) and CO-RADS 3-5 as the positive
class (75 scans).

TABLE III
ARCHITECTURE PROPERTIES

terms of AUC, the Densenet-169 obtained the best performance,
again followed by the 3-D Inception-v1 architecture.

In the architecture selection, on average, training of the in-
dividual 3-D models required approximately 26 700 iterations,
while it required about 29 800 iterations for the 2-D models.

Since the QWK takes into account the ordinal nature of the
CO-RADS score, this metric was used to select the architecture
to execute the ablation study with. In the rest of this section, we
refer to the 3-D DenseNet-201 ensemble as the 3-D model and
to the 2-D Densenet-201 ensemble as the 2-D model.

B. 2-D Versus 3-D CNNs

On the internal dataset, both the AUC and the QWK scores
were significantly higher for the full 3-D model (with transfer
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Fig. 3. Comparison of 2-D and 3-D Densenet-201 models and ablation study
with this architecture for the task of CO-RADS grading from CT images. The
analysis was performed on the internal test set. The error bars indicate the 95%
CIs. The AUC was computed with CO-RADS 1-2 as the negative class (30 scans)
and CO-RADS 3-5 as the positive class (75 scans).

learning, lesion maps and continuous output) than for the full 2-
D model (p = .006 for AUC and p = .007 for QWK). Figs. 3 and
6 show the corresponding CIs and ROC analyses, respectively.
Fig. 4 shows prediction examples from the full 3-D, full 2-D,
and ablated 3-D models in blue, yellow, and black, respectively.

We also trained an ensemble with the COVNet pipeline from
Li et al. [2], which contains a ResNet-50 backbone that was
pretrained on ImageNet. With COVNet, we obtained a lower
performance on the internal test set than when we applied the
3-D model in our own pipeline. COVNet obtained a QWK of
0.567 (95% CI: 0.411–0.703, p = 0.004) and a lower AUC of
0.828 (95% CI: 0.741–0.906, p = 0.017) Our 2-D model also
outperformed COVNet in terms of both the QWK (p = 0.074)
and AUC (p = 0.179).

Fig. 5 shows confusion matrices for the two dimensionalities.
For 13 scans, the full 3-D approach had predictions that were
more than one CO-RADS category off. For the full 2-D approach
this was the case for 19 scans. Furthermore, the full 3-D approach
and 2-D approach both had two cases that were further off than
two categories.

C. Ablation Study

The results of an ablation study to investigate the effect of
each of the additional components added to the 3-D CNN are
shown in Fig. 3. The 3-D model without ablations obtained an
AUC of 0.930 (95% CI: 0.872–0.971) and a QWK of 0.785
(95% CI: 0.705–0.852). Removing any of the additions had a
smaller effect on these performance metrics than changing the
dimensionality of the architecture to 2-D. Removing pretraining
reduced the QWK to 0.770 (95% CI: 0.682–0.789, p = 0.278),
but increased the AUC to 0.932 (95% CI: 0.857–0.977, p =
0.428). When the lesion segmentation input was removed from
the model, the QWK was increased to 0.812 (95% CI: 0.738–
0.875, p = 0.091) and the AUC was reduced to 0.920 (95%
CI: 0.859–0.969, p = 0.292). Replacing the regression approach
with a categorical target had a negative effect on both metrics,

reducing the QWK to 0.799 (95% CI: 0.680–0.863, p = 0.421)
and the AUC to 0.919 (95% CI: 0.868–0.964, p = 0.324). Fig. 4
shows prediction examples from the ablation study models in
black.

The 3-D model required 31 550 iterations for training on
average. The 2-D model, the network without pretraining, and
the model without categorical output all required less iterations
(25 650, 31 000, and 22 450, respectively). The model without
lesion input required more iterations (32 750).

D. External Evaluation

Fig. 7 shows the ROC curves of the full 3-D and the full 2-D
model for the external iCTCF test set.

The 3-D approach obtained an AUC of 0.919 (95% CI: 0.898–
0.938) and outperformed the 2-D approach that obtained an AUC
of 0.915 (95% CI: 0.893–0.934, p = .215).

E. Lesion Segmentation Model

For a single patch the lesion segmentation model inference
time was 178.66 ms ± 14.56 ms, using 9.41 × 1011 FLOPs.
The CT scans in the test set contained 12.8 patches on average.
The model had 29.69 × 106 parameters. Performance metrics
for this model were reported by Lessmann et al. [14].

V. DISCUSSION

In this article, we identified and tested components of CNN
based automated COVID-19 grading models. More specifically,
we investigated how the performance of such models is affected
by using different 2-D and 3-D CNN architectures, adopting
pretrained weights, using automatically computed lesion maps
as additional network input, and predicting a continuous output
instead of a categorical output. We evaluated all models with the
same datasets to allow for a fair comparison between models.

Based on the architectures used in earlier automated COVID-
19 classification research, we selected and compared the per-
formance of the 2-D and 3-D variants of 7 CNN architectures
for this task. We found that for all architecture types, the 2-D
models were outperformed by their 3-D counterparts. The best
performing model was a 3-D DenseNet-201. In the rest of this
section, we refer to the 3-D DenseNet-201 as the 3-D model and
to the 2-D Densenet-201 as the 2-D model.

The full 3-D model (with transfer learning, lesion maps and
continuous output) outperformed the full 2-D model in terms
of AUC and QWK score on the internal test set for COVID-19
classification and CO-RADS grading.

We compared our 2-D model with COVNet, an architecture
previously used in a similar COVID-19 classification task in
CT [2], for which the authors reported an AUC of 0.96 for
differentiating between COVID-19 positive and negative pa-
tients. The substantial difference between this result and our
observations with COVNet illustrates the importance of using
the same dataset when comparing different approaches.

We also observed a better diagnostic performance for COVID-
19 classification by the 3-D model on the external test set, al-
though this performance increase was not statistically significant
for a significance level of 0.05. AUC was 0.919 for the full 3-D
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Fig. 4. Example input–output pairs for the task of CO-RADS grading on the internal test set for the trained DenseNet-201 ensembles. Input examples are shown
on the left. Top row: Coronal slices of an input CT scan. Bottom row: Lung segmentation used for centering and cropping are displayed with colored overlays.
Delineations of the lesion masks that were used as a separate input channel are depicted as black lines. Output examples of the ensembles (wide, light bars) as well as
the individual models these ensembles are composed of (narrow, dark bars) are shown on the right. (a) Radiology report: “GGO and consolidations especially lower
lobes and posterior. Has had prior lung carcinoma. COVID-19 is probable, but other infection intrapulmonal is also possible.” (b) Radiology report: “COVID-19
not probable, but also not ruled out. Known posttraumatic thorax, persistent pleura fluid, slice pneumothorax. Small amount of GGO and consolidation (left).
Some pneumonia at thorax trauma, posttraumatic deviations.” (c) Consolidation and GGO in all lobes. According to radiologist: “Very suggestive for COVID.
Also positive PCR. Proven comorbidity.”

model, while it was 0.915 for the full 2-D model. Ning et al. [13]
developed a 2-D model with slice-level annotations indicating
if the slice was COVID-19 positive, negative or noninformative.
Using a superset of the external set used in this article for
evaluation an AUC of 0.919 was obtained, which is the same
as the AUC of our 3-D model, even though our 3-D model
was trained with weaker labels and on data from a different
population. This further emphasizes the importance of using
3-D rather than 2-D models.

The internal test set was comprised of data from the same pop-
ulation as the data the model was trained on, while the external
test set was comprised of data from a different population. For
the full 2-D model, a lower AUC was obtained on the internal
test set than on the external test set. This difference might be due
to population differences between the internal and external test
set, or due to the different definitions of the positive class, which

were presence of COVID-19 and high suspicion of COVID-19
for the internal and external test sets, respectively.

On the external test set, the full 3-D model outperformed
the full 2-D model by a smaller margin in terms of AUC than
on the internal dataset. This difference could be partly due to
the different definitions of the positive class. However, we also
found that it partly arises from the larger overall slice thickness
in the external test set. All scans in the internal test set had a
slice thickness of 0.5 mm. In contrast, 207 scans (40 COVID-19
positive, 167 negative scans) in the external test set had a slice
thickness larger than 1.5 mm, which was the input resolution in
our training and testing pipeline. When evaluating only on these
scans, we obtained an AUC of 0.885 (95% CI: 0.835–0.931) for
the full 3-D model and an AUC of 0.891 (95% CI: 0.843–0.932)
for the full 2-D model. The external test set contained 535 scans
(167 COVID-19 positive, 368 negative) with a slice thickness
smaller than or equal to 1.5 mm. On these scans, we obtained
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Fig. 5. Confusion matrices for CO-RADS grading of the 2-D and 3-D
DenseNet-201 model predictions on the internal test set. These models were
trained with transfer learning, lesion maps and produced continuous output. The
true label reference is from the radiology report. Cells contain the number of
CT scans.

Fig. 6. ROC analysis for the 2-D and 3-D Densenet-201 models on the internal
test set from Radboudumc (105 CT scans) for the task of CO-RADS grading.
The analysis was performed with CO-RADS 1 and 2 as the negative class (30
scans) and CO-RADS 3-5 as the positive class (75 scans). It was performed
for the full 2-D and 3-D models trained with transfer learning, lesion maps and
continuous output.

an AUC of 0.926 (95% CI: 0.902–0.947) for the full 3-D model
and an AUC of 0.918 (95% CI: 0.892–0.941) for the full 2-D
model. The performance of both models is lower for scans with
a large slice thickness, but this effect is more apparent for the
3-D model. Taking into account the increasingly smaller slice
thickness of CT scans [28], this observation further supports
our hypothesis that 3-D models are better suited for COVID-19
grading applications than 2-D models.

A possible explanation for why adding the extra dimension
to the convolutions improves the performance is that it allows
the CNN to take into account the 3-D structure and full volume
of individual lesions. This explanation is in line with the fact
that radiologists typically use both the axial and coronal views
to visualize the spread of COVID-19 related lesions across the
lungs in CT scans, such as GGOs [27].

We could not directly compare the CO-RADS classification
performance on the external set, since CO-RADS labels were not
available. Moreover, the CO-RADS grading cannot be directly
translated to the system used in the iCTCF dataset, since the
former measures the probability of COVID-19 presence, while
the latter quantifies the severity of the disease.

Fig. 7. ROC analysis for the 2-D and 3-D Densenet-201 models on the external
iCTCF test set (742 CT scans) for the task of COVID-19 classification. The
analysis was performed with 207 COVID-19 negative (Control) cases and 535
positive (Mild, Regular, Severe, Critically ill) cases.

The ablation study on the internal test set showed that the
further additions to the network and training procedure did
not have a significant effect on the performance. Regardless
of performance increases, using a continuous output removes
the disadvantage of having to decide on the onset of the positive
class for the predicted CO-RADS scores. Adding lesion maps as
input and using inflated ImageNet weights for pretraining might
both be ineffective for 3-D automated CNN based COVID-19
grading methods.

The full 2-D DenseNet-201 model obtained a better perfor-
mance than the 2-D DenseNet-201 model without pretraining,
additional lesion map input, and continuous output. This in-
dicates that some of these additional components positively
affected the performance of the 2-D model. However, even
with all additional components, it was still outperformed by the
vanilla 3-D DenseNet-201.

We did not use clinical features available for the external
dataset as input to the models trained in this work, since the main
goal of this article was to demonstrate the effect on performance
of different COVID-19 grading and classification algorithm
components.

VI. CONCLUSION

We compared a variety of 2-D and 3-D CNN architectures for
COVID-19 classification from CT scans and found that for all
architectures considered, the 3-D variants outperformed their
2-D counterparts. We investigated how the performances of
the best performing architecture and its 2-D counterpart were
affected by including COVID-19 related lesion segmentations
as additional input, using pretrained weights, and replacing the
categorical output with a scalar continuous output.

We intentionally did not develop novel nontrivial architectural
tweaks for small performance improvements, as many of them
have been shown to be unnecessary and to not generalize well
to other datasets and tasks [29], [30]. We leave systematic
comparisons that explore other transfer learning schemes, make
use of slice-level annotations, and use clinical features as model
input for future work.
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Radiologists can be aided in assessing CT scans on the pres-
ence of COVID-19 by automatic COVID-19 grading systems.
This article advances and speeds up the development of such
systems in the following ways. First, our findings aid in advanc-
ing the performance of automated COVID-19 grading systems
and provide insight into the performance benefits of several of
their components. These insights primarily indicate that future
research and clinical applications should move towards using
3-D CNNs for COVID-19 grading in CT scans. Second, the
models and the automatic evaluation method used in this ar-
ticle have been made available on the online grand challenge
platform [32]. This allows researchers to obtain and compare
the performance of their COVID-19 grading and classification
solutions to other solutions on the platform. Third, the output
of all models used in this article adheres to the standardized
CO-RADS reporting system to facilitate easier integration into
clinical workflow.
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