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Abstract

Introduction: The intracranial skull-base meningioma is in proximity to multiple critical

organs and heterogeneous tissues. Steep dose gradients often result from avoiding

critical organs in proton treatment plans. Dose uncertainties arising from setup errors

under image-guided radiation therapy are worthy of evaluation.

Patients and Methods: Fourteen patients with skull-base meningioma were retro-

spectively identified and planned with proton pencil beam scanning (PBS) single-field

uniform dose (SFUD) and multifield optimization (MFO) techniques. The setup

uncertainties were assigned a probability model on the basis of prior published data. The

impact on the dose distribution from nominal 1-mm and large, less probable setup errors,

as well as the cumulative effect, was analyzed. The robustness of SFUD and MFO

planning techniques in these scenarios was discussed.

Results: The target coverage was reduced and the plan dose hot spot increased by all

setup uncertainty scenarios regardless of the planning techniques. For 1 mm nominal

shifts, the deviations in clinical target volume (CTV) coverage D99% was�11 6 52 cGy

and �45 6 147 cGy for SFUD and MFO plans. The setup uncertainties affected the

organ at risk (OAR) dose both positively and negatively. The statistical average of the

setup uncertainties had ,100 cGy impact on the plan qualities for all patients. The

cumulative deviations in CTV D95% were 1 6 34 cGy and�7 6 18 cGy for SFUD and

MFO plans.

Conclusion: It is important to understand the impact of setup uncertainties on skull-base

meningioma, as the tumor target has complex shape and is in proximity to multiple

critical organs. Our work evaluated the setup uncertainty based on its probability

distribution and evaluated the dosimetric consequences. In general, the SFUD plans

demonstrated more robustness than the MFO plans in target coverages and brainstem

dose. The probability-weighted overall effect on the dose distribution is small compared

to the dosimetric shift during single fraction.
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Introduction
Meningiomas are tumors arising from the meninges, the thin layers of tissue surrounding the brain and spinal cord. These

tumors, typically benign, account for approximately 36% of all primary brain tumors [1]. While complete surgical resection is

considered the optimal treatment for this diagnosis, tumors are often deemed unresectable owing to their anatomic locations.

Radiation therapy provides an alternative treatment of unresectable meningioma that can direct radiation beams toward the

tumor while attempting to spare adjacent critical structures such as the brainstem, optic nerves, and optic chiasm [2–5].

Patients with meningioma have been historically treated with external photon beam radiation therapy [5–9] or stereotactic

radiosurgery [10, 11]. A previous study showed the advantage of intensity-modulated photon radiation therapy (IMRT) over

conformal radiation therapy by a 36% increase in target coverage and a 10% increase in dose conformality [6]. Other studies

showed the safety of IMRT for treating meningioma at the skull base [7–9]. Proton beams deliver different depth-dose curves

than photon beams where no dose is delivered beyond Bragg peak. Proton therapy could offer advantages over photon

therapy to spare healthy organs at risk (OARs) for patients with meningioma. Vernimmen et al [12] have used protons for

stereotactic and hypofractionated stereotactic proton radiation therapy for skull-base meningioma and obtained .88%

radiologic control. Efficacy and safety using passive scattering proton radiation therapy were demonstrated [13–15]. Proton

pencil beam and dose painting methods were also used for effective treatment of meningioma [16–18], where general dose

reduction to brain, brainstem, and optic apparatus, as compared to IMRT plans, was observed.

Skull-base meningioma tumors can grow to considerable sizes and often have complex shapes. In skull-base meningioma

proton radiation therapy, the proton beams inevitably penetrate through heterogeneous intracranial structures before arriving

at the tumor target. The proton beams can be arranged to provide adequate coverage to the complexly shaped tumor with a

sharp dose gradient at the tumor boundary to avoid dose to the brainstem, optic nerves, optic chiasm, and cochlea that are in

proximity. As proton dose distribution is susceptible to the heterogeneity along the beam path, the impact of setup

uncertainties is of interest. In the setup of intracranial patients, orthogonal kV and cone-beam computed tomography (CT) are

used as image guidance to position the patients under mask [19–21] and result in a distribution of setup uncertainties. Our

current clinical treatment planning system Eclipse (Varian, Palo Alto, California) offers a robust optimization module that

optimizes the spot intensities to provide sufficient target coverage under the worst setup and range uncertainty scenarios.

However, the effects of the probability in the setup uncertainties cannot be considered in the plan optimization process or

during the final dose evaluation. The clinical plan qualities are evaluated on each of the setup and range uncertainty scenarios.

In these complex meningioma cases, the plan dosimetric constraints cannot be met for all the worst setup scenarios. This

study provides dose analysis from a novel bimodal Gaussian setup uncertainty distribution model where setup in the positive

and negative directions are considered to be equally possible. The consequent dosimetric effects in the tumor target coverage

and critical organ avoidance, due to various setup uncertainty values, were considered. The statistical summation of the dose

effects from the setup distribution was obtained. This approach was applied to both single-field uniform dose (SFUD) and

multifield optimization (MFO) proton pencil beam scanning (PBS) plans for patients with skull-base meningioma, and their

sensitivity to the setup uncertainties was analyzed.

Materials and Methods
After approval by the Institutional Review Board, patient selection was determined by using ICD-9 and ICD-10 codes as well as

intracranial location. Fourteen patients who had undergone radiation at our facility were identified with meningioma tumors

located at the base of skull. Physician-defined planning treatment volume (PTV) expands the clinical target volume (CTV)

using a 5-mm margin, which can be reduced based on its extension into the OARs and the extensiveness of the patient-

specific disease. The PTVs of this adult patient cohort have a mean of 137.2 cm3 and a standard deviation of 117.7 cm3. The

tumor locations and their volumes are listed in Table 1. We used the Eclipse treatment planning system to construct base

plans with proton PBS techniques with a prescription of relative biological effectiveness (RBE) dose 5400 cGy in 30 fractions.

RBE is set to 1.1 in Eclipse. All dose values in this article refer to the RBE dose. For each patient, one plan was generated with

the SFUD technique, and another plan was generated with the MFO technique.

The patients underwent CT scanning at 1.5-mm slice thickness on a Siemens SOMATOM CT scanner (Siemens Medical

Solutions USA, Malvern, Pennsylvania), immobilized with thermoplastic masks. A U-shaped bolus with 6.2-cm water

equivalent thickness was used around the patient’s head to increase the plan minimum energy to be above the minimum

machine deliverable energy of 100 MeV. The beam angles were chosen by experienced proton dosimetrists to avoid

unnecessary brain tissue and critical organs along the beam paths. They were finalized by trial-and-error process for the best
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achievable dose distributions where the dose to the targets and OARs could satisfy the dosimetric constraints. The dose

deviations from the constraints and final plan dose distributions were approved by a radiation oncologist. All but 1 of the cases

were planned with 3 proton beams. The remaining case was planned with 2 beams, as the tumor had a small volume and was

close to the body surface. The CTVs were expanded to the dosimetric PBS target volumes with 5-mm uniform expansion. The

expansion was to take into account the setup uncertainties and the proton range uncertainties. At the region adjacent to critical

structures, the PBS target volume is cropped back to 3-mm expansion to avoid the beam spots being populated to them. No

robust optimization process was used during the planning process. Our clinic is equipped with both fixed and gantry nozzles.

The spots at the fixed nozzle are smaller with sigma varying from 4.5 mm at 100 MeV to 2.6 mm at 200 MeV. The spot sigma in

the gantry nozzles varies from 6.5 to 4.0 mm in the same energy range. The patients were planned on the fixed nozzle if no

gantry rotations were needed to reduce the impact of the lateral dose spread at tumor boundary due to different spot sizes. The

planning optimization goal was to deliver 100% of the prescribed dose to 95% of the PTV volume and limit the hot spot to be

,110% of the prescription dose. The constraints applied to OARs are detailed in Table 2. A radiation oncologist has reviewed

these base plans and deemed them clinically acceptable regarding the OAR doses and PTV coverages.

Many articles have reviewed and assessed the setup uncertainties in brain tumors under modern image-guided radiation

therapy (IGRT) techniques [22–25]. A typical brain setup is to use kV orthogonal or cone-beam computed tomography (CBCT)

to align with the bony anatomy landmarks [22]. Cubillos Mesias et al [23] obtained brain systematic (random) setup errors of

1.0 (1.5), 1.1 (1.4), and 1.0 (1.1) mm in the superior-inferior, left-right, and anterior-posterior directions with CBCT. Tryggestad

et al [24] obtained similar values of 1.2 (1.4), 1.1 (1.2), and 1.1 (1.1) mm. Infusino et al [25] measured less than 2.0 mm

systematic errors in each direction with a small 0.1- to 0.3-mm random error with kV imaging and 6DoF corrections. With these

studies, we adopted the setup uncertainty of 1.0 (1.0) mm for systematic and random error in each direction, where the

probability of the setup uncertainties was equal in either superior or inferior, left or right, and anterior or posterior directions. A

bimodal Gaussian distribution was constructed to represent the setup uncertainties in this meningioma proton dosimetric

Table 1. Patients in study.

Patient Location PTV volume, cm3

1 Right retro-orbital 136

2 Right cavernous sinus 102.4

3 Left sphenoid 75.5

4 Central frontal sinus 110.9

5 Central base of skull 115.9

6 Right cavernous sinus 51

7 Right retro-orbital/cavernous sinus 157.7

8 Sella turcica 72.9

9 Right sphenoid 150.4

10 Left upper cervical 278

11 Right/central base of skull 32.9

12 Left retro-orbital/cavernous sinus 487.4

13 Right retro-orbital/cavernous sinus 92.5

14 Left retro-orbital/cavernous sinus 56.8

Abbreviation: PTV, planning treatment volume.

Table 2. Dose constraints for OARs in this study.

Structure Dose constraints, cGy

Brainstem D0.03cc �5400

Optic chiasm D0.03cc �5400

Left and right optic nerve D0.03cc �5400

Left and right eye D0.03cc �4500

Left and right cochlea D0.03cc �4500, mean �3000

Left and right temporal lobe Mean �2500

Abbreviation: OARs, organs at risk.
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study. It is expressed as follows:

Pð~X Þ ¼
Y3

i¼1

PðXi Þ ¼
Y3

i¼1

a1N 1ðXi jXmi ; r
2
i Þ þ a2N 2ðXi j � Xmi ; r

2
i Þ

� �
ð1Þ

Here, the probability of the setup uncertainty in x, y, z directions (~X ) is expressed by the weighted trivariate (in x, y, z

directions) bimodal normal distributions. N 1 and N 2 are the normal distribution with mean 6Xmi and standard deviation ri (i¼
1, 2, 3 represents the x, y, and z directions, respectively). The weights a1¼ a2¼0.5 represent the equal uncertainty probability

at the positive/negative directions. Here 6Xmi ¼ {61 mm, 61 mm, 61 mm} and ri ¼ {1 mm, 1 mm, 1 mm}. An illustrative

probability density function of this multimodal setup uncertainty model expressed in the X and Y planes is shown in Figure 1.

The center band around 0 setup error has lower probability than the band surrounding the mean and the most probable values.

The probability of the setup errors larger than the mean value band drops sharply.

When using the Eclipse TPS calculation engine to evaluate the plan dose distribution change due to the setup uncertainties,

only a limited number of setup uncertainty values can be input for dose calculation. Therefore, we used Eclipse to analyze a

representative dose variation within each setup probability band. For each setup uncertainty band ~X�½Xa
�!

; Xb
�!Þ, the

cumulative probability (CP) in this setup uncertainty band can be expressed as

CPn ¼ Pð~X�
h
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�!

; Xb
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ZZZ X
!

a

X
!

b
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Therefore the statistically expected dose from the probable setup can be expressed as

hDð~X Þi ¼
ZZZ

DðX1;X2;X3ÞPðX1;X2;X3ÞdX1dX2dX3ð3Þ

and can be approximated by using the probability bands as

hDð~X Þi’
XN

n¼1

Dð�Xn0Þ*CPnð4Þ

DðXn0
��!Þ is a representative dose distribution in the nth of the total N setup bands. When the number of setup bands

approaches infinity, Equation 4 becomes Equation 3.

Figure 1. Trivariate bimodal normal distribution illustrated on a 2D

plane (after integration of the third axis). The 0, 61, and 62.4 mm

setup probability bands are bounded by the blue, red, and yellow

lines.
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In this study, the center of the setup bands Xn0
��!

was chosen to be representative of no setup error of 0 mm, mean 61 mm,

and larger 62.4 mm with the bandwidth of 1 mm, 1.2 mm, and 1.4 mm in each of the x, y, and z directions. The cumulative

probability of each band CPn can be obtained from the 3D cumulative density function. The dose distributions at each of the

setup zones were calculated by shifting the isocenter with 61; mm
�����!

; and 62:4; mm
������!

at X, Y, Z directions from the base plans.

For each patient, the base SFUD and MFO plans were exported from the Eclipse TPS as DICOM-RT plans. A MATLAB

software (MathWorks, Natick, Massachusetts) code was developed to read the DICOM-RT file, shift its isocenter in the Xn0
��!¼

0
!
; 61; mm
�����!

; and 62:4; mm
������!

in XYZ directions and generate new plans in DICOM format. The proton beam angles, energies,

and spots of the original plans were maintained. A total of 16 SFUD and 16 MFO plans with various isocenter offsets for each

patient were generated and imported back into Eclipse. The dose distributions of these plans were recalculated. A Varian

Eclipse API script was run to analyze the plan target and OAR dosimetric indexes from Table 2 to examine the changes due to

various setup uncertainties. In addition, taking into account the probability of the setup uncertainties, the statistical cumulative

dose distribution was calculated from the base plan and 16 new plans by using the derived band cumulative CPn and Equation

4.

Results
Across the 14 patients’ base plans, the PTV coverage D95% ranged between 5209 and 5376 cGy for SFUD plans, between

5212 and 5397 cGy for MFO plans. The CTV coverage D99% ranged between 4987 and 5416 cGy for SFUD plans, between

4769 and 5392 cGy for MFO plans. The CTV coverage D95% ranged between 5290 and 5445 cGy for SFUD plans, between

5292 and 5435 cGy for MFO plans. The body dose D0.03cc ranged between 5542 and 5800 cGy for SFUD plans, between

5554 and 5854 cGy for MFO plans. Large variations in the dosimetric index among patients were observed for the brainstem,

optic chiasm, left and right optic nerve, cochlea, and eyes due to the meningioma target locations and sizes. The min-max

ranges of D0.03cc of brainstem among the 14 patients were [1278, 5657] cGy for SFUD plans and [1604, 5595] cGy for MFO

plans; D0.03cc of optic nerves were [673, 5428] cGy for SFUD plans and [587, 5396] cGy for MFO plans; D0.03cc of optic

chiasm were [3505, 5459] cGy for SFUD plans and [3703, 5408] cGy for MFO plans; D0.03cc of eyes were [~0, 5064] cGy for

SFUD plans and [~0, 5099] cGy for MFO plan; D0.03cc/mean of the cochlea were [~0/0, 5507/5475] cGy for SFUD plans and

[~0/0, 5503/5445] cGy for MFO plans. A nonparametric Kruskal-Wallis test was performed to examine dosimetric equivalency

between SFUD and MFO plans. Across all the dosimetric indices, the base SFUD and MFO plans did not show significant

differences (P . .49 for all dosimetric indices).

From the base plans, 1-mm and 2.4-mm setup uncertainties of the 14 patients were applied as described above. The dose

distribution due to these setup uncertainties was recalculated in Eclipse TPS. Figure 2 plots, for patient 14, the dose-volume

histogram (DVH) changes from the base plans (solid thick lines) for the 1-mm (fine solid lines) and 2.4-mm (fine dashed lines)

setup uncertainties. More extensive spread in DVHs of both CTV coverages and optic chiasm was observed in the MFO plan

compared with the SFUD plan.

When the setup uncertainties were introduced, the tumor target coverages were compromised for both SFUD and MFO

plans in the entire patient cohort, independent of the direction of the setup error (Figure 3). MFO plans in general had more

extensive target coverage changes than SFUD plans owing to the setup uncertainties. The changes in the CTV coverage,

body max dose, and OAR dosimetric index across the 448 plans of the 14 patients, due to 1-mm or 2.4-mm setup shifts in

SFUD or MFO base plans, were calculated. The statistics, including the mean, standard deviation, the 25th, 50th, and 75th

percentiles, and range of the changes, of the 112 plans for either 1- or 2.4-mm setup shifts in either SFUD or MFO base plans,

are listed in Table 3. For a small 1-mm setup error, the mean/max reduction in the CTV D99% coverage was�11/�164 cGy for

SFUD and�24/�327 cGy for MFO; the mean/max coverage reduction in CTV D95% was�6/�86 cGy for SFUD and�21/�146

cGy for MFO. The average/max CTV 99% coverage reduction was larger at 2.4-mm setup error with�46/�625 cGy for SFUD

and�110/�1040 cGy for MFO. The body hot spot maintained small variations for all SFUD plans and increased for all MFO

plans, especially at larger setup errors. The mean and standard deviations for the change in the hot spot for MFO plans under

2.4-mm setup errors were 166 6 151 cGy.

Figure 4 shows the box plots of the OAR dose changes across the 14 patients from each setup uncertainty scenario. The

statistics of the changes from the base plans are listed in Table 3. Only patients who had clinically significant doses to the

OARs in the base plans, namely, D0.03cc larger than 4500 cGy for the brainstem, optic nerves, and optic chiasm, and larger

than 3500 cGy for the eyes and cochleas, were included in the statistical analysis. As expected, larger setup uncertainty

caused larger changes in OAR doses. The changes in OAR doses can be either positive or negative, and were sensitive to
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specific individual setup shift directions. The setup uncertainties affect the dose in cochlea and eyes more significantly than the

dose in brainstem, optic nerves, and optic chiasm.

From Equation 4, the overall uncertainty effects are the sum of the weighted plan dose under different setup uncertainty

bands. For each patient, the SFUD and MFO plan sums were calculated with the base plan, 8 plans with 1.0-mm setup shifts,

and 8 plans with 2.4-mm setup shifts, by using Equation 4. The statistics of the changes in the SFUD and MFO plan sums from

the base plans for all the patients were calculated. The mean, standard deviation, the 25th, 50th, and 75th percentiles, and

range of the changes in target coverage, body max dose, and OAR dose are shown in Table 4. For some patients, CTV still

had compromised coverage but to a much lesser extent. The mean and max CTV D99% change was 1/�86 cGy (SFUD) and

7/�30 cGy (MFO). Although for each patient, specific setup uncertainties can have considerable changes in the OAR dose, the

statistically averaged total dose change to OARs is smaller than 100 cGy.

Figure 2. The DVH changes from the base plans (thick colored lines) due to the setup uncertainties for patient 14. (a) and (b) Changes from the SFUD

plan. (c) and (d) Changes from the MFO plan for CTV coverage and OARs (solid fine grey lines are from 1-mm setup uncertainties; dashed fine grey

lines are from 2.4-mm setup uncertainties). Abbreviations: CTV, clinical target volume; DVH, dose-volume histogram; L, left; MFO, multifield

optimization; OARs, organs at risk; OpticNrv, optic nerve; R, right; SFUD, single-field uniform dose.
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A nonparametric Kruskal-Wallis test was performed to examine the dosimetric index changes between SFUD and MFO

plans due to setup uncertainties. It was found that in SFUD plans, the changes in target coverage CTV D99% and D95% were

significantly smaller (P , .01 for both) than in MFO plans. Changes in body max dose and brainstem D0.03cc in SFUD plans

were also significantly smaller than in MFO plans (P , .01 for body max dose, P ¼ .02 for brainstem D0.03cc). No significant

differences were found for changes in D0.03cc for optic nerves, optic chiasm, eyes, and cochlea between SFUD and MFO

plans with P ¼ .98, .50, .92 and .11, respectively. No significant dose differences were observed between cumulative SFUD

and MFO plans (P . .20 for all dosimetric indices).

Discussion

In skull-base meningioma cases, multiple critical organs are in proximity to the tumor. Proton radiation therapy has great

advantages in meeting the dose constraints and limiting hot spots in the patient body. This is primarily due to the sharp

longitudinal dose fall-off of the proton beam and superior dose-shaping abilities with modulated spot positions and intensities

of PBS techniques. The plan spot energies in this study vary from 100.2 to 206.3 MeV with a mean of 172.3 MeV and a

standard deviation of 11.9 MeV. In this energy range, the sigma of the pencil beam spot size varies between 2.6 and 6.5 mm

as mentioned above. All the SFUD and MFO base plans of these 14 patients met the target and OAR constraints. In these

skull-base meningioma cases, the MFO base plans do not show significant advantages over the SFUD plans. The statistical

Figure 3. The variations in the CTV coverage D99% and D95% and body max dose for all 14 patients due to 61 mm and 62.4 mm shifts in X, Y, Z

directions from the SFUD and MFO base plans. Each box plot represents the dosimetric index distribution of the patients at the setup uncertainty

scenarios of (1.0, 1.0, 1.0), (�1.0, 1.0, 1.0), (1.0,�1.0, 1.0), (�1.0,�1.0, 1.0), (1.0, 1.0,�1.0), (�1.0, 1.0,�1.0), (1.0,�1.0,�1.0), and (�1.0,�1.0,�1.0)

mm; and (2.4, 2.4, 2.4), (�2.4, 2.4, 2.4), (2.4,�2.4, 2.4), (�2.4,�2.4, 2.4), (2.4, 2.4,�2.4), (�2.4, 2.4,�2.4), (2.4,�2.4,�2.4), and (�2.4,�2.4,�2.4) mm

(from left to right). Abbreviations: CTV, clinical target volume; MFO, multifield optimization; SFUD, single-field uniform dose.
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analysis showed that the SFUD plans demonstrated more robust target coverage and brainstem dose than the MFO plans,

although both had equivalent setup robustness in dose to optic apparatus and cochlea.

The current TPS provides a robust beam optimization module during the planning process. The optimization process takes

a predefined set of values for the setup shifts and range uncertainties and optimizes the beam spots that meet the dose

constraints under all the scenarios, regardless of the probabilities of them. A typical setup shift was set to be 3 mm as the

‘‘worst scenario.’’ Our study showed that a larger deviation in OAR dose and target coverage exists at larger setup

uncertainties. Satisfying the dosimetric constraints under the worst scenarios during the optimization process can create

unnecessary compromise of proton plan qualities, especially for those complexly shaped skull-base meningioma cases with

critical organs in proximity. We showed that as the probability of the large shifts is small, these worst-case scenarios have

limited contributions to the deviations from the base plan dose. When considering the statistical average of all the individual

setup uncertainty scenarios, both SFUD and MFO plans showed much better dosimetric index and plan qualities than the

Table 3. Statistics of the changes in the CTV coverage, body max dose, and OAR dosimetric index for all 14 patients from 61 or 62.4 mm setup shifts for

SFUD or MFO plans.

Change in Mean Std 25% 50% 75% Min Max

SFUD: 1-mm shift

CTV coverage D99% �11 52 �33 0 22 �164 98

CTV coverage D95% �6 24 �22 �4 10 �86 50

Body D0.03cc 2 27 �16 5 18 �66 90

Brainstem D0.03cc 7 36 �6 7 21 �177 102

Optic nerve D0.03cc 15 60 �6 14 38 �187 252

Optic chiasm D0.03cc 10 43 �5 13 30 �189 125

Eye D0.03cc 1 178 �134 7 131 �410 387

Cochlea D0.03cc 4 119 �23 12 50 �445 350

SFUD: 2.4-mm shift

CTV coverage D99% �45 147 �46 �1 19 �625 178

CTV coverage D95% �26 71 �39 �2 12 �362 42

Body D0.03cc 9 35 �16 8 30 �58 121

Brainstem D0.03cc 10 96 �16 14 36 �598 241

Optic nerve D0.03cc 20 153 �9 41 97 �529 307

Optic chiasm D0.03cc 18 115 4 49 77 �567 223

Eye D0.03cc �49 419 �312 �20 293 �1088 755

Cochlea D0.03cc 18 286 �61 24 172 �1059 758

MFO: 1-mm shift

CTV coverage D99% �24 87 �72 �17 19 �327 174

CTV coverage D95% �21 35 �41 �15 �1 �146 55

Body D0.03cc 42 74 4 30 74 �121 406

Brainstem D0.03cc 15 53 �10 18 39 �242 154

Optic nerve D0.03cc 12 82 �39 15 71 �212 215

Optic chiasm D0.03cc 14 46 �17 16 49 �156 124

Eye D0.03cc 1 193 �147 �4 151 �413 370

Cochlea D0.03cc �6 130 �62 �8 61 �438 373

MFO: 2.4-mm shift

CTV coverage D99% �110 231 �180 �62 12 �1040 283

CTV coverage D95% �88 102 �128 �64 �16 �500 51

Body D0.03cc 166 151 55 123 257 �205 631

Brainstem D0.03cc 48 144 �10 56 111 �737 380

Optic nerve D0.03cc 26 192 �87 56 145 �597 621

Optic chiasm D0.03cc 39 125 �27 50 123 �502 274

Eye D0.03cc �36 451 �301 �27 360 �1025 724

Cochlea D0.03cc 6 316 �124 13 147 �1041 820

Abbreviations: CTV, clinical target volume; OAR, organ at risk; SFUD, single-field uniform dose; MFO, multifield optimization; Std, standard deviation.

Note: The mean, standard deviation, the 25th, 50th, and 75th percentiles, and range of the changes in the 112 plans (8 plans for each patient) for each scenario are listed. Values are

in cGy.
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Figure 4. The variations in the OAR dose for all 14 patients due to 61 mm and 62.4 mm shifts in X, Y, Z directions from the SFUD and MFO base

plans. Each box plot represents the dosimetric index distribution of the patients at the setup uncertainty scenarios of (1.0, 1.0, 1.0), (�1.0, 1.0, 1.0), (1.0,

�1.0, 1.0), (�1.0,�1.0, 1.0), (1.0, 1.0,�1.0), (�1.0, 1.0,�1.0), (1.0,�1.0,�1.0), and (�1.0,�1.0,�1.0) mm; and (2.4, 2.4, 2.4), (�2.4, 2.4, 2.4), (2.4,�2.4,

2.4), (�2.4,�2.4, 2.4), (2.4, 2.4,�2.4), (�2.4, 2.4,�2.4), (2.4,�2.4,�2.4), and (�2.4,�2.4,�2.4) mm (from left to right). Abbreviations: MFO, multifield

optimization; OAR, organ at risk; SFUD, single-field uniform dose.
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individual plans. Therefore, we suggest that a probabilistic dose uncertainty model be considered by TPS vendors to build in

the future a robust beam optimization module. In the clinic, several TPS systems such as Eclipse and Raystation (RaySearch

Laboratories, Stockholm, Sweden) provide a scripting function that can access and modify the treatment plans [26] as well as

assess the plan qualities [27]. The scripting application can be used to establish a workflow that can apply the setup shifts to

the base plan, recalculate and generate the probability-weighted plan sum, and assess the plan sum quality. This effort would

enable more realistic plan evaluations in the clinic, based on the probability of the setup scenarios.

The probability model in this study used the brain setup data from various photon studies. While 6DoF couch for photon

treatment is being used more extensively [28], proton systems are generally equipped with 6DoF couches, which can have

better positioning of the patient. kV imaging is a standard IGRT method in proton radiation therapy. CBCT in proton radiation

therapy is also getting more popular [29]. It would be beneficial to obtain the setup uncertainties for the brain proton radiation

therapy treatments. All the efforts in reducing the setup uncertainties will contribute to smaller dose variations from the base

plans and result in more consistent proton radiation therapy delivery.

In our study, the range uncertainties due to the calculation algorithm and CT HU (Hounsfield unit) conversion were not

included. Our TPS is set up to convert from CT HU values to relative proton-stopping power (RSP) at each CT voxel, based on

the HU-RSP calibration curve [30]. A typical uncertainty in the range was estimated to be 3.5% of the range in the body tissue

[31], although other range uncertainty values were also proposed [32]. The dosimetric effects from voxel-based HU conversion

uncertainties for these PBS plans and the combined effects from the setup and range uncertainties for these skull-base

meningioma cases are worth further investigation.

Conclusion
In this study, we analyzed the proton dose impact on the target and critical organs for skull-base meningioma patients with

SFUD and MFO planning techniques. From the published IGRT setup uncertainties in the brain treatments, we constructed a

bimodal Gaussian distribution model to evaluate plan qualities under various setup scenarios. We demonstrated that in single

fraction, large dose deviations in target coverage and organ dose exist. The brainstem, optic nerves, and optic chiasm will

have an increase of maximum dose .500 cGy at a setup error of 2.4 mm. The probability of such scenario is small. In the most

probable 1-mm setup error, the dosimetric impact of these critical organs is ,260 cGy. Compared with MFO, the proton SFUD

planning technique is recommended as it shows more robust target coverage and brainstem dose against setup uncertainties.

Table 4. Statistics of the dosimetric changes in the weighted SFUD and MFO plan sums from the base plans across 14 patients.

Change in Mean Std 25% 50% 75% Min Max

SFUD

CTV coverage D99% 1 34 �11 4 21 �86 55

CTV coverage D95% �1 11 �3 1 6 �34 9

Body D0.03cc �35 27 �51 �32 �16 �94 3

Brainstem D0.03cc �11 15 �17 �7 �3 �38 12

Optic nerve D0.03cc 6 18 �1 10 16 �40 39

Optic chiasm D0.03cc �2 22 �19 2 10 �48 43

Eye D0.03cc �22 12 �30 �18 �14 �38 �13

Cochlea D0.03cc 5 26 �13 4 18 �25 53

MFO

CTV coverage D99% 7 18 �4 11 19 �37 34

CTV coverage D95% 5 14 �1 4 11 �23 32

Body D0.03cc �40 24 �55 �38 �22 �87 3

Brainstem D0.03cc �15 16 �23 �12 �6 �46 7

Optic nerve D0.03cc 0 20 �9 1 11 �56 30

Optic chiasm D0.03cc �5 23 �19 3 11 �59 23

Eye D0.03cc �32 18 �49 �30 �15 �51 �12

Cochlea D0.03cc �10 25 �27 �8 7 �49 22

Abbreviations: SFUD, single-field uniform dose; MFO, multifield optimization; Std, standard deviation; CTV, clinical target volume; OAR, organ at risk.

Note: The mean, standard deviation, the 25th, 50th, and 75th percentiles, and range of the changes in CTV coverage, body max, and OAR dosimetric index are listed. Values are in

cGy.
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When performing a probability-weighted cumulative plan, the dosimetric parameters had ,100 cGy impact for all 14 patients

studied. The probability-weighted cumulative plan is a closer reflection of the treatment dose that patients would receive rather

than a worst-case scenario. The variations in dose coverage due to setup uncertainties in this study could assist in treatment

assessment in skull-base meningioma proton radiation therapy. We recommend further development of a robust optimization

process using a probability-based setup uncertainty model.
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